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Overview

learning statistics with jamovi covers the contents of an introductory statistics class, as typically
taught to undergraduate psychology students. The book discusses how to get started in jamovi
as well as giving an introduction to data manipulation. From a statistical perspective, the book
discusses descriptive statistics and graphing first, followed by chapters on probability theory,
sampling and estimation, and null hypothesis testing. After introducing the theory, the book
covers the analysis of contingency tables, correlation, t-tests, regression, ANOVA and factor
analysis. Bayesian statistics are covered at the end of the book.
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Preface to Version 0.70

This update from version 0.65 introduces some new analyses. In the ANOVA chapters we have
added sections on repeated measures ANOVA and analysis of covariance (ANCOVA). In a new
chapter we have introduced Factor Analysis and related techniques. Hopefully the style of this
new material is consistent with the rest of the book, though eagle-eyed readers might spot a
bit more of an emphasis on conceptual and practical explanations, and a bit less algebra. I'm
not sure this is a good thing, and might add the algebra in a bit later. But it reflects both my
approach to understanding and teaching statistics, and also some feedback I have received from
students on a course I teach. In line with this, I have also been through the rest of the book
and tried to separate out some of the algebra by putting it into a box or frame. It’s not that
this stuff is not important or useful, but for some students they may wish to skip over it and
therefore the boxing of these parts should help some readers.

With this version I am very grateful to comments and feedback received from my students
and colleagues, notably Wakefield Morys-Carter, and also to numerous people all over the world
who have sent in small suggestions and corrections - much appreciated, and keep them coming!
One pretty neat new feature is that the example data files for the book can now be loaded into
jamovi as an add-on module - thanks to Jonathon Love for helping with that.

David Foxcroft
February 1st, 2019

Preface to Version 0.65

In this adaptation of the excellent ‘Learning statistics with R’, by Danielle Navarro, we have
replaced the statistical software used for the analyses and examples with jamovi. Although R
is a powerful statistical programming language, it is not the first choice for every instructor
and student at the beginning of their statistical learning. Some instructors and students tend to
prefer the point-and-click style of software, and that’s where jamovi comes in. jamovi is software
that aims to simplify two aspects of using R. It offers a point-and-click graphical user interface
(GUI), and it also provides functions that combine the capabilities of many others, bringing a
more SPSS- or SAS-like method of programming to R. Importantly, jamovi will always be free
and open - that’s one of its core values - because jamovi is made by the scientific community,
for the scientific community.

With this version I am very grateful for the help of others who have read through drafts and
provided excellent suggestions and corrections, particularly Dr David Emery and Kirsty Walter.

David Foxcroft
July 1st, 2018
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Preface to Version 0.6

The book hasn’t changed much since 2015 when I released Version 0.5 — it’s probably fair to say
that I've changed more than it has. I moved from Adelaide to Sydney in 2016 and my teaching
profile at UNSW is different to what it was at Adelaide, and I haven’t really had a chance to
work on it since arriving here! It’s a little strange looking back at this actually. A few quick
comments...

e Weirdly, the book consistently misgenders me, but I suppose I have only myself to blame
for that one :-) There’s now a brief footnote on page 12 that mentions this issue; in real life
I've been working through a gender affirmation process for the last two years and mostly
go by she/her pronouns. I am, however, just as lazy as I ever was so I haven’t bothered
updating the text in the book.

e For Version 0.6 I haven’t changed much I've made a few minor changes when people have
pointed out typos or other errors. In particular it’s worth noting the issue associated with
the etaSquared function in the Isr package (which isn’t really being maintained any more)
in Section 14.4. The function works fine for the simple examples in the book, but there
are definitely bugs in there that I haven’t found time to check! So please take care with
that one.

e The biggest change really is the licensing! I've released it under a Creative Commons
licence (CC BY-SA 4.0, specifically), and placed all the source files to the associated
GitHub repository, if anyone wants to adapt it.

Maybe someone would like to write a version that makes use of the tidyverse... I hear that’s
become rather important to R these days :-)

Best,
Danielle Navarro

Preface to Version 0.5

Another year, another update. This time around, the update has focused almost entirely on the
theory sections of the book. Chapters 9, 10 and 11 have been rewritten, hopefully for the better.
Along the same lines, Chapter 17 is entirely new, and focuses on Bayesian statistics. I think the
changes have improved the book a great deal. I've always felt uncomfortable about the fact that
all the inferential statistics in the book are presented from an orthodox perspective, even though
I almost always present Bayesian data analyses in my own work. Now that I’ve managed to
squeeze Bayesian methods into the book somewhere, I'm starting to feel better about the book



as a whole. I wanted to get a few other things done in this update, but as usual I’'m running
into teaching deadlines, so the update has to go out the way it is!

Dan Navarro
February 16, 2015

Preface to Version 0.4

A year has gone by since I wrote the last preface. The book has changed in a few important
ways: Chapters 3 and 4 do a better job of documenting some of the time saving features of
Rstudio, Chapters 12 and 13 now make use of new functions in the lsr package for running
chi-square tests and t tests, and the discussion of correlations has been adapted to refer to the
new functions in the Isr package. The soft copy of 0.4 now has better internal referencing (i.e.,
actual hyperlinks between sections), though that was introduced in 0.3.1. There’s a few tweaks
here and there, and many typo corrections (thank you to everyone who pointed out typos!), but
overall 0.4 isn’t massively different from 0.3.

I wish I’d had more time over the last 12 months to add more content. The absence of any
discussion of repeated measures ANOVA and mixed models more generally really does annoy
me. My excuse for this lack of progress is that my second child was born at the start of 2013,
and so I spent most of last year just trying to keep my head above water. As a consequence,
unpaid side projects like this book got sidelined in favour of things that actually pay my salary!
Things are a little calmer now, so with any luck version 0.5 will be a bigger step forward.

One thing that has surprised me is the number of downloads the book gets. I finally got
some basic tracking information from the website a couple of months ago, and (after excluding
obvious robots) the book has been averaging about 90 downloads per day. That’s encouraging:
there’s at least a few people who find the book useful!

Dan Navarro
February 4, 2014

Preface to Version 0.3

There’s a part of me that really doesn’t want to publish this book. It’s not finished.

And when I say that, I mean it. The referencing is spotty at best, the chapter summaries
are just lists of section titles, there’s no index, there are no exercises for the reader, the organi-
sation is suboptimal, and the coverage of topics is just not comprehensive enough for my liking.
Additionally, there are sections with content that I'm not happy with, figures that really need
to be redrawn, and I've had almost no time to hunt down inconsistencies, typos, or errors. In
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other words, this book is not finished. If I didn’t have a looming teaching deadline and a baby
due in a few weeks, I really wouldn’t be making this available at all.

What this means is that if you are an academic looking for teaching materials, a Ph.D.
student looking to learn R, or just a member of the general public interested in statistics, 1
would advise you to be cautious. What you're looking at is a first draft, and it may not serve
your purposes. If we were living in the days when publishing was expensive and the internet
wasn’t around, I would never consider releasing a book in this form. The thought of someone
shelling out $80 for this (which is what a commercial publisher told me it would retail for when
they offered to distribute it) makes me feel more than a little uncomfortable. However, it’s the
21st century, so I can post the pdf on my website for free, and I can distribute hard copies via a
print-on-demand service for less than half what a textbook publisher would charge. And so my
guilt is assuaged, and I'm willing to share! With that in mind, you can obtain free soft copies
and cheap hard copies online, from the following webpages:

Soft copy:  http://www.compcogscisydney.com/learning-statistics-with-r.html
Hard copy: www.lulu.com/content/13570633

Even so, the warning still stands: what you are looking at is Version 0.3 of a work in progress.
If and when it hits Version 1.0, I would be willing to stand behind the work and say, yes, this
is a textbook that I would encourage other people to use. At that point, I'll probably start
shamelessly flogging the thing on the internet and generally acting like a tool. But until that
day comes, I'd like it to be made clear that I'm really ambivalent about the work as it stands.

All of the above being said, there is one group of people that I can enthusiastically endorse
this book to: the psychology students taking our undergraduate research methods classes (DRIP
and DRIP:A) in 2013. For you, this book is ideal, because it was written to accompany your
stats lectures. If a problem arises due to a shortcoming of these notes, I can and will adapt
content on the fly to fix that problem. Effectively, you’ve got a textbook written specifically for
your classes, distributed for free (electronic copy) or at near-cost prices (hard copy). Better yet,
the notes have been tested: Version 0.1 of these notes was used in the 2011 class, Version 0.2
was used in the 2012 class, and now you're looking at the new and improved Version 0.3. I’[for
a historical summary|m not saying these notes are titanium plated awesomeness on a stick —
though if you wanted to say so on the student evaluation forms, then you’re totally welcome to
— because they’re not. But I am saying that they’ve been tried out in previous years and they
seem to work okay. Besides, there’s a group of us around to troubleshoot if any problems come
up, and you can guarantee that at least one of your lecturers has read the whole thing cover to
cover!

Okay, with all that out of the way, I should say something about what the book aims to be.
At its core, it is an introductory statistics textbook pitched primarily at psychology students.
As such, it covers the standard topics that you’d expect of such a book: study design, descriptive
statistics, the theory of hypothesis testing, t-tests, x? tests, ANOVA and regression. However,
there are also several chapters devoted to the R statistical package, including a chapter on data
manipulation and another one on scripts and programming. Moreover, when you look at the
content presented in the book, you’ll notice a lot of topics that are traditionally swept under
the carpet when teaching statistics to psychology students. The Bayesian/frequentist divide is
openly disussed in the probability chapter, and the disagreement between Neyman and Fisher
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about hypothesis testing makes an appearance. The difference between probability and density
is discussed. A detailed treatment of Type I, II and III sums of squares for unbalanced factorial
ANOVA is provided. And if you have a look in the Epilogue, it should be clear that my intention
is to add a lot more advanced content.

My reasons for pursuing this approach are pretty simple: the students can handle it, and
they even seem to enjoy it. Over the last few years I've been pleasantly surprised at just how
little difficulty I've had in getting undergraduate psych students to learn R. It’s certainly not
easy for them, and I've found I need to be a little charitable in setting marking standards, but
they do eventually get there. Similarly, they don’t seem to have a lot of problems tolerating
ambiguity and complexity in presentation of statistical ideas, as long as they are assured that
the assessment standards will be set in a fashion that is appropriate for them. So if the students
can handle it, why not teach it? The potential gains are pretty enticing. If they learn R, the
students get access to CRAN, which is perhaps the largest and most comprehensive library of
statistical tools in existence. And if they learn about probability theory in detail, it’s easier
for them to switch from orthodox null hypothesis testing to Bayesian methods if they want
to. Better yet, they learn data analysis skills that they can take to an employer without being
dependent on expensive and proprietary software.

Sadly, this book isn’t the silver bullet that makes all this possible. It’s a work in progress,
and maybe when it is finished it will be a useful tool. One among many, I would think. There
are a number of other books that try to provide a basic introduction to statistics using R, and
I’'m not arrogant enough to believe that mine is better. Still, I rather like the book, and maybe
other people will find it useful, incomplete though it is.

Dan Navarro
January 13, 2013

xiii



Part I.

Background






1. Why do we learn statistics?

“Thou shalt not answer questionnaires
Or quizzes upon World Affairs,

Nor with compliance
Take any test. Thou shalt not sit
With statisticians nor commit

A social science”

— W.H. Auden’

1.1
On the psychology of statistics

To the surprise of many students, statistics is a fairly significant part of a psychological education.
To the surprise of no-one, statistics is very rarely the favourite part of one’s psychological
education. After all, if you really loved the idea of doing statistics, you’d probably be enrolled
in a statistics class right now, not a psychology class. So, not surprisingly, there’s a pretty large
proportion of the student base that isn’t happy about the fact that psychology has so much
statistics in it. In view of this, I thought that the right place to start might be to answer some
of the more common questions that people have about stats.

A big part of this issue at hand relates to the very idea of statistics. What is it? What’s
it there for? And why are scientists so bloody obsessed with it? These are all good questions,
when you think about it. So let’s start with the last one. As a group, scientists seem to be
bizarrely fixated on running statistical tests on everything. In fact, we use statistics so often
that we sometimes forget to explain to people why we do. It’s a kind of article of faith among
scientists — and especially social scientists — that your findings can’t be trusted until you’ve done
some stats. Undergraduate students might be forgiven for thinking that we’re all completely
mad, because no-one takes the time to answer one very simple question:

The quote comes from Auden’s 1946 poem Under Which Lyre: A Reactionary Tract for the Times, delivered
as part of a commencement address at Harvard University. The history of the poem is kind of interesting:
http://harvardmagazine.com/2007/11/a-poets-warning.html


http://harvardmagazine.com/2007/11/a-poets-warning.html

Why do you do statistics? Why don’t scientists just use common sense?

It’s a naive question in some ways, but most good questions are. There’s a lot of good answers
to it,2 but for my money, the best answer is a really simple one: we don’t trust ourselves enough.
We worry that we’re human, and susceptible to all of the biases, temptations and frailties that
humans suffer from. Much of statistics is basically a safeguard. Using “common sense” to
evaluate evidence means trusting gut instincts, relying on verbal arguments and on using the
raw power of human reason to come up with the right answer. Most scientists don’t think this
approach is likely to work.

In fact, come to think of it, this sounds a lot like a psychological question to me, and since I do
work in a psychology department, it seems like a good idea to dig a little deeper here. Is it really
plausible to think that this “common sense” approach is very trustworthy? Verbal arguments
have to be constructed in language, and all languages have biases — some things are harder to
say than others, and not necessarily because they're false (e.g., quantum electrodynamics is a
good theory, but hard to explain in words). The instincts of our “gut” aren’t designed to solve
scientific problems, they're designed to handle day to day inferences — and given that biological
evolution is slower than cultural change, we should say that they’re designed to solve the day
to day problems for a different world than the one we live in. Most fundamentally, reasoning
sensibly requires people to engage in “induction”, making wise guesses and going beyond the
immediate evidence of the senses to make generalisations about the world. If you think that
you can do that without being influenced by various distractors, well, I have a bridge in London
I'd like to sell you. Heck, as the next section shows, we can’t even solve “deductive” problems
(ones where no guessing is required) without being influenced by our pre-existing biases.

1.1.1 The curse of belief bias

People are mostly pretty smart. We're certainly smarter than the other species that we
share the planet with (though many people might disagree). Our minds are quite amazing
things, and we seem to be capable of the most incredible feats of thought and reason. That
doesn’t make us perfect though. And among the many things that psychologists have shown
over the years is that we really do find it hard to be neutral, to evaluate evidence impartially
and without being swayed by pre-existing biases. A good example of this is the belief bias
effect in logical reasoning: if you ask people to decide whether a particular argument is logically
valid (i.e., conclusion would be true if the premises were true), we tend to be influenced by the
believability of the conclusion, even when we shouldn’t. For instance, here’s a valid argument
where the conclusion is believable:

All cigarettes are expensive (Premise 1)
Some addictive things are inexpensive (Premise 2)
Therefore, some addictive things are not cigarettes (Conclusion)

And here’s a valid argument where the conclusion is not believable:

2Including the suggestion that common sense is in short supply among scientists.



All addictive things are expensive (Premise 1)
Some cigarettes are inexpensive (Premise 2)
Therefore, some cigarettes are not addictive (Conclusion)

The logical structure of argument #2 is identical to the structure of argument #1, and they’re
both valid. However, in the second argument, there are good reasons to think that premise 1 is
incorrect, and as a result it’s probably the case that the conclusion is also incorrect. But that’s
entirely irrelevant to the topic at hand; an argument is deductively valid if the conclusion is
a logical consequence of the premises. That is, a valid argument doesn’t have to involve true
statements.

On the other hand, here’s an invalid argument that has a believable conclusion:

All addictive things are expensive (Premise 1)
Some cigarettes are inexpensive (Premise 2)
Therefore, some addictive things are not cigarettes (Conclusion)

And finally, an invalid argument with an unbelievable conclusion:

All cigarettes are expensive (Premise 1)
Some addictive things are inexpensive (Premise 2)
Therefore, some cigarettes are not addictive (Conclusion)

Now, suppose that people really are perfectly able to set aside their pre-existing biases about
what is true and what isn’t, and purely evaluate an argument on its logical merits. We’d expect
100% of people to say that the valid arguments are valid, and 0% of people to say that the
invalid arguments are valid. So if you ran an experiment looking at this, you’d expect to see
data like this:

conclusion feels true conclusion feels false

argument is valid 100% say “valid” 100% say “valid”

argument is invalid 0% say “valid” 0% say “valid”

If the psychological data looked like this (or even a good approximation to this), we might feel
safe in just trusting our gut instincts. That is, it’d be perfectly okay just to let scientists evaluate
data based on their common sense, and not bother with all this murky statistics stuff. However,
you guys have taken psych classes, and by now you probably know where this is going.

In a classic study, Evans, Barston, and Pollard (1983) ran an experiment looking at exactly
this. What they found is that when pre-existing biases (i.e., beliefs) were in agreement with the
structure of the data, everything went the way you’d hope:

conclusion feels true conclusion feels false

argument is valid 92% say “valid”

argument is invalid 8% say “valid”




Not perfect, but that’s pretty good. But look what happens when our intuitive feelings about
the truth of the conclusion run against the logical structure of the argument:

conclusion feels true conclusion feels false

argument is valid 92% say “valid” 46% say “valid”

argument is invalid | 92% say “valid” 8% say “valid”

Oh dear, that’s not as good. Apparently, when people are presented with a strong argument
that contradicts our pre-existing beliefs, we find it pretty hard to even perceive it to be a strong
argument (people only did so 46% of the time). Even worse, when people are presented with a
weak argument that agrees with our pre-existing biases, almost no-one can see that the argument
is weak (people got that one wrong 92% of the time!).?

If you think about it, it’s not as if these data are horribly damning. Overall, people did do
better than chance at compensating for their prior biases, since about 60% of people’s judgements
were correct (you'd expect 50% by chance). Even so, if you were a professional “evaluator of
evidence”, and someone came along and offered you a magic tool that improves your chances of
making the right decision from 60% to (say) 95%, you’d probably jump at it, right? Of course
you would. Thankfully, we actually do have a tool that can do this. But it’s not magic, it’s
statistics. So that’s reason #1 why scientists love statistics. It’s just too easy for us to “believe
what we want to believe”. So instead, if we want to “believe in the data”, we’re going to need a
bit of help to keep our personal biases under control. That’s what statistics does, it helps keep
us honest.

1.2

The cautionary tale of Simpson’s paradox

The following is a true story (I think!). In 1973, the University of California, Berkeley had some
worries about the admissions of students into their postgraduate courses. Specifically, the thing
that caused the problem was that the gender breakdown of their admissions, which looked like
this:

Number of applicants Percent admitted
Males 8442 44%
Females 4321 35%

Given this, they were worried about being sued!* Given that there were nearly 13,000 applicants,
a difference of 9% in admission rates between males and females is just way too big to be a
coincidence. Pretty compelling data, right? And if I were to say to you that these data actually

3In my more cynical moments I feel like this fact alone explains 95% of what I read on the internet.

4Earlier versions of these notes incorrectly suggested that they actually were sued. But that’s not true. There’s
a nice commentary on this here: https://www.refsmmat.com/posts/2016-05-08-simpsons-paradox-berkeley.
html. A big thank you to Wilfried Van Hirtum for pointing this out to me.
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https://www.refsmmat.com/posts/2016-05-08-simpsons-paradox-berkeley.html

reflect a weak bias in favour of women (sort of!), you’d probably think that I was either crazy
or sexist.

Oddly, it’s actually sort of true. When people started looking more carefully at the admis-
sions data they told a rather different story (Bickel, Hammel, and O’Connell 1975). Specifically,
when they looked at it on a department by department basis, it turned out that most of the
departments actually had a slightly higher success rate for female applicants than for male ap-
plicants. The table below shows the admission figures for the six largest departments (with the
names of the departments removed for privacy reasons):

Males Females
Department | Applicants Percent admitted | Applicants Percent admitted
A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 272 6% 341 ™%

Remarkably, most departments had a higher rate of admissions for females than for males! Yet
the overall rate of admission across the university for females was lower than for males. How
can this be? How can both of these statements be true at the same time?

Here’s what’s going on. Firstly, notice that the departments are not equal to one another
in terms of their admission percentages: some departments (e.g., A, B) tended to admit a
high percentage of the qualified applicants, whereas others (e.g., F) tended to reject most of
the candidates, even if they were high quality. So, among the six departments shown above,
notice that department A is the most generous, followed by B, C, D, E and F in that order.
Next, notice that males and females tended to apply to different departments. If we rank the
departments in terms of the total number of male applicants, we get A>B>D>C>F>E (the
“easy” departments are in bold). On the whole, males tended to apply to the departments that
had high admission rates. Now compare this to how the female applicants distributed themselves.
Ranking the departments in terms of the total number of female applicants produces a quite
different ordering C>E>D>F>A>B. In other words, what these data seem to be suggesting
is that the female applicants tended to apply to “harder” departments. And in fact, if we look
at Figure 1.1 we see that this trend is systematic, and quite striking. This effect is known as
Simpson’s paradox. It’s not common, but it does happen in real life, and most people are
very surprised by it when they first encounter it, and many people refuse to even believe that
it’s real. It is very real. And while there are lots of very subtle statistical lessons buried in
there, I want to use it to make a much more important point: doing research is hard, and there
are lots of subtle, counter-intuitive traps lying in wait for the unwary. That’s reason #2 why
scientists love statistics, and why we teach research methods. Because science is hard, and the
truth is sometimes cunningly hidden in the nooks and crannies of complicated data.

Before leaving this topic entirely, I want to point out something else really critical that is often
overlooked in a research methods class. Statistics only solves part of the problem. Remember
that we started all this with the concern that Berkeley’s admissions processes might be unfairly
biased against female applicants. When we looked at the “aggregated” data, it did seem like
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Figure 1.1: The Berkeley 1973 college admissions data. This figure plots the admission rate
for the 85 departments that had at least one female applicant, as a function of the percentage
of applicants that were female. The plot is a redrawing of Figure 1 from Bickel, Hammel, and
O’Connell (1975). Circles plot departments with more than 40 applicants; the area of the circle
is proportional to the total number of applicants. The crosses plot departments with fewer than
40 applicants.

the university was discriminating against women, but when we “disaggregate” and looked at the
individual behaviour of all the departments, it turned out that the actual departments were, if
anything, slightly biased in favour of women. The gender bias in total admissions was caused
by the fact that women tended to self-select for harder departments. From a legal perspective,
that would probably put the university in the clear. Postgraduate admissions are determined
at the level of the individual department, and there are good reasons to do that. At the level
of individual departments the decisions are more or less unbiased (the weak bias in favour of
females at that level is small, and not consistent across departments). Since the university can’t
dictate which departments people choose to apply to, and the decision making takes place at
the level of the department it can hardly be held accountable for any biases that those choices
produce.



That was the basis for my somewhat glib remarks earlier, but that’s not exactly the whole
story, is it? After all, if we're interested in this from a more sociological and psychological
perspective, we might want to ask why there are such strong gender differences in applications.
Why do males tend to apply to engineering more often than females, and why is this reversed
for the English department? And why is it the case that the departments that tend to have
a female-application bias tend to have lower overall admission rates than those departments
that have a male-application bias? Might this not still reflect a gender bias, even though every
single department is itself unbiased? It might. Suppose, hypothetically, that males preferred
to apply to “hard sciences” and females prefer “humanities”. And suppose further that the
reason for why the humanities departments have low admission rates is because the government
doesn’t want to fund the humanities (Ph.D. places, for instance, are often tied to government
funded research projects). Does that constitute a gender bias? Or just an unenlightened view
of the value of the humanities? What if someone at a high level in the government cut the
humanities funds because they felt that the humanities are “useless chick stuff”. That seems
pretty blatantly gender biased. None of this falls within the purview of statistics, but it matters
to the research project. If you're interested in the overall structural effects of subtle gender
biases, then you probably want to look at both the aggregated and disaggregated data. If you're
interested in the decision making process at Berkeley itself then you’re probably only interested
in the disaggregated data.

In short there are a lot of critical questions that you can’t answer with statistics, but the
answers to those questions will have a huge impact on how you analyse and interpret data. And
this is the reason why you should always think of statistics as a tool to help you learn about
your data. No more and no less. It’s a powerful tool to that end, but there’s no substitute for
careful thought.

1.3
Statistics in psychology

I hope that the discussion above helped explain why science in general is so focused on statis-
tics. But I'm guessing that you have a lot more questions about what role statistics plays in
psychology, and specifically why psychology classes always devote so many lectures to stats. So
here’s my attempt to answer a few of them...

¢ Why does psychology have so much statistics?

To be perfectly honest, there’s a few different reasons, some of which are better than others.
The most important reason is that psychology is a statistical science. What I mean by
that is that the “things” that we study are people. Real, complicated, gloriously messy,
infuriatingly perverse people. The “things” of physics include objects like electrons, and
while there are all sorts of complexities that arise in physics, electrons don’t have minds
of their own. They don’t have opinions, they don’t differ from each other in weird and
arbitrary ways, they don’t get bored in the middle of an experiment, and they don’t get
angry at the experimenter and then deliberately try to sabotage the data set (not that



I've ever done that!). At a fundamental level psychology is harder than physics.’

Basically, we teach statistics to you as psychologists because you need to be better at stats
than physicists. There’s actually a saying used sometimes in physics, to the effect that
“if your experiment needs statistics, you should have done a better experiment”. They
have the luxury of being able to say that because their objects of study are pathetically
simple in comparison to the vast mess that confronts social scientists. And it’s not just
psychology. Most social sciences are desperately reliant on statistics. Not because we're
bad experimenters, but because we've picked a harder problem to solve. We teach you
stats because you really, really need it.

e Can’t someone else do the statistics?

To some extent, but not completely. It’s true that you don’t need to become a fully trained
statistician just to do psychology, but you do need to reach a certain level of statistical
competence. In my view, there’s three reasons that every psychological researcher ought
to be able to do basic statistics:

— Firstly, there’s the fundamental reason: statistics is deeply intertwined with research
design. If you want to be good at designing psychological studies, you need to at the
very least understand the basics of stats.

— Secondly, if you want to be good at the psychological side of the research, then you
need to be able to understand the psychological literature, right? But almost every
paper in the psychological literature reports the results of statistical analyses. So if
you really want to understand the psychology, you need to be able to understand
what other people did with their data. And that means understanding a certain
amount of statistics.

— Thirdly, there’s a big practical problem with being dependent on other people to do
all your statistics: statistical analysis is expensive. If you ever get bored and want to
look up how much the Australian government charges for university fees, you’ll notice
something interesting: statistics is designated as a “national priority” category, and
so the fees are much, much lower than for any other area of study. This is because
there’s a massive shortage of statisticians out there. So, from your perspective as a
psychological researcher, the laws of supply and demand aren’t exactly on your side
here! As a result, in almost any real life situation where you want to do psycho-
logical research, the cruel facts will be that you don’t have enough money to afford
a statistician. So the economics of the situation mean that you have to be pretty
self-sufficient.

Note that a lot of these reasons generalise beyond researchers. If you want to be a practicing
psychologist and stay on top of the field, it helps to be able to read the scientific literature,
which relies pretty heavily on statistics.

e I don’t care about jobs, research, or clinical work. Do I need statistics?

Okay, now you’re just messing with me. Still, I think it should matter to you too. Statistics
should matter to you in the same way that statistics should matter to everyone. We live

SWhich might explain why physics is just a teensy bit further advanced as a science than we are.
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in the 21st century, and data are everywhere. Frankly, given the world in which we live
these days, a basic knowledge of statistics is pretty damn close to a survival tool! Which
is the topic of the next section.

1.4
Statistics in everyday life

“We are drowning in information,
but we are starved for knowledge”
— Various authors, original probably John Naisbitt

When I started writing up my lecture notes I took the 20 most recent news articles posted to
the ABC news website. Of those 20 articles, it turned out that 8 of them involved a discussion
of something that I would call a statistical topic and 6 of those made a mistake. The most
common error, if you're curious, was failing to report baseline data (e.g., the article mentions
that 5% of people in situation X have some characteristic Y, but doesn’t say how common the
characteristic is for everyone else!). The point I'm trying to make here isn’t that journalists are
bad at statistics (though they almost always are), it’s that a basic knowledge of statistics is very
helpful for trying to figure out when someone else is either making a mistake or even lying to
you. In fact, one of the biggest things that a knowledge of statistics does to you is cause you to
get angry at the newspaper or the internet on a far more frequent basis. You can find a good
example of this in Section 4.1.5. In later versions of this book I'll try to include more anecdotes
along those lines.

15
There’s more to research methods than statistics

So far, most of what I've talked about is statistics, and so you’d be forgiven for thinking that
statistics is all I care about in life. To be fair, you wouldn’t be far wrong, but research method-
ology is a broader concept than statistics. So most research methods courses will cover a lot of
topics that relate much more to the pragmatics of research design, and in particular the issues
that you encounter when trying to do research with humans. However, about 99% of student
fears relate to the statistics part of the course, so I've focused on the stats in this discussion,
and hopefully I've convinced you that statistics matters, and more importantly, that it’s not to
be feared. That being said, it’s pretty typical for introductory research methods classes to be
very stats-heavy. This is not (usually) because the lecturers are evil people. Quite the contrary,
in fact. Introductory classes focus a lot on the statistics because you almost always find yourself
needing statistics before you need the other research methods training. Why? Because almost
all of your assignments in other classes will rely on statistical training, to a much greater extent
than they rely on other methodological tools. It’s not common for undergraduate assignments
to require you to design your own study from the ground up (in which case you would need
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to know a lot about research design), but it is common for assignments to ask you to analyse
and interpret data that were collected in a study that someone else designed (in which case you
need statistics). In that sense, from the perspective of allowing you to do well in all your other
classes, the statistics is more urgent.

But note that “urgent” is different from “important” — they both matter. I really do want
to stress that research design is just as important as data analysis, and this book does spend a
fair amount of time on it. However, while statistics has a kind of universality, and provides a set
of core tools that are useful for most types of psychological research, the research methods side
isn’t quite so universal. There are some general principles that everyone should think about,
but a lot of research design is very idiosyncratic, and is specific to the area of research that you
want to engage in. To the extent that it’s the details that matter, those details don’t usually
show up in an introductory stats and research methods class.
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2. A brief introduction to research design

To consult the statistician after an experiment is finished is often merely to ask him
to conduct a post mortem examination. He can perhaps say what the experiment died
of.

— Sir Ronald Fisher!

In this chapter, we’re going to start thinking about the basic ideas that go into designing a
study, collecting data, checking whether your data collection works, and so on. It won’t give you
enough information to allow you to design studies of your own, but it will give you a lot of the
basic tools that you need to assess the studies done by other people. However, since the focus
of this book is much more on data analysis than on data collection, I'm only giving a very brief
overview. Note that this chapter is “special” in two ways. Firstly, it’s much more psychology-
specific than the later chapters. Secondly, it focuses much more heavily on the scientific problem
of research methodology, and much less on the statistical problem of data analysis. Nevertheless,
the two problems are related to one another, so it’s traditional for stats textbooks to discuss the
problem in a little detail. This chapter relies heavily on Campbell and Stanley (1963) for the
discussion of study design, and Stevens (1946) for the discussion of scales of measurement.

2.1

Introduction to psychological measurement

The first thing to understand is data collection can be thought of as a kind of measurement.
That is, what we’re trying to do here is measure something about human behaviour or the
human mind. What do I mean by “measurement”?

2.1.1 Some thoughts about psychological measurement

Measurement itself is a subtle concept, but basically it comes down to finding some way of
assigning numbers, or labels, or some other kind of well-defined descriptions, to “stuff”. So, any
of the following would count as a psychological measurement:

!Presidential Address to the First Indian Statistical Congress, 1938. Source: http://en.wikiquote.org/wik
i/Ronald Fisher
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e My age is 33 years.

I do not like anchovies.

e My chromosomal gender is male.

My self-identified gender is male.”

In the short list above, the bolded part is “the thing to be measured”, and the ttalicised
part is “the measurement itself”. In fact, we can expand on this a little bit, by thinking about
the set of possible measurements that could have arisen in each case:

e My age (in years) could have been 0, 1, 2, 3 ..., etc. The upper bound on what my age
could possibly be is a bit fuzzy, but in practice you’d be safe in saying that the largest
possible age is 150, since no human has ever lived that long.

e When asked if I like anchovies, I might have said that I do, or I do not, or I have no
opinion, or I sometimes do.

e My chromosomal gender is almost certainly going to be male (XY) or female (XX), but
there are a few other possibilities. I could also have Klinfelter’s syndrome (XXY), which
is more similar to male than to female. And I imagine there are other possibilities too.

e My self-identified gender is also very likely to be male or female, but it doesn’t have
to agree with my chromosomal gender. I may also choose to identify with neither, or to
explicitly call myself transgender.

As you can see, for some things (like age) it seems fairly obvious what the set of possible
measurements should be, whereas for other things it gets a bit tricky. But I want to point out
that even in the case of someone’s age it’s much more subtle than this. For instance, in the
example above I assumed that it was okay to measure age in years. But if you're a developmental
psychologist, that’s way too crude, and so you often measure age in years and months (if a child
is 2 years and 11 months this is usually written as “2;11”). If you're interested in newborns you
might want to measure age in days since birth, maybe even hours since birth. In other words,
the way in which you specify the allowable measurement values is important.

Looking at this a bit more closely, you might also realise that the concept of “age” isn’t
actually all that precise. In general, when we say “age” we implicitly mean “the length of time

2Well... now this is awkward, isn’t it? This section is one of the oldest parts of the book, and it’s outdated in a
rather embarrassing way. I wrote this in 2010, at which point all of those facts were true. Revisiting this in 2018,
well I'm not 33 any more, but that’s not surprising I suppose. I can’t imagine my chromosomes have changed, so
I’'m going to guess my karyotype was then and is now XY. The self-identified gender, on the other hand...ah. I
suppose the fact that the title page now refers to me as Danielle rather than Daniel might possibly be a giveaway,
but I don’t typically identify as “male” on a gender questionnaire these days, and I prefer “she/her” pronouns as
a default (it’s a long story)! I did think a little about how I was going to handle this in the book, actually. The
book has a somewhat distinct authorial voice to it, and I feel like it would be a rather different work if I went
back and wrote everything as Danielle and updated all the pronouns in the work. Besides, it would be a lot of
work, so I've left my name as “Dan” throughout the book, and in any case “Dan” is a perfectly good nickname
for “Danielle”, don’t you think? In any case, it’s not a big deal. I only wanted to mention it to make life a little
easier for readers who aren’t sure how to refer to me. I still don’t like anchovies though :-)
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since birth”. But that’s not always the right way to do it. Suppose you're interested in how
newborn babies control their eye movements. If you're interested in kids that young, you might
also start to worry that “birth” is not the only meaningful point in time to care about. If Baby
Alice is born 3 weeks premature and Baby Bianca is born 1 week late, would it really make sense
to say that they are the “same age” if we encountered them “2 hours after birth”? In one sense,
yes. By social convention we use birth as our reference point for talking about age in everyday
life, since it defines the amount of time the person has been operating as an independent entity
in the world. But from a scientific perspective that’s not the only thing we care about. When
we think about the biology of human beings, it’s often useful to think of ourselves as organisms
that have been growing and maturing since conception, and from that perspective Alice and
Bianca aren’t the same age at all. So you might want to define the concept of “age” in two
different ways: the length of time since conception and the length of time since birth. When
dealing with adults it won’t make much difference, but when dealing with newborns it might.

Moving beyond these issues, there’s the question of methodology. What specific “measure-
ment method” are you going to use to find out someone’s age? As before, there are lots of
different possibilities:

e You could just ask people “how old are you?” The method of self-report is fast, cheap
and easy. But it only works with people old enough to understand the question, and some
people lie about their age.

e You could ask an authority (e.g., a parent) “how old is your child?” This method is
fast, and when dealing with kids it’s not all that hard since the parent is almost always
around. It doesn’t work as well if you want to know “age since conception”, since a lot of
parents can’t say for sure when conception took place. For that, you might need a different
authority (e.g., an obstetrician).

e You could look up official records, for example birth or death certificates. This is a time
consuming and frustrating endeavour, but it has its uses (e.g., if the person is now dead).

2.1.2 Operationalisation: defining your measurement

All of the ideas discussed in the previous section relate to the concept of operationalisation.
To be a bit more precise about the idea, operationalisation is the process by which we take a
meaningful but somewhat vague concept and turn it into a precise measurement. The process
of operationalisation can involve several different things:

e Being precise about what you are trying to measure. For instance, does “age” mean “time
since birth” or “time since conception” in the context of your research?

e Determining what method you will use to measure it. Will you use self-report to measure
age, ask a parent, or look up an official record? If you're using self-report, how will you
phrase the question?

e Defining the set of allowable values that the measurement can take. Note that these values
don’t always have to be numerical, though they often are. When measuring age the values
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are numerical, but we still need to think carefully about what numbers are allowed. Do
we want age in years, years and months, days, or hours? For other types of measurements
(e.g., gender) the values aren’t numerical. But, just as before, we need to think about
what values are allowed. If we're asking people to self-report their gender, what options
to we allow them to choose between? Is it enough to allow only “male” or “female”? Do
you need an “other” option? Or should we not give people specific options and instead let
them answer in their own words? And if you open up the set of possible values to include
all verbal response, how will you interpret their answers?

Operationalisation is a tricky business, and there’s no “one, true way” to do it. The way

in which you choose to operationalise the informal concept of “age” or “gender” into a formal
measurement depends on what you need to use the measurement for. Often you’ll find that the
community of scientists who work in your area have some fairly well-established ideas for how
to go about it. In other words, operationalisation needs to be thought through on a case by
case basis. Nevertheless, while there a lot of issues that are specific to each individual research
project, there are some aspects to it that are pretty general.

Before moving on I want to take a moment to clear up our terminology, and in the process

introduce one more term. Here are four different things that are closely related to each other:

e A theoretical construct. This is the thing that you're trying to take a measurement of,

like “age”, “gender” or an “opinion”. A theoretical construct can’t be directly observed,
and often they’re actually a bit vague.

A measure. The measure refers to the method or the tool that you use to make your
observations. A question in a survey, a behavioural observation or a brain scan could all
count as a measure.

An operationalisation. The term “operationalisation” refers to the logical connection
between the measure and the theoretical construct, or to the process by which we try to
derive a measure from a theoretical construct.

A variable. Finally, a new term. A variable is what we end up with when we apply our
measure to something in the world. That is, variables are the actual “data” that we end
up with in our data sets.

In practice, even scientists tend to blur the distinction between these things, but it’s very helpful
to try to understand the differences.

2.2

Scales of measurement

As the previous section indicates, the outcome of a psychological measurement is called a vari-
able. But not all variables are of the same qualitative type and so it’s useful to understand what
types there are. A very useful concept for distinguishing between different types of variables is
what’s known as scales of measurement.
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2.2.1 Nominal scale

A nominal scale variable (also referred to as a categorical variable) is one in which there
is no particular relationship between the different possibilities. For these kinds of variables it
doesn’t make any sense to say that one of them is “bigger’ or “better” than any other one,
and it absolutely doesn’t make any sense to average them. The classic example for this is “eye
colour”. Eyes can be blue, green or brown, amongst other possibilities, but none of them is any
“bigger” than any other one. As a result, it would feel really weird to talk about an “average
eye colour”. Similarly, gender is nominal too: male isn’t better or worse than female. Neither
does it make sense to try to talk about an “average gender”. In short, nominal scale variables
are those for which the only thing you can say about the different possibilities is that they are
different. That’s it.

Let’s take a slightly closer look at this. Suppose I was doing research on how people commute
to and from work. One variable I would have to measure would be what kind of transportation
people use to get to work. This “transport type” variable could have quite a few possible values,
including: “train”, “bus”, “car”, “bicycle”. For now, let’s suppose that these four are the only
possibilities. Then imagine that I ask 100 people how they got to work today, with this result:

Transportation Number of people

(1) Train 12
(2) Bus 30
(3) Car 48
(4) Bicycle 10

So, what’s the average transportation type? Obviously, the answer here is that there isn’t
one. It’s a silly question to ask. You can say that travel by car is the most popular method,
and travel by train is the least popular method, but that’s about all. Similarly, notice that the
order in which I list the options isn’t very interesting. I could have chosen to display the data
like this. ..

Transportation Number of people

(3) Car 48
(1) Train 12
(4) Bicycle 10
(2) Bus 30

...and nothing really changes.

2.2.2 Ordinal scale

Ordinal scale variables have a bit more structure than nominal scale variables, but not by
a lot. An ordinal scale variable is one in which there is a natural, meaningful way to order the
different possibilities, but you can’t do anything else. The usual example given of an ordinal
variable is “finishing position in a race”. You can say that the person who finished first was faster
than the person who finished second, but you don’t know how much faster. As a consequence
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we know that 1st > 2nd, and we know that 2nd > 3rd, but the difference between 1st and 2nd
might be much larger than the difference between 2nd and 3rd.

Here’s a more psychologically interesting example. Suppose I'm interested in people’s atti-
tudes to climate change. I then go and ask some people to pick the statement (from four listed
statements) that most closely matches their beliefs:

(1) Temperatures are rising because of human activity
(2) Temperatures are rising but we don’t know why
(3) Temperatures are rising but not because of humans
(4) Temperatures are not rising

Notice that these four statements actually do have a natural ordering, in terms of “the extent
to which they agree with the current science”. Statement 1 is a close match, statement 2 is a
reasonable match, statement 3 isn’t a very good match, and statement 4 is in strong opposition
to current science. So, in terms of the thing I'm interested in (the extent to which people endorse
the science), I can order the items as 1 > 2 > 3 > 4. Since this ordering exists, it would be very
weird to list the options like this. ..

(3) Temperatures are rising but not because of humans
(1) Temperatures are rising because of human activity
(4) Temperatures are not rising

(2) Temperatures are rising but we don’t know why

... because it seems to violate the natural “structure” to the question.

So, let’s suppose I asked 100 people these questions, and got the following answers:

Response Number
(1) Temperatures are rising because of human activity 51
(2) Temperatures are rising but we don’t know why 20
(3) Temperatures are rising but not because of humans 10
4) Temperatures are not risin 19
g

When analysing these data it seems quite reasonable to try to group (1), (2) and (3) together,
and say that 81 out of 100 people were willing to at least partially endorse the science. And
it’s also quite reasonable to group (2), (3) and (4) together and say that 49 out of 100 people
registered at least some disagreement with the dominant scientific view. However, it would be
entirely bizarre to try to group (1), (2) and (4) together and say that 90 out of 100 people
said. ..what? There’s nothing sensible that allows you to group those responses together at all.

That said, notice that while we can use the natural ordering of these items to construct
sensible groupings, what we can’t do is average them. For instance, in my simple example here,
the “average” response to the question is 1.97. If you can tell me what that means I'd love to
know, because it seems like gibberish to me!
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2.2.3 Interval scale

In contrast to nominal and ordinal scale variables, interval scale and ratio scale variables
are variables for which the numerical value is genuinely meaningful. In the case of interval scale
variables the differences between the numbers are interpretable, but the variable doesn’t have
a “natural” zero value. A good example of an interval scale variable is measuring temperature
in degrees celsius. For instance, if it was 15° yesterday and 18° today, then the 3° difference
between the two is genuinely meaningful. Moreover, that 3° difference is exactly the same as the
3° difference between 7° and 10°. In short, addition and subtraction are meaningful for interval
scale variables.?

However, notice that the 0° does not mean “no temperature at all”. It actually means “the
temperature at which water freezes”, which is pretty arbitrary. As a consequence it becomes
pointless to try to multiply and divide temperatures. It is wrong to say that 20° is twice as hot
as 10°, just as it is weird and meaningless to try to claim that 20° is negative two times as hot
as —10°.

Again, lets look at a more psychological example. Suppose I'm interested in looking at how
the attitudes of first-year university students have changed over time. Obviously, I'm going to
want to record the year in which each student started. This is an interval scale variable. A
student who started in 2003 did arrive 5 years before a student who started in 2008. However, it
would be completely daft for me to divide 2008 by 2003 and say that the second student started
“1.0024 times later” than the first one. That doesn’t make any sense at all.

2.2.4 Ratio scale

The fourth and final type of variable to consider is a ratio scale variable, in which zero
really means zero, and it’s okay to multiply and divide. A good psychological example of a ratio
scale variable is response time (RT). In a lot of tasks it’s very common to record the amount
of time somebody takes to solve a problem or answer a question, because it’s an indicator of
how difficult the task is. Suppose that Alan takes 2.3 seconds to respond to a question, whereas
Ben takes 3.1 seconds. As with an interval scale variable, addition and subtraction are both
meaningful here. Ben really did take 3.1 — 2.3 = 0.8 seconds longer than Alan did. However,
notice that multiplication and division also make sense here too: Ben took 3.1/2.3 = 1.35 times
as long as Alan did to answer the question. And the reason why you can do this is that for a
ratio scale variable such as RT “zero seconds” really does mean “no time at all”.

2.2.5 Continuous versus discrete variables

There’s a second kind of distinction that you need to be aware of, regarding what types of
variables you can run into. This is the distinction between continuous variables and discrete
variables. The difference between these is as follows:

3 Actually, I've been informed by readers with greater physics knowledge than I that temperature isn’t strictly
an interval scale, in the sense that the amount of energy required to heat something up by 3° depends on it’s
current temperature. So in the sense that physicists care about, temperature isn’t actually an interval scale. But
it still makes a cute example so I'm going to ignore this little inconvenient truth.
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Table 2.1: The relationship between the scales of measurement and the discrete/continuity
distinction. Cells with a tick mark correspond to things that are possible.

‘ continuous discrete

nominal v
ordinal v
interval v v
ratio v v

e A continuous variable is one in which, for any two values that you can think of, it’s
always logically possible to have another value in between.

e A discrete variable is, in effect, a variable that isn’t continuous. For a discrete variable
it’s sometimes the case that there’s nothing in the middle.

These definitions probably seem a bit abstract, but they’re pretty simple once you see some
examples. For instance, response time is continuous. If Alan takes 3.1 seconds and Ben takes
2.3 seconds to respond to a question, then Cameron’s response time will lie in between if he took
3.0 seconds. And of course it would also be possible for David to take 3.031 seconds to respond,
meaning that his RT would lie in between Cameron’s and Alan’s. And while in practice it might
be impossible to measure RT that precisely, it’s certainly possible in principle. Because we can
always find a new value for RT in between any two other ones we regard RT as a continuous
measure.

Discrete variables occur when this rule is violated. For example, nominal scale variables
are always discrete. There isn’t a type of transportation that falls “in between” trains and
bicycles, not in the strict mathematical way that 2.3 falls in between 2 and 3. So transportation
type is discrete. Similarly, ordinal scale variables are always discrete. Although “2nd place”
does fall between “1st place” and “3rd place”, there’s nothing that can logically fall in between
“Ist place” and “2nd place”. Interval scale and ratio scale variables can go either way. As
we saw above, response time (a ratio scale variable) is continuous. Temperature in degrees
celsius (an interval scale variable) is also continuous. However, the year you went to school (an
interval scale variable) is discrete. There’s no year in between 2002 and 2003. The number of
questions you get right on a true-or-false test (a ratio scale variable) is also discrete. Since a
true-or-false question doesn’t allow you to be “partially correct”, there’s nothing in between 5/10
and 6/10. Table 2.1 summarises the relationship between the scales of measurement and the
discrete/continuity distinction. Cells with a tick mark correspond to things that are possible.
I'm trying to hammer this point home, because (a) some textbooks get this wrong, and (b)
people very often say things like “discrete variable” when they mean “nominal scale variable”.
It’s very unfortunate.
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2.2.6 Some complexities

Okay, I know you’re going to be shocked to hear this, but the real world is much messier than
this little classification scheme suggests. Very few variables in real life actually fall into these
nice neat categories, so you need to be kind of careful not to treat the scales of measurement as
if they were hard and fast rules. It doesn’t work like that. They’re guidelines, intended to help
you think about the situations in which you should treat different variables differently. Nothing
more.

So let’s take a classic example, maybe the classic example, of a psychological measurement
tool: the Likert scale. The humble Likert scale is the bread and butter tool of all survey
design. You yourself have filled out hundreds, maybe thousands, of them and odds are you’ve
even used one yourself. Suppose we have a survey question that looks like this:

Which of the following best describes your opinion of the statement that “all pirates
are freaking awesome”?

and then the options presented to the participant are these:

(1) Strongly disagree

(2) Disagree

(3) Neither agree nor disagree
(4) Agree

(5) Strongly agree

This set of items is an example of a 5-point Likert scale, in which people are asked to choose
among one of several (in this case 5) clearly ordered possibilities, generally with a verbal de-
scriptor given in each case. However, it’s not necessary that all items are explicitly described.
This is a perfectly good example of a 5-point Likert scale too:

(1) Strongly disagree
(2)

(3)

(4)

(5) Strongly agree

Likert scales are very handy, if somewhat limited, tools. The question is what kind of variable
are they? They’re obviously discrete, since you can’t give a response of 2.5. They’re obviously
not nominal scale, since the items are ordered; and they’re not ratio scale either, since there’s
no natural zero.

But are they ordinal scale or interval scale? One argument says that we can’t really prove
that the difference between “strongly agree” and “agree” is of the same size as the difference
between “agree” and “neither agree nor disagree”. In fact, in everyday life it’s pretty obvious
that they’re not the same at all. So this suggests that we ought to treat Likert scales as ordinal
variables. On the other hand, in practice most participants do seem to take the whole “on a
scale from 1 to 5” part fairly seriously, and they tend to act as if the differences between the
five response options were fairly similar to one another. As a consequence, a lot of researchers
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treat Likert scale data as interval scale.® It’s not interval scale, but in practice it’s close enough
that we usually think of it as being quasi-interval scale.

2.3

Assessing the reliability of a measurement

At this point we’ve thought a little bit about how to operationalise a theoretical construct and
thereby create a psychological measure. And we’ve seen that by applying psychological measures
we end up with variables, which can come in many different types. At this point, we should
start discussing the obvious question: is the measurement any good? We’ll do this in terms of
two related ideas: reliability and validity. Put simply, the reliability of a measure tells you how
precisely you are measuring something, whereas the validity of a measure tells you how accurate
the measure is. In this section I’ll talk about reliability; we’ll talk about validity in section 2.6.

Reliability is actually a very simple concept. It refers to the repeatability or consistency of
your measurement. The measurement of my weight by means of a “bathroom scale” is very
reliable. If I step on and off the scales over and over again, it’ll keep giving me the same answer.
Measuring my intelligence by means of “asking my mum” is very unreliable. Some days she
tells me I’'m a bit thick, and other days she tells me I'm a complete idiot. Notice that this
concept of reliability is different to the question of whether the measurements are correct (the
correctness of a measurement relates to it’s validity). If I'm holding a sack of potatos when I
step on and off the bathroom scales the measurement will still be reliable: it will always give me
the same answer. However, this highly reliable answer doesn’t match up to my true weight at
all, therefore it’s wrong. In technical terms, this is a reliable but invalid measurement. Similarly,
whilst my mum’s estimate of my intelligence is a bit unreliable, she might be right. Maybe I'm
just not too bright, and so while her estimate of my intelligence fluctuates pretty wildly from
day to day, it’s basically right. That would be an unreliable but valid measure. Of course, if
my mum’s estimates are too unreliable it’s going to be very hard to figure out which one of
her many claims about my intelligence is actually the right one. To some extent, then, a very
unreliable measure tends to end up being invalid for practical purposes; so much so that many
people would say that reliability is necessary (but not sufficient) to ensure validity.

Okay, now that we’re clear on the distinction between reliability and validity, let’s have a
think about the different ways in which we might measure reliability:

e Test-retest reliability. This relates to consistency over time. If we repeat the measure-
ment at a later date do we get a the same answer?

e Inter-rater reliability. This relates to consistency across people. If someone else repeats
the measurement (e.g., someone else rates my intelligence) will they produce the same
answer?

e Parallel forms reliability. This relates to consistency across theoretically-equivalent
measurements. If I use a different set of bathroom scales to measure my weight does it

4Ah, psychology ...never an easy answer to anything!
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give the same answer?

e Internal consistency reliability. If a measurement is constructed from lots of different
parts that perform similar functions (e.g., a personality questionnaire result is added up
across several questions) do the individual parts tend to give similar answers. We’ll look
at this particular form of reliability later in the book, in Section 15.5.

Not all measurements need to possess all forms of reliability. For instance, educational
assessment can be thought of as a form of measurement. One of the subjects that I teach, Com-
putational Cognitive Science, has an assessment structure that has a research component and an
exam component (plus other things). The exam component is intended to measure something
different from the research component, so the assessment as a whole has low internal consistency.
However, within the exam there are several questions that are intended to (approximately) mea-
sure the same things, and those tend to produce similar outcomes. So the exam on its own has
a fairly high internal consistency. Which is as it should be. You should only demand reliability
in those situations where you want to be measuring the same thing!

2.4

The “role” of variables: predictors and outcomes

I've got one last piece of terminology that I need to explain to you before moving away from
variables. Normally, when we do some research we end up with lots of different variables. Then,
when we analyse our data, we usually try to explain some of the variables in terms of some of
the other variables. It’s important to keep the two roles “thing doing the explaining” and “thing
being explained” distinct. So let’s be clear about this now. First, we might as well get used to
the idea of using mathematical symbols to describe variables, since it’s going to happen over
and over again. Let’s denote the “to be explained” variable Y, and denote the variables “doing
the explaining” as X1, Xo, etc.

When we are doing an analysis we have different names for X and Y, since they play different
roles in the analysis. The classical names for these roles are independent variable (IV) and
dependent variable (DV). The IV is the variable that you use to do the explaining (i.e., X)
and the DV is the variable being explained (i.e., V). The logic behind these names goes like this:
if there really is a relationship between X and Y then we can say that Y depends on X, and
if we have designed our study “properly” then X isn’t dependent on anything else. However, I
personally find those names horrible. They’re hard to remember and they’re highly misleading
because (a) the IV is never actually “independent of everything else”, and (b) if there’s no
relationship then the DV doesn’t actually depend on the IV. And in fact, because I'm not the
only person who thinks that IV and DV are just awful names, there are a number of alternatives
that I find more appealing. The terms that I’ll use in this book are predictors and outcomes.
The idea here is that what you're trying to do is use X (the predictors) to make guesses about
Y (the outcomes).® This is summarised in Table 2.2.

5 Annoyingly though, there’s a lot of different names used out there. I won’t list all of them — there would be no
point in doing that — other than to note that “response variable” is sometimes used where I've used “outcome”.
Sigh. This sort of terminological confusion is very common, I'm afraid.
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Table 2.2: The terminology used to distinguish between different roles that a variable can play
when analysing a data set. Note that this book will tend to avoid the classical terminology in
favour of the newer names.

role of the variable ‘ classical name modern name

“to be explained” dependent variable (DV)  outcome
“to do the explaining” | independent variable (IV) predictor

2.5

Experimental and non-experimental research

One of the big distinctions that you should be aware of is the distinction between “experimental
research” and “non-experimental research”. When we make this distinction, what we’re really
talking about is the degree of control that the researcher exercises over the people and events in
the study.

25.1 Experimental research

The key feature of experimental research is that the researcher controls all aspects of the
study, especially what participants experience during the study. In particular, the researcher
manipulates or varies the predictor variables (IVs) but allows the outcome variable (DV) to vary
naturally. The idea here is to deliberately vary the predictors (IVs) to see if they have any causal
effects on the outcomes. Moreover, in order to ensure that there’s no possibility that something
other than the predictor variables is causing the outcomes, everything else is kept constant or
is in some other way “balanced”, to ensure that they have no effect on the results. In practice,
it’s almost impossible to think of everything else that might have an influence on the outcome
of an experiment, much less keep it constant. The standard solution to this is randomisation.
That is, we randomly assign people to different groups, and then give each group a different
treatment (i.e., assign them different values of the predictor variables). We’ll talk more about
randomisation later, but for now it’s enough to say that what randomisation does is minimise
(but not eliminate) the possibility that there are any systematic difference between groups.

Let’s consider a very simple, completely unrealistic and grossly unethical example. Suppose
you wanted to find out if smoking causes lung cancer. One way to do this would be to find
people who smoke and people who don’t smoke and look to see if smokers have a higher rate of
lung cancer. This is not a proper experiment, since the researcher doesn’t have a lot of control
over who is and isn’t a smoker. And this really matters. For instance, it might be that people
who choose to smoke cigarettes also tend to have poor diets, or maybe they tend to work in
asbestos mines, or whatever. The point here is that the groups (smokers and non-smokers)
actually differ on lots of things, not just smoking. So it might be that the higher incidence of
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lung cancer among smokers is caused by something else, and not by smoking per se. In technical
terms these other things (e.g. diet) are called “confounders”, and we’ll talk about those in just
a moment.

In the meantime, let’s consider what a proper experiment might look like. Recall that our
concern was that smokers and non-smokers might differ in lots of ways. The solution, as long as
you have no ethics, is to control who smokes and who doesn’t. Specifically, if we randomly divide
young non-smokers into two groups and force half of them to become smokers, then it’s very
unlikely that the groups will differ in any respect other than the fact that half of them smoke.
That way, if our smoking group gets cancer at a higher rate than the non-smoking group, we
can feel pretty confident that (a) smoking does cause cancer and (b) we’re murderers.

252 Non-experimental research

Non-experimental research is a broad term that covers “any study in which the researcher
doesn’t have as much control as they do in an experiment”. Obviously, control is something
that scientists like to have, but as the previous example illustrates there are lots of situations in
which you can’t or shouldn’t try to obtain that control. Since it’s grossly unethical (and almost
certainly criminal) to force people to smoke in order to find out if they get cancer, this is a good
example of a situation in which you really shouldn’t try to obtain experimental control. But
there are other reasons too. Even leaving aside the ethical issues, our “smoking experiment”
does have a few other issues. For instance, when I suggested that we “force” half of the people
to become smokers, I was talking about starting with a sample of non-smokers, and then forcing
them to become smokers. While this sounds like the kind of solid, evil experimental design that
a mad scientist would love, it might not be a very sound way of investigating the effect in the
real world. For instance, suppose that smoking only causes lung cancer when people have poor
diets, and suppose also that people who normally smoke do tend to have poor diets. However,
since the “smokers” in our experiment aren’t “natural” smokers (i.e., we forced non-smokers to
become smokers, but they didn’t take on all of the other normal, real life characteristics that
smokers might tend to possess) they probably have better diets. As such, in this silly example
they wouldn’t get lung cancer and our experiment will fail, because it violates the structure of
the “natural” world (the technical name for this is an “artefactual” result).

One distinction worth making between two types of non-experimental research is the dif-
ference between quasi-experimental research and case studies. The example I discussed
earlier, in which we wanted to examine incidence of lung cancer among smokers and non-smokers
without trying to control who smokes and who doesn’t, is a quasi-experimental design. That
is, it’s the same as an experiment but we don’t control the predictors (IVs). We can still use
statistics to analyse the results, but we have to be a lot more careful and circumspect.

The alternative approach, case studies, aims to provide a very detailed description of one or
a few instances. In general, you can’t use statistics to analyse the results of case studies and it’s
usually very hard to draw any general conclusions about “people in general” from a few isolated
examples. However, case studies are very useful in some situations. Firstly, there are situations
where you don’t have any alternative. Neuropsychology has this issue a lot. Sometimes, you just
can’t find a lot of people with brain damage in a specific brain area, so the only thing you can
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do is describe those cases that you do have in as much detail and with as much care as you can.
However, there’s also some genuine advantages to case studies. Because you don’t have as many
people to study you have the ability to invest lots of time and effort trying to understand the
specific factors at play in each case. This is a very valuable thing to do. As a consequence, case
studies can complement the more statistically-oriented approaches that you see in experimental
and quasi-experimental designs. We won’t talk much about case studies in this book, but they
are nevertheless very valuable tools!

2.6
Assessing the validity of a study

More than any other thing, a scientist wants their research to be “valid”. The conceptual idea
behind validity is very simple. Can you trust the results of your study? If not, the study is
invalid. However, whilst it’s easy to state, in practice it’s much harder to check validity than it
is to check reliability. And in all honesty, there’s no precise, clearly agreed upon notion of what
validity actually is. In fact, there are lots of different kinds of validity, each of which raises it’s
own issues. And not all forms of validity are relevant to all studies. I'm going to talk about five
different types of validity:

e Internal validity

External validity

Construct validity

Face validity

Ecological validity

First, a quick guide as to what matters here. (1) Internal and external validity are the most
important, since they tie directly to the fundamental question of whether your study really
works. (2) Construct validity asks whether you're measuring what you think you are. (3) Face
validity isn’t terribly important except insofar as you care about “appearances”. (4) Ecological
validity is a special case of face validity that corresponds to a kind of appearance that you might
care about a lot.

2.6.1 Internal validity

Internal validity refers to the extent to which you are able draw the correct conclusions
about the causal relationships between variables. It’s called “internal” because it refers to
the relationships between things “inside” the study. Let’s illustrate the concept with a simple
example. Suppose you're interested in finding out whether a university education makes you
write better. To do so, you get a group of first year students, ask them to write a 1000 word
essay, and count the number of spelling and grammatical errors they make. Then you find some
third-year students, who obviously have had more of a university education than the first-years,
and repeat the exercise. And let’s suppose it turns out that the third-year students produce
fewer errors. And so you conclude that a university education improves writing skills. Right?

- 26 -



Except that the big problem with this experiment is that the third-year students are older and
they’ve had more experience with writing things. So it’s hard to know for sure what the causal
relationship is. Do older people write better? Or people who have had more writing experience?
Or people who have had more education? Which of the above is the true cause of the superior
performance of the third-years? Age? Experience? Education? You can’t tell. This is an
example of a failure of internal validity, because your study doesn’t properly tease apart the
causal relationships between the different variables.

2.6.2 External validity

External validity relates to the generalisability or applicability of your findings. That
is, to what extent do you expect to see the same pattern of results in “real life” as you saw in your
study. To put it a bit more precisely, any study that you do in psychology will involve a fairly
specific set of questions or tasks, will occur in a specific environment, and will involve participants
that are drawn from a particular subgroup (disappointingly often it is college students!). So, if
it turns out that the results don’t actually generalise or apply to people and situations beyond
the ones that you studied, then what you’ve got is a lack of external validity.

The classic example of this issue is the fact that a very large proportion of studies in psy-
chology will use undergraduate psychology students as the participants. Obviously, however,
the researchers don’t care only about psychology students. They care about people in general.
Given that, a study that uses only psychology students as participants always carries a risk of
lacking external validity. That is, if there’s something “special” about psychology students that
makes them different to the general population in some relevant respect, then we may start
worrying about a lack of external validity.

That said, it is absolutely critical to realise that a study that uses only psychology students
does not necessarily have a problem with external validity. I’ll talk about this again later, but
it’s such a common mistake that I'm going to mention it here. The external validity of a study
is threatened by the choice of population if (a) the population from which you sample your
participants is very narrow (e.g., psychology students), and (b) the narrow population that you
sampled from is systematically different from the general population in some respect that is
relevant to the psychological phenomenon that you intend to study. The italicised part is the
bit that lots of people forget. It is true that psychology undergraduates differ from the general
population in lots of ways, and so a study that uses only psychology students may have problems
with external validity. However, if those differences aren’t very relevant to the phenomenon that
you're studying, then there’s nothing to worry about. To make this a bit more concrete here
are two extreme examples:

e You want to measure “attitudes of the general public towards psychotherapy”, but all
of your participants are psychology students. This study would almost certainly have a
problem with external validity.

e You want to measure the effectiveness of a visual illusion, and your participants are all
psychology students. This study is unlikely to have a problem with external validity

Having just spent the last couple of paragraphs focusing on the choice of participants, since
that’s a big issue that everyone tends to worry most about, it’s worth remembering that external
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validity is a broader concept. The following are also examples of things that might pose a threat
to external validity, depending on what kind of study you’re doing;:

e People might answer a “psychology questionnaire” in a manner that doesn’t reflect what
they would do in real life.

e Your lab experiment on (say) “human learning” has a different structure to the learning
problems people face in real life.

2.6.3 Construct validity

Construct validity is basically a question of whether you're measuring what you want
to be measuring. A measurement has good construct validity if it is actually measuring the
correct theoretical construct, and bad construct validity if it doesn’t. To give a very simple (if
ridiculous) example, suppose I'm trying to investigate the rates with which university students
cheat on their exams. And the way I attempt to measure it is by asking the cheating students
to stand up in the lecture theatre so that I can count them. When I do this with a class of 300
students 0 people claim to be cheaters. So I therefore conclude that the proportion of cheaters
in my class is 0%. Clearly this is a bit ridiculous. But the point here is not that this is a very
deep methodological example, but rather to explain what construct validity is. The problem
with my measure is that while I'm trying to measure “the proportion of people who cheat” what
I’'m actually measuring is “the proportion of people stupid enough to own up to cheating, or
bloody minded enough to pretend that they do”. Obviously, these aren’t the same thing! So
my study has gone wrong, because my measurement has very poor construct validity.

2.6.4 Face validity

Face validity simply refers to whether or not a measure “looks like” it’s doing what it’s
supposed to, nothing more. If I design a test of intelligence, and people look at it and they say
“no, that test doesn’t measure intelligence”, then the measure lacks face validity. It’s as simple
as that. Obviously, face validity isn’t very important from a pure scientific perspective. After
all, what we care about is whether or not the measure actually does what it’s supposed to do,
not whether it looks like it does what it’s supposed to do. As a consequence, we generally don’t
care very much about face validity. That said, the concept of face validity serves three useful
pragmatic purposes:

e Sometimes, an experienced scientist will have a “hunch” that a particular measure won’t
work. While these sorts of hunches have no strict evidentiary value, it’s often worth
paying attention to them. Because often times people have knowledge that they can’t
quite verbalise, so there might be something to worry about even if you can’t quite say
why. In other words, when someone you trust criticises the face validity of your study, it’s
worth taking the time to think more carefully about your design to see if you can think
of reasons why it might go awry. Mind you, if you don’t find any reason for concern, then
you should probably not worry. After all, face validity really doesn’t matter very much.
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e Often (very often), completely uninformed people will also have a “hunch” that your
research is crap. And they’ll criticise it on the internet or something. On close inspection
you may notice that these criticisms are actually focused entirely on how the study “looks”,
but not on anything deeper. The concept of face validity is useful for gently explaining to
people that they need to substantiate their arguments further.

e Expanding on the last point, if the beliefs of untrained people are critical (e.g., this is
often the case for applied research where you actually want to convince policy makers of
something or other) then you have to care about face validity. Simply because, whether you
like it or not, a lot of people will use face validity as a proxy for real validity. If you want
the government to change a law on scientific psychological grounds, then it won’t matter
how good your studies “really” are. If they lack face validity you’ll find that politicians
ignore you. Of course, it’s somewhat unfair that policy often depends more on appearance
than fact, but that’s how things go.

2.6.5 Ecological validity

Ecological validity is a different notion of validity, which is similar to external validity,
but less important. The idea is that, in order to be ecologically valid, the entire set up of the
study should closely approximate the real world scenario that is being investigated. In a sense,
ecological validity is a kind of face validity. It relates mostly to whether the study “looks” right,
but with a bit more rigour to it. To be ecologically valid the study has to look right in a fairly
specific way. The idea behind it is the intuition that a study that is ecologically valid is more
likely to be externally valid. It’s no guarantee, of course. But the nice thing about ecological
validity is that it’s much easier to check whether a study is ecologically valid than it is to check
whether a study is externally valid. A simple example would be eyewitness identification studies.
Most of these studies tend to be done in a university setting, often with a fairly simple array of
faces to look at, rather than a line up. The length of time between seeing the “criminal” and
being asked to identify the suspect in the “line up” is usually shorter. The “crime” isn’t real so
there’s no chance of the witness being scared, and there are no police officers present so there’s
not as much chance of feeling pressured. These things all mean that the study definitely lacks
ecological validity. They might (but might not) mean that it also lacks external validity.

2.7

Confounds, artefacts and other threats to validity

If we look at the issue of validity in the most general fashion the two biggest worries that we
have are confounders and artefacts. These two terms are defined in the following way:
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e Confounder: A confounder is an additional, often unmeasured variable® that turns out to
be related to both the predictors and the outcome. The existence of confounders threatens
the internal validity of the study because you can’t tell whether the predictor causes the
outcome, or if the confounding variable causes it.

e Artefact: A result is said to be “artefactual” if it only holds in the special situation that
you happened to test in your study. The possibility that your result is an artefact describes
a threat to your external validity, because it raises the possibility that you can’t generalise
or apply your results to the actual population that you care about.

As a general rule confounders are a bigger concern for non-experimental studies, precisely
because they’re not proper experiments. By definition, you're leaving lots of things uncontrolled,
so there’s a lot of scope for confounders being present in your study. Experimental research tends
to be much less vulnerable to confounders. The more control you have over what happens during
the study, the more you can prevent confounders from affecting the results. With random
allocation, for example, confounders are distributed randomly, and evenly, between different
groups.

However, there are always swings and roundabouts and when we start thinking about arte-
facts rather than confounders the shoe is very firmly on the other foot. For the most part,
artefactual results tend to be a concern for experimental studies than for non-experimental
studies. To see this, it helps to realise that the reason that a lot of studies are non-experimental
is precisely because what the researcher is trying to do is examine human behaviour in a more
naturalistic context. By working in a more real-world context you lose experimental control
(making yourself vulnerable to confounders), but because you tend to be studying human psy-
chology “in the wild” you reduce the chances of getting an artefactual result. Or, to put it
another way, when you take psychology out of the wild and bring it into the lab (which we
usually have to do to gain our experimental control), you always run the risk of accidentally
studying something different to what you wanted to study.

Be warned though. The above is a rough guide only. It’s absolutely possible to have con-
founders in an experiment, and to get artefactual results with non-experimental studies. This
can happen for all sorts of reasons, not least of which is experimenter or researcher error. In prac-
tice, it’s really hard to think everything through ahead of time and even very good researchers
make mistakes.

Although there’s a sense in which almost any threat to validity can be characterised as a
confounder or an artefact, they’re pretty vague concepts. So let’s have a look at some of the
most common examples.

5The reason why I say that it’s unmeasured is that if you have measured it, then you can use some fancy
statistical tricks to deal with the confounder. Because of the existence of these statistical solutions to the problem
of confounders, we often refer to a confounder that we have measured and dealt with as a covariate. Dealing with
covariates is a more advanced topic, but I thought I’d mention it in passing since it’s kind of comforting to at
least know that this stuff exists.
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2.7.1 History effects

History effects refer to the possibility that specific events may occur during the study that
might influence the outcome measure. For instance, something might happen in between a pre-
test and a post-test. Or in-between testing participant 23 and participant 24. Alternatively, it
might be that you’re looking at a paper from an older study that was perfectly valid for its time,
but the world has changed enough since then that the conclusions are no longer trustworthy.
Examples of things that would count as history effects are:

e You're interested in how people think about risk and uncertainty. You started your data
collection in December 2010. But finding participants and collecting data takes time,
so you're still finding new people in February 2011. Unfortunately for you (and even
more unfortunately for others), the Queensland floods occurred in January 2011 causing
billions of dollars of damage and killing many people. Not surprisingly, the people tested
in February 2011 express quite different beliefs about handling risk than the people tested
in December 2010. Which (if any) of these reflects the “true” beliefs of participants? I
think the answer is probably both. The Queensland floods genuinely changed the beliefs
of the Australian public, though possibly only temporarily. The key thing here is that the
“history” of the people tested in February is quite different to people tested in December.

e You're testing the psychological effects of a new anti-anxiety drug. So what you do is mea-
sure anxiety before administering the drug (e.g., by self-report, and taking physiological
measures). Then you administer the drug, and afterwards you take the same measures.
In the middle however, because your lab is in Los Angeles, there’s an earthquake which
increases the anxiety of the participants.

2.7.2 Maturation effects

As with history effects, maturational effects are fundamentally about change over time.
However, maturation effects aren’t in response to specific events. Rather, they relate to how
people change on their own over time. We get older, we get tired, we get bored, etc. Some
examples of maturation effects are:

e When doing developmental psychology research you need to be aware that children grow
up quite rapidly. So, suppose that you want to find out whether some educational trick
helps with vocabulary size among 3 year olds. One thing that you need to be aware of
is that the vocabulary size of children that age is growing at an incredible rate (multiple
words per day) all on its own. If you design your study without taking this maturational
effect into account, then you won’t be able to tell if your educational trick works.

e When running a very long experiment in the lab (say, something that goes for 3 hours) it’s
very likely that people will begin to get bored and tired, and that this maturational effect
will cause performance to decline regardless of anything else going on in the experiment
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2.7.3 Repeated testing effects

An important type of history effect is the effect of repeated testing. Suppose I want to
take two measurements of some psychological construct (e.g., anxiety). One thing I might be
worried about is if the first measurement has an effect on the second measurement. In other
words, this is a history effect in which the “event” that influences the second measurement is
the first measurement itself! This is not at all uncommon. Examples of this include:

e Learning and practice: e.g., “intelligence” at time 2 might appear to go up relative to time
1 because participants learned the general rules of how to solve “intelligence-test-style”
questions during the first testing session.

o Familiarity with the testing situation: e.g., if people are nervous at time 1, this might make
performance go down. But after sitting through the first testing situation they might calm
down a lot precisely because they’ve seen what the testing looks like.

o Auxiliary changes caused by testing: e.g., if a questionnaire assessing mood is boring then
mood rating at measurement time 2 is more likely to be “bored” precisely because of the
boring measurement made at time 1.

2.7.4 Selection bias

Selection bias is a pretty broad term. Suppose that you’re running an experiment with
two groups of participants where each group gets a different “treatment”, and you want to see
if the different treatments lead to different outcomes. However, suppose that, despite your best
efforts, you've ended up with a gender imbalance across groups (say, group A has 80% females
and group B has 50% females). It might sound like this could never happen but, trust me, it
can. This is an example of a selection bias, in which the people “selected into” the two groups
have different characteristics. If any of those characteristics turns out to be relevant (say, your
treatment works better on females than males) then you're in a lot of trouble.

2.7.5 Differential attrition

When thinking about the effects of attrition, it is sometimes helpful to distinguish between
two different types. The first is homogeneous attrition, in which the attrition effect is the
same for all groups, treatments or conditions. In the example I gave above, the attrition would
be homogeneous if (and only if) the easily bored participants are dropping out of all of the
conditions in my experiment at about the same rate. In general, the main effect of homogeneous
attrition is likely to be that it makes your sample unrepresentative. As such, the biggest worry
that you’ll have is that the generalisability of the results decreases. In other words, you lose
external validity.

The second type of attrition is heterogeneous attrition, in which the attrition effect is
different for different groups. More often called differential attrition, this is a kind of selection
bias that is caused by the study itself. Suppose that, for the first time ever in the history of
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psychology, I manage to find the perfectly balanced and representative sample of people. 1
start running “Dani’s incredibly long and tedious experiment” on my perfect sample but then,
because my study is incredibly long and tedious, lots of people start dropping out. I can’t
stop this. Participants absolutely have the right to stop doing any experiment, any time, for
whatever reason they feel like, and as researchers we are morally (and professionally) obliged to
remind people that they do have this right. So, suppose that “Dani’s incredibly long and tedious
experiment” has a very high drop out rate. What do you suppose the odds are that this drop
out is random? Answer: zero. Almost certainly the people who remain are more conscientious,
more tolerant of boredom, etc., than those that leave. To the extent that (say) conscientiousness
is relevant to the psychological phenomenon that I care about, this attrition can decrease the
validity of my results.

Here’s another example. Suppose I design my experiment with two conditions. In the “treat-
ment” condition, the experimenter insults the participant and then gives them a questionnaire
designed to measure obedience. In the “control” condition, the experimenter engages in a bit of
pointless chitchat and then gives them the questionnaire. Leaving aside the questionable scien-
tific merits and dubious ethics of such a study, let’s have a think about what might go wrong
here. As a general rule, when someone insults me to my face I tend to get much less co-operative.
So, there’s a pretty good chance that a lot more people are going to drop out of the treatment
condition than the control condition. And this drop out isn’t going to be random. The people
most likely to drop out would probably be the people who don’t care all that much about the
importance of obediently sitting through the experiment. Since the most bloody minded and
disobedient people all left the treatment group but not the control group, we’ve introduced a
confound: the people who actually took the questionnaire in the treatment group were already
more likely to be dutiful and obedient than the people in the control group. In short, in this
study insulting people doesn’t make them more obedient. It makes the more disobedient people
leave the experiment! The internal validity of this experiment is completely shot.

2.7.6 Non-response bias

Non-response bias is closely related to selection bias and to differential attrition. The
simplest version of the problem goes like this. You mail out a survey to 1000 people but only
300 of them reply. The 300 people who replied are almost certainly not a random subsample.
People who respond to surveys are systematically different to people who don’t. This introduces
a problem when trying to generalise from those 300 people who replied to the population at
large, since you now have a very non-random sample. The issue of non-response bias is more
general than this, though. Among the (say) 300 people that did respond to the survey, you
might find that not everyone answers every question. If (say) 80 people chose not to answer
one of your questions, does this introduce problems? As always, the answer is maybe. If the
question that wasn’t answered was on the last page of the questionnaire, and those 80 surveys
were returned with the last page missing, there’s a good chance that the missing data isn’t a
big deal; probably the pages just fell off. However, if the question that 80 people didn’t answer
was the most confrontational or invasive personal question in the questionnaire, then almost
certainly you’ve got a problem. In essence, what you’re dealing with here is what’s called the
problem of missing data. If the data that is missing was “lost” randomly, then it’s not a big
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problem. If it’s missing systematically, then it can be a big problem.

2.7.7 Regression to the mean

Regression to the mean refers to any situation where you select data based on an extreme
value on some measure. Because the variable has natural variation it almost certainly means
that when you take a subsequent measurement the later measurement will be less extreme than
the first one, purely by chance.

Here’s an example. Suppose I'm interested in whether a psychology education has an adverse
effect on very smart kids. To do this, I find the 20 psychology I students with the best high
school grades and look at how well they’'re doing at university. It turns out that they’'re doing a
lot better than average, but they’re not topping the class at university even though they did top
their classes at high school. What’s going on? The natural first thought is that this must mean
that the psychology classes must be having an adverse effect on those students. However, while
that might very well be the explanation, it’s more likely that what you’re seeing is an example
of “regression to the mean”. To see how it works, let’s take a moment to think about what is
required to get the best mark in a class, regardless of whether that class be at high school or at
university. When you’ve got a big class there are going to be lots of very smart people enrolled.
To get the best mark you have to be very smart, work very hard, and be a bit lucky. The exam
has to ask just the right questions for your idiosyncratic skills, and you have to avoid making
any dumb mistakes (we all do that sometimes) when answering them. And that’s the thing,
whilst intelligence and hard work are transferable from one class to the next, luck isn’t. The
people who got lucky in high school won’t be the same as the people who get lucky at university.
That’s the very definition of “luck”. The consequence of this is that when you select people
at the very extreme values of one measurement (the top 20 students), you're selecting for hard
work, skill and luck. But because the luck doesn’t transfer to the second measurement (only the
skill and work), these people will all be expected to drop a little bit when you measure them
a second time (at university). So their scores fall back a little bit, back towards everyone else.
This is regression to the mean.

Regression to the mean is surprisingly common. For instance, if two very tall people have
kids their children will tend to be taller than average but not as tall as the parents. The reverse
happens with very short parents. Two very short parents will tend to have short children, but
nevertheless those kids will tend to be taller than the parents. It can also be extremely subtle.
For instance, there have been studies done that suggested that people learn better from negative
feedback than from positive feedback. However, the way that people tried to show this was to
give people positive reinforcement whenever they did good, and negative reinforcement when
they did bad. And what you see is that after the positive reinforcement people tended to do
worse, but after the negative reinforcement they tended to do better. But notice that there’s
a selection bias here! When people do very well, you're selecting for “high” values, and so you
should expect, because of regression to the mean, that performance on the next trial should be
worse regardless of whether reinforcement is given. Similarly, after a bad trial, people will tend
to improve all on their own. The apparent superiority of negative feedback is an artefact caused
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by regression to the mean (see Kahneman and Tversky 1973, for discussion).

2.7.8 Experimenter bias

Experimenter bias can come in multiple forms. The basic idea is that the experimenter,
despite the best of intentions, can accidentally end up influencing the results of the experiment
by subtly communicating the “right answer” or the “desired behaviour” to the participants.
Typically, this occurs because the experimenter has special knowledge that the participant does
not, for example the right answer to the questions being asked or knowledge of the expected
pattern of performance for the condition that the participant is in. The classic example of
this happening is the case study of “Clever Hans”, which dates back to 1907 (Pfungst 1911;
Hothersall 2004). Clever Hans was a horse that apparently was able to read and count and
perform other human like feats of intelligence. After Clever Hans became famous, psychologists
started examining his behaviour more closely. It turned out that, not surprisingly, Hans didn’t
know how to do maths. Rather, Hans was responding to the human observers around him,
because the humans did know how to count and the horse had learned to change its behaviour
when people changed theirs.

The general solution to the problem of experimenter bias is to engage in double blind studies,
where neither the experimenter nor the participant knows which condition the participant is in
or knows what the desired behaviour is. This provides a very good solution to the problem, but
it’s important to recognise that it’s not quite ideal, and hard to pull off perfectly. For instance,
the obvious way that I could try to construct a double blind study is to have one of my Ph.D.
students (one who doesn’t know anything about the experiment) run the study. That feels like it
should be enough. The only person (me) who knows all the details (e.g., correct answers to the
questions, assignments of participants to conditions) has no interaction with the participants,
and the person who does all the talking to people (the Ph.D. student) doesn’t know anything.
Except for the reality that the last part is very unlikely to be true. In order for the Ph.D.
student to run the study effectively they need to have been briefed by me, the researcher. And,
as it happens, the Ph.D. student also knows me and knows a bit about my general beliefs about
people and psychology (e.g., I tend to think humans are much smarter than psychologists give
them credit for). As a result of all this, it’s almost impossible for the experimenter to avoid
knowing a little bit about what expectations I have. And even a little bit of knowledge can
have an effect. Suppose the experimenter accidentally conveys the fact that the participants are
expected to do well in this task. Well, there’s a thing called the “Pygmalion effect”, where if
you expect great things of people they’ll tend to rise to the occasion. But if you expect them to
fail then they’ll do that too. In other words, the expectations become a self-fulfilling prophesy.

2.7.9 Demand effects and reactivity

When talking about experimenter bias, the worry is that the experimenter’s knowledge or
desires for the experiment are communicated to the participants, and that these can change
people’s behaviour (Rosenthal 1966). However, even if you manage to stop this from happening,
it’s almost impossible to stop people from knowing that they’re part of a psychological study.
And the mere fact of knowing that someone is watching or studying you can have a pretty
big effect on behaviour. This is generally referred to as reactivity or demand effects. The
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basic idea is captured by the Hawthorne effect: people alter their performance because of the
attention that the study focuses on them. The effect takes its name from a study that took
place in the “Hawthorne Works” factory outside of Chicago (see Adair 1984). This study, from
the 1920s, looked at the effects of factory lighting on worker productivity. But, importantly,
change in worker behaviour occurred because the workers knew they were being studied, rather
than any effect of factory lighting.

To get a bit more specific about some of the ways in which the mere fact of being in a study
can change how people behave, it helps to think like a social psychologist and look at some of
the roles that people might adopt during an experiment but might not adopt if the corresponding
events were occurring in the real world:

e The good participant tries to be too helpful to the researcher. He or she seeks to figure out
the experimenter’s hypotheses and confirm them.

e The negative participant does the exact opposite of the good participant. He or she seeks
to break or destroy the study or the hypothesis in some way.

e The faithful participant is unnaturally obedient. He or she seeks to follow instructions
perfectly, regardless of what might have happened in a more realistic setting.

e The apprehensive participant gets nervous about being tested or studied, so much so that
his or her behaviour becomes highly unnatural, or overly socially desirable.

2.7.10 Placebo effects

The placebo effect is a specific type of demand effect that we worry a lot about. It refers
to the situation where the mere fact of being treated causes an improvement in outcomes. The
classic example comes from clinical trials. If you give people a completely chemically inert drug
and tell them that it’s a cure for a disease, they will tend to get better faster than people who
aren’t treated at all. In other words, it is people’s belief that they are being treated that causes
the improved outcomes, not the drug.

However, the current consensus in medicine is that true placebo effects are quite rare and
most of what was previously considered placebo effect is in fact some combination of natural
healing (some people just get better on their own), regression to the mean and other quirks of
study design. Of interest to psychology is that the strongest evidence for at least some placebo
effect is in self-reported outcomes, most notably in treatment of pain (Hrébjartsson and Getzsche
2010).

2.7.11 Situation, measurement and sub-population effects

In some respects, these terms are a catch-all term for “all other threats to external validity”.
They refer to the fact that the choice of sub-population from which you draw your participants,
the location, timing and manner in which you run your study (including who collects the data)
and the tools that you use to make your measurements might all be influencing the results.
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Specifically, the worry is that these things might be influencing the results in such a way that
the results won’t generalise to a wider array of people, places and measures.

2.7.12 Fraud, deception and self-deception

It is difficult to get a man to understand something, when his salary depends on his
not understanding it.
— Upton Sinclair

There’s one final thing I feel I should mention. While reading what the textbooks often
have to say about assessing the validity of a study I couldn’t help but notice that they seem
to make the assumption that the researcher is honest. I find this hilarious. While the vast
majority of scientists are honest, in my experience at least, some are not.” Not only that, as I
mentioned earlier, scientists are not immune to belief bias. It’s easy for a researcher to end up
deceiving themselves into believing the wrong thing, and this can lead them to conduct subtly
flawed research and then hide those flaws when they write it up. So you need to consider not
only the (probably unlikely) possibility of outright fraud, but also the (probably quite common)
possibility that the research is unintentionally “slanted”. I opened a few standard textbooks
and didn’t find much of a discussion of this problem, so here’s my own attempt to list a few
ways in which these issues can arise:

e Data fabrication. Sometimes, people just make up the data. This is occasionally done
with “good” intentions. For instance, the researcher believes that the fabricated data do
reflect the truth, and may actually reflect “slightly cleaned up” versions of actual data.
On other occasions, the fraud is deliberate and malicious. Some high-profile examples
where data fabrication has been alleged or shown include Cyril Burt (a psychologist who
is thought to have fabricated some of his data), Andrew Wakefield (who has been accused
of fabricating his data connecting the MMR vaccine to autism) and Hwang Woo-suk (who
falsified a lot of his data on stem cell research).

e Hoaxes. Hoaxes share a lot of similarities with data fabrication, but they differ in the
intended purpose. A hoax is often a joke, and many of them are intended to be (eventually)
discovered. Often, the point of a hoax is to discredit someone or some field. There’s quite
a few well known scientific hoaxes that have occurred over the years (e.g., Piltdown man)
and some were deliberate attempts to discredit particular fields of research (e.g., the Sokal
affair).

e Data misrepresentation. While fraud gets most of the headlines, it’s much more com-
mon in my experience to see data being misrepresented. When I say this I'm not referring
to newspapers getting it wrong (which they do, almost always). I'm referring to the fact
that often the data don’t actually say what the researchers think they say. My guess is

“Some people might argue that if you’re not honest then you’re not a real scientist. Which does have some
truth to it I guess, but that’s disingenuous (look up the “No true Scotsman” fallacy). The fact is that there are
lots of people who are employed ostensibly as scientists, and whose work has all of the trappings of science, but
who are outright fraudulent. Pretending that they don’t exist by saying that they’re not scientists is just muddled
thinking.
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that, almost always, this isn’t the result of deliberate dishonesty but instead is due to a
lack of sophistication in the data analyses. For instance, think back to the example of
Simpson’s paradox that I discussed in the beginning of this book. It’s very common to see
people present “aggregated” data of some kind and sometimes, when you dig deeper and
find the raw data yourself you find that the aggregated data tell a different story to the
disaggregated data. Alternatively, you might find that some aspect of the data is being
hidden, because it tells an inconvenient story (e.g., the researcher might choose not to
refer to a particular variable). There’s a lot of variants on this, many of which are very
hard to detect.

Study “misdesign”. Okay, this one is subtle. Basically, the issue here is that a researcher
designs a study that has built-in flaws and those flaws are never reported in the paper.
The data that are reported are completely real and are correctly analysed, but they are
produced by a study that is actually quite wrongly put together. The researcher really
wants to find a particular effect and so the study is set up in such a way as to make it “easy”
to (artefactually) observe that effect. One sneaky way to do this, in case you're feeling like
dabbling in a bit of fraud yourself, is to design an experiment in which it’s obvious to the
participants what they’re “supposed” to be doing, and then let reactivity work its magic for
you. If you want you can add all the trappings of double blind experimentation but it won’t
make a difference since the study materials themselves are subtly telling people what you
want them to do. When you write up the results the fraud won’t be obvious to the reader.
What’s obvious to the participant when they’re in the experimental context isn’t always
obvious to the person reading the paper. Of course, the way I've described this makes it
sound like it’s always fraud. Probably there are cases where this is done deliberately, but in
my experience the bigger concern has been with unintentional misdesign. The researcher
believes and so the study just happens to end up with a built in flaw, and that flaw then
magically erases itself when the study is written up for publication.

Data mining & post hoc hypothesising. Another way in which the authors of a study
can more or less misrepresent the data is by engaging in what’s referred to as “data mining”
(see Gelman and Loken 2014, for a broader discussion of this as part of the “garden of
forking paths” in statistical analysis). As we’ll discuss later, if you keep trying to analyse
your data in lots of different ways, you’ll eventually find something that “looks” like a real
effect but isn’t. This is referred to as “data mining”. It used to be quite rare because data
analysis used to take weeks, but now that everyone has very powerful statistical software
on their computers it’s becoming very common. Data mining per se isn’t “wrong”, but
the more that you do it the bigger the risk you’re taking. The thing that is wrong, and
I suspect is very common, is unacknowledged data mining. That is, the researcher runs
every possible analysis known to humanity, finds the one that works, and then pretends
that this was the only analysis that they ever conducted. Worse yet, they often “invent”
a hypothesis after looking at the data to cover up the data mining. To be clear. It’s not
wrong to change your beliefs after looking at the data, and to reanalyse your data using
your new “post hoc” hypotheses. What is wrong (and I suspect common) is failing to
acknowledge that you've done. If you acknowledge that you did it then other researchers
are able to take your behaviour into account. If you don’t, then they can’t. And that
makes your behaviour deceptive. Bad!

- 38 -



e Publication bias & self-censoring. Finally, a pervasive bias is “non-reporting” of
negative results. This is almost impossible to prevent. Journals don’t publish every article
that is submitted to them. They prefer to publish articles that find “something”. So, if
20 people run an experiment looking at whether reading Finnegans Wake causes insanity
in humans, and 19 of them find that it doesn’t, which one do you think is going to
get published? Obviously, it’s the one study that did find that Finnegans Wake causes
insanity.® This is an example of a publication bias. Since no-one ever published the
19 studies that didn’t find an effect, a naive reader would never know that they existed.
Worse yet, most researchers “internalise” this bias and end up self-censoring their research.
Knowing that negative results aren’t going to be accepted for publication, they never even
try to report them. As a friend of mine says “for every experiment that you get published,
you also have 10 failures”. And she’s right. The catch is, while some (maybe most) of
those studies are failures for boring reasons (e.g. you stuffed something up) others might
be genuine “null” results that you ought to acknowledge when you write up the “good”
experiment. And telling which is which is often hard to do. A good place to start is a
paper by Ioannidis (2005) with the depressing title “Why most published research findings
are false”. I'd also suggest taking a look at work by Kiihberger, Fritz, and Scherndl (2014)
presenting statistical evidence that this actually happens in psychology.

There’s probably a lot more issues like this to think about, but that’ll do to start with. What
I really want to point out is the blindingly obvious truth that real world science is conducted
by actual humans, and only the most gullible of people automatically assumes that everyone
else is honest and impartial. Actual scientists aren’t usually that naive, but for some reason the
world likes to pretend that we are, and the textbooks we usually write seem to reinforce that
stereotype.

2.8

Summary

This chapter isn’t really meant to provide a comprehensive discussion of psychological research
methods. It would require another volume just as long as this one to do justice to the topic.
However, in real life statistics and study design are so tightly intertwined that it’s very handy
to discuss some of the key topics. In this chapter, I've briefly discussed the following topics:

e Introduction to psychological measurement (Section 2.1). What does it mean to opera-
tionalise a theoretical construct? What does it mean to have variables and take measure-
ments?

e Scales of measurement and types of variables (Section 2.2). Remember that there are two
different distinctions here. There’s the difference between discrete and continuous data,
and there’s the difference between the four different scale types (nominal, ordinal, interval
and ratio).

8(Clearly, the real effect is that only insane people would even try to read Finnegans Wake.
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e Reliability of a measurement (Section 2.3). If I measure the “same” thing twice, should I
expect to see the same result? Only if my measure is reliable. But what does it mean to
talk about doing the “same” thing? Well, that’s why we have different types of reliability.
Make sure you remember what they are.

e Terminology: predictors and outcomes (Section 2.4). What roles do variables play in an
analysis? Can you remember the difference between predictors and outcomes? Dependent
and independent variables? Etc.

e Experimental and non-experimental research designs (Section 2.5). What makes an exper-
iment an experiment? Is it a nice white lab coat, or does it have something to do with
researcher control over variables?

e Validity and its threats (Section 2.6). Does your study measure what you want it to? How
might things go wrong? And is it my imagination, or was that a very long list of possible
ways in which things can go wrong?

All this should make clear to you that study design is a critical part of research methodology.
I built this chapter from the classic little book by Campbell et al. (1963), but there are of course
a large number of textbooks out there on research design. Spend a few minutes with your
favourite search engine and you’ll find dozens.
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An introduction to jamovi
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3. Getting started with jamovi

Robots are nice to work with.
~Roger Zelazny!

In this chapter I'll discuss how to get started in jamovi. I'll briefly talk about how to download
and install jamovi, but most of the chapter will be focused on getting you started with finding
your way around the jamovi GUI. Our goal in this chapter is not to learn any statistical concepts:
we’re just trying to learn the basics of how jamovi works and get comfortable interacting with
the system. To do this we’ll spend a bit of time looking at datasets and variables. In doing so,
you’ll get a bit of a feel for what it’s like to work in jamovi.

However, before going into any of the specifics, it’s worth talking a little about why you
might want to use jamovi at all. Given that you’re reading this you’ve probably got your own
reasons. However, if those reasons are “because that’s what my stats class uses”, it might be
worth explaining a little why your lecturer has chosen to use jamovi for the class. Of course, 1
don’t really know why other people choose jamovi so I'm really talking about why I use it.

e It’s sort of obvious but worth saying anyway: doing your statistics on a computer is faster,
easier and more powerful than doing statistics by hand. Computers excel at mindless
repetitive tasks, and a lot of statistical calculations are both mindless and repetitive. For
most people the only reason to ever do statistical calculations with pencil and paper is for
learning purposes. In my class I do occasionally suggest doing some calculations that way,
but the only real value to it is pedagogical. It does help you to get a “feel” for statistics
to do some calculations yourself, so it’s worth doing it once. But only once!

e Doing statistics in a conventional spreadsheet (e.g., Microsoft Excel) is generally a bad idea
in the long run. Although many people likely feel more familiar with them, spreadsheets
are very limited in terms of what analyses they allow you do. If you get into the habit of
trying to do your real life data analysis using spreadsheets then you’'ve dug yourself into a
very deep hole.

e Avoiding proprietary software is a very good idea. There are a lot of commercial packages
out there that you can buy, some of which I like and some of which I don’t. They’re
usually very glossy in their appearance and generally very powerful (much more powerful
than spreadsheets). However, they’re also very expensive. Usually, the company sells

'Source: Dismal Light (1968).
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“student versions” (crippled versions of the real thing) very cheaply, and then they they
sell full powered “educational versions” at a price that makes me wince. They will also
sell commercial licences with a staggeringly high price tag. The business model here is to
suck you in during your student days and then leave you dependent on their tools when
you go out into the real world. It’s hard to blame them for trying, but personally I'm not
in favour of shelling out thousands of dollars if I can avoid it. And you can avoid it. If
you make use of packages like jamovi that are open source and free you never get trapped
having to pay exorbitant licensing fees.

e Something that you might not appreciate now, but will love later on if you do anything
involving data analysis, is the fact that jamovi is basically a sophisticated front end for
the free R statistical programming language. When you download and install R you get
all the basic “packages” and those are very powerful on their own. However, because R
is so open and so widely used, it’s become something of a standard tool in statistics and
so lots of people write their own packages that extend the system. And these are freely
available too. One of the consequences of this, I've noticed, is that if you look at recent
advanced data analysis textbooks then a lot of them use R.

Those are the main reasons I use jamovi. It’s not without its flaws, though. It’s relatively
new? so there is not a huge set of textbooks and other resources to support it, and it has a few
annoying quirks that we’re all pretty much stuck with, but on the whole I think the strengths
outweigh the weakness; more so than any other option I've encountered so far.

3.1

Installing jamovi

Okay, enough with the sales pitch. Let’s get started. Just as with any piece of software, jamovi
needs to be installed on a “computer”, which is a magical box that does cool things and delivers
free ponies. Or something along those lines; I may be confusing computers with the iPad
marketing campaigns. Anyway, jamovi is freely distributed online and you can download it from
the jamovi homepage, which is:

https://www.jamovi.org/

At the top of the page, under the heading “Download”, you’ll see separate links for Windows
users, Mac users, and Linux users. If you follow the relevant link you’ll see that the online
instructions are pretty self-explanatory. As of this writing, the current version of jamovi is 0.9,
but they usually issue updates every few months, so you’ll probably have a newer version.?

2 As of writing this in August 2018.

3 Although jamovi is updated frequently it doesn’t usually make much of a difference for the sort of work
we’ll do in this book. In fact, during the writing of the book I upgraded several times and it didn’t make much
difference at all to what is in this book.
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3.1.1 Starting up jamovi

One way or another, regardless of what operating system you’re using, it’s time to open
jamovi and get started. When first starting jamovi you will be presented with a user interface
which looks something like Figure 3.1.

[ ] jamovi
= Data Analyses

¢ 05 =< B St ap

Exploration T-Tests ANOVA Regression  Freguencies Factor Modules

& A & B &C

[ |

Figure 3.1: jamovi looks like this when you start it.

To the left is the spreadsheet view, and to the right is where the results of statistical tests
appear. Down the middle is a bar separating these two regions and this can be dragged to the
left or the right to change their sizes.

It is possible to simply begin typing values into the jamovi spreadsheet as you would in any
other spreadsheet software. Alternatively, existing data sets in the CSV (.csv) file format can be
opened in jamovi. Additionally, you can easily import SPSS, SAS, Stata and JASP files directly
into jamovi. To open a file select the File tab (three horizontal lines signify this tab) at the top
left hand corner, select ‘Open’ and then choose from the files listed on 'Browse’ depending on
whether you want to open an example or a file stored on your computer.

3.2

Analyses

Analyses can be selected from the analysis ribbon or menu along the top. Selecting an analysis
will present an ‘options panel’ for that particular analysis, allowing you to assign different
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variables to different parts of the analysis, and select different options. At the same time, the
results for the analysis will appear in the right ‘Results panel’ and will update in real-time as
you make changes to the options.

When you have the analysis set up correctly you can dismiss the analysis options by clicking
the arrow to the top right of the optional panel. If you wish to return to these options, you can
click on the results that were produced. In this way, you can return to any analysis that you
(or say, a colleague) created earlier.

If you decide you no longer need a particular analysis, you can remove it with the results
context menu. Right-clicking on the analysis results will bring up a menu and by selecting
‘Analysis’ and then ‘Remove’ the analysis can be removed. But more on this later. First, let’s
take a more detailed look at the spreadsheet view.

33
The spreadsheet

In jamovi data is represented in a spreadsheet with each column representing a ‘variable’ and
each row representing a ‘case’ or ‘participant’.

3.3.1 Variables

The most commonly used variables in jamovi are ‘Data Variables’, these variables simply contain
data either loaded from a data file, or ‘typed in’ by the user. Data variables can be one of three
measurement levels:

DATA VARIABLE
A

Continuous Levels
! Ordinal
e & Nominal

1D
Data type « Integer a
Decimal
Text

These levels are designated by the symbol in the header of the variable’s column.

The ID variable type is unique to jamovi. It’s intended for variables that contain identifiers
that you would almost never want to analyse. For example, a persons name, or a participant
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ID. Specifying an ID variable type can improve performance when interacting with very large
data sets.

Nominal variables are for categorical variables which are text labels, for example a column
called Gender with the values Male and Female would be nominal. So would a person’s name.
Nominal variable values can also have a numeric value. These variables are used most often
when importing data which codes values with numbers rather than text. For example, a column
in a dataset may contain the values 1 for males, and 2 for females. It is possible to add nice
‘human-readable’ labels to these values with the variable editor (more on this later).

Ordinal variables are like Nominal variables, except the values have a specific order. An
example is a Likert scale with 3 being ‘strongly agree’ and -3 being ‘strongly disagree’.

Continuous variables are variables which exist on a continuous scale. Examples might be
height or weight. This is also referred to as ‘Interval’ or ‘Ratio scale’.

In addition, you can also specify different data types: variables have a data type of either
‘Text’, ‘Integer’ or ‘Decimal’.

When starting with a blank spreadsheet and typing values in the variable type will change
automatically depending on the data you enter. This is a good way to get a feel for which
variable types go with which sorts of data. Similarly, when opening a data file jamovi will
try and guess the variable type from the data in each column. In both cases this automatic
approach may not be correct, and it may be necessary to manually specify the variable type
with the variable editor.

The variable editor can be opened by selecting ‘Setup’ from the data tab or by double-clicking
on the variable column header. The variable editor allows you to change the name of the variable
and, for data variables, the variable type, the order of the levels, and the label displayed for
each level. Changes can be applied by clicking the ‘tick’ to the top right. The variable editor
can be dismissed by clicking the ‘Hide’ arrow.

New variables can be inserted or appended to the data set using the ‘add’ button from the
data ribbon. The ‘add’ button also allows the addition of computed variables.

3.3.2 Computed variables

Computed Variables are those which take their value by performing a computation on other
variables. Computed Variables can be used for a range of purposes, including log transforms,
z-scores, sum-scores, negative scoring and means.

Computed variables can be added to the data set with the ‘add’ button available on the data
tab. This will produce a formula box where you can specify the formula. The usual arithmetic
operators are available. Some examples of formulas are:

A+B

LOG10(len)

MEAN(A, B)

(dose - VMEAN(dose)) / VSTDEV (dose)
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In order, these are the sum of A and B, a log (base 10) transform of len, the mean of A and
B, and the z-score of the variable dose. Figure 3.2 below shows the jamovi screen for the new
variable computed as the z-score of dose (from the ‘Tooth Growth’ example data set).

‘oo0e Tooth Growth
— Data Analyses
LXK g E 8 B Y B
Paste D Setup Compute Transform i Delete Filters [ Delete
Clipboard Variables Rows

COMPUTED VARIABLE

dose_zscore

z score of dose

= (dose — VMEAN(dose)) / VSTDEV(dose)

Formula ]
Retain unused levels

< len &a supp & dose £ dose_zscore *®
1 42 VC 500| -1.060 |
2 11.5 VC 500 -1.060
3 7.3 VC 500 -1.060
4 58 VC 500 -1.060
5 6.4 VC 500 -1.060
6 10.0 VC 500 -1.060
7 11.2 VC 500 -1.060
8 11.2 VC 500 -1.060
a 52 VC 500 -1.060
10 7.0 VC 500 -1.060
1 165 VC 1000 -0.265
12 165 VC 1000 -0.265
13 152 U 1n0n -N 2R~

Figure 3.2: A newly computed variable, the z-score of ‘dose’.
V-functions

Several functions are already available in jamovi and available from the drop down box
labelled f;. A number of functions appear in pairs, one prefixed with a V and the other not. V
functions perform their calculation on a variable as a whole, where as non-V functions perform
their calculation row by row. For example, MEAN(A, B) will produce the mean of A and B for
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each row. Where as VMEAN(A) gives the mean of all the values in A.

3.3.3 Copy and Paste

jamovi produces nice American Psychological Association (APA) formatted tables and at-
tractive plots. It is often useful to be able to copy and paste these, perhaps into a Word
document, or into an email to a colleague. To copy results right click on the object of interest
and from the menu select exactly what you want to copy. The menu allows you to choose to
copy only the image or the entire analysis. Selecting “copy” copies the content to the clipboard
and this can be pasted into other programs in the usual way. You can practice this later on
when we do some analyses.

3.3.4 Syntax mode

jamovi also provides an “R Syntax Mode”. In this mode jamovi produces equivalent R code
for each analysis. To change to syntax mode, select the Application menu to the top right of
jamovi (a button with three vertical dots) and click the “Syntax mode” checkbox there. You
can turn off syntax mode by clicking this a second time.

In syntax mode analyses continue to operate as before but now they produce R syntax,
and ‘ascii output’ like an R session. Like all results objects in jamovi, you can right click on
these items (including the R syntax) and copy and paste them, for example into an R session.
At present, the provided R syntax does not include the data import step and so this must be
performed manually in R. There are many resources explaining how to import data into R and
if you are interested we recommend you take a look at these; just search on the interweb.

3.4

Loading data in jamovi

There are several different types of files that are likely to be relevant to us when doing data
analysis. There are two in particular that are especially important from the perspective of this
book:

e jamovi files are those with a .omv file extension. This is the standard kind of file that
jamovi uses to store data, and variables and analyses.

o Comma separated value (csv) files are those with a .csv file extension. These are just
regular old text files and they can be opened with many different software programs. It’s
quite typical for people to store data in csv files, precisely because they’re so simple.

There are also several other kinds of data file that you might want to import into jamovi. For
instance, you might want to open Microsoft Excel spreadsheets (.x1s files), or data files that
have been saved in the native file formats for other statistics software, such as SPSS or SAS.
Whichever file formats you are using, it’s a good idea to create a folder or folders especially for
your jamovi data sets and analyses and to make sure you keep these backed up regularly.
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| booksales.csv - OpenOffice.org Calc
B C D E
Month Days Sales Stock.Levels
January 31 0 high
February 28 100 high
March 31 200 low
April 30 50 out

Tany ga gglidth 1| "February",28,100, "high"
une 'g  "March",31,280,"low"
July 31 Ohigh | "april*, 30,50, "out"
August 3 0 high || "May", 31,0, "out"

00~ @ W W R e

September 30 0 high || "June",30,0,"high"|
October 3 0 high | "July",31,0,"high”

! "August",31.0, "high"
November 30 Ohigh “September",30,8, "high"

December A 0high I ~october~,31,0,"hign"

|| "November",38,08,"high"
"December"”,31,0,"high"

_'.Sheet1

Figure 3.3: The booksales.csv data file. On the left I've opened the file using a spreadsheet
program (OpenOffice), which shows that the file is basically a table. On the right the same file
is open in a standard text editor (the TextEdit program on a Mac), which shows how the file is
formatted. The entries in the table are wrapped in quote marks and separated by commas.

3.41 Importing data from csv files

One quite commonly used data format is the humble “comma separated value” file, also
called a csv file, and usually bearing the file extension .csv. csv files are just plain old-fashioned
text files and what they store is basically just a table of data. This is illustrated in Figure 3.3,
which shows a file called booksales.csv that I've created. As you can see, each row represents
the book sales data for one month. The first row doesn’t contain actual data though, it has the
names of the variables.

It’s easy to open csv files in jamovi. From the top left menu (the button with three parallel
lines) choose ‘Open’ and browse to where you have stored the csv file on your computer. If you're
on a Magc, it’ll look like the usual Finder window that you use to choose a file; on Windows
it looks like an Explorer window. An example of what it looks like on a Mac is shown in
Figure 3.4. I'm assuming that you're familiar with your own computer, so you should have no
problem finding the csv file that you want to import! Find the one you want, then click on the
“Open” button.

There are a few things that you can check to make sure that the data gets imported correctly:
e Heading. Does the first row of the file contain the names for each variable - a ‘header’

row? The booksales.csv file has a header, so that’s a yes.

e Separator. What character is used to separate different entries? In most csv files this will
be a comma (it is “comma separated” after all).
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FAVORITES [ data > [ afl24.Rdata
dan [ aflsmall.Rdata
—— i aflsmall2.Rdata
{Z] Dropbox =3 agpp.Rdata
Desktop 1 all.zip
o Downloads [ annoying.Rdata
ﬂ anscombesquartet.Rdata o
(£ work [ awesome.Rdata cSV
Ei—\i Applications [ awesome2.Rdata
B Mol
| ﬂ booksales.Rdata Name booksales.csv
DEVICES ' booksales2.csv Ks'i':: ;l;r:rg;;s:parated“.
MEDIA Bl cakes.Rdata Created 19/08/2011
77 Music B cards.Rdata Modified 19/08/2011
(3 chapek9.Rdata Last opened 19/08/2011
(@) Photos i chico.Rdata
| Movies i clinicaltrial_old.Rdata
" clinicaltrial Rdata
TACS
| Cancel |

|

Figure 3.4: A dialog box on a Mac asking you to select the csv file jamovi should try to import.
Mac users will recognise this immediately, it’s the usual way in which a Mac asks you to find a
file. Windows users won’t see this, instead they’ll see the usual explorer window that Windows
always gives you when it wants you to select a file.

e Decimal. What character is used to specify the decimal point? In English speaking
countries this is almost always a period (i.e., .). That’s not universally true though, many
European countries use a comma.

e Quote. What character is used to denote a block of text? That’s usually going to be a
double quote mark ("). It is for the booksales.csv file.

3.5

Importing unusual data files

Throughout this book I've assumed that your data are stored as a jamovi .omv file or as a
“properly” formatted csv file. However, in real life that’s not a terribly plausible assumption to
make so I’d better talk about some of the other possibilities that you might run into.

351 Loading data from text files

The first thing I should point out is that if your data are saved as a text file but aren’t quite in
the proper csv format then there’s still a pretty good chance that jamovi will be able to open
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it. You just need to try it and see if it works. Sometimes though you will need to change some
of the formatting. The ones that I've often found myself needing to change are:

e header. A lot of the time when you’re storing data as a csv file the first row actually
contains the column names and not data. If that’s not true then it’s a good idea to open
up the csv file in a spreadsheet programme such as Open Office and add the header row
manually.

e sep. As the name “comma separated value” indicates, the values in a row of a csv file are
usually separated by commas. This isn’t universal, however. In Europe the decimal point
is typically written as , instead of . and as a consequence it would be somewhat awkward
to use , as the separator. Therefore it is not unusual to use ; instead of , as the separator.
At other times, I've seen a TAB character used.

e quote. It’s conventional in csv files to include a quoting character for textual data. As you
can see by looking at the booksales.csv file, this is usually a double quote character, ".
But sometimes there is no quoting character at all, or you might see a single quote mark
> used instead.

e skip. It’s actually very common to receive CSV files in which the first few rows have
nothing to do with the actual data. Instead, they provide a human readable summary of
where the data came from, or maybe they include some technical info that doesn’t relate
to the data.

e missing values. Often you’ll get given data with missing values. For one reason or another,
some entries in the table are missing. The data file needs to include a “special” value to
indicate that the entry is missing. By default jamovi assumes that this value is 99%, for
both numeric and text data, so you should make sure that, where necessary, all missing
values in the csv file are replaced with 99 (or -9999; whichever you choose) before opening
/ importing the file into jamovi. Once you have opened / imported the file into jamovi all
the missing values are converted to blank cells in the jamovi spreadsheet view.

3.5.2 Loading data from SPSS (and other statistics packages)

The commands listed above are the main ones we’ll need for data files in this book. But
in real life we have many more possibilities. For example, you might want to read data files in
from other statistics programs. Since SPSS is probably the most widely used statistics package
in psychology, it’s worth mentioning that jamovi can also import SPSS data files (file extension
.sav). Just follow the instructions above for how to open a csv file, but this time navigate to
the .sav file you want to import. For SPSS files, jamovi will regard all values as missing if they
are regarded as “system missing” files in SPSS. The ‘Default missings’ value does not seem to

4You can change the default value for missing values in jamovi from the top right menu (three vertical dots),
but this only works at the time of importing data files into jamovi. The default missing value in the dataset
should not be a valid number associated with any of the variables, e.g. you could use —=9999 as this is unlikely to
be a valid value.
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work as expected when importing SPSS files, so be aware of this - you might need another step:

import the SPSS file into jamovi, then export as a csv file before re-opening in jamovi.’.

And that’s pretty much it, at least as far as SPSS goes. As far as other statistical software
goes, jamovi can also directly open / import SAS and STATA files.

3.5.3 Loading Excel files

A different problem is posed by Excel files. Despite years of yelling at people for sending
data to me encoded in a proprietary data format, I get sent a lot of Excel files. The way to
handle Excel files is to open them up first in Excel or another spreadsheet programme that can
handle Excel files, and then export the data as a csv file before opening / importing the csv file
into jamovi.

3.6

Changing data from one level to another

Sometimes you want to change the variable level. This can happen for all sorts of reasons.
Sometimes when you import data from files, it can come to you in the wrong format. Numbers
sometimes get imported as nominal, text values. Dates may get imported as text. ParticipantID
values can sometimes be read as continuous: nominal values can sometimes be read as ordinal
or even continuous. There’s a good chance that sometimes you’ll want to convert a variable
from one measurement level into another one. Or, to use the correct term, you want to coerce
the variable from one class into another.

In 3.3 we saw how to specify different variable levels, and if you want to change a variable’s
measurement level then you can do this in the jamovi data view for that variable. Just click the
check box for the measurement level you want - continuous, ordinal, or nominal.

3.7

Installing add-on modules into jamovi

A really great feature of jamovi is the ability to install add-on modules from the jamovi library.
These add-on modules have been developed by the jamovi community, i.e., jamovi users and
developers who have created special software add-ons that do other, usually more advanced,
analyses that go beyond the capabilities of the base jamovi program.

To install add-on modules, just click on the large “+” in the top right of the jamovi
window, select “jamovi-library” and then browse through the various add-on modules that
are available. Choose the one(s) you want, and then install them, as in Figure 3.5. It’s
that easy. The newly installed modules can then be accessed from the “Analyses” button
bar. Try it...useful add-on modules to install include ”scatr” (added under “Descriptives”)
and “Rj”.

5T know this is a bot of a fudge, but it does work and hopefully this will be fixed in a later version of jamovi.
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jamovi

Figure 3.5: Installing add-on modules in jamovi

3.8
Quitting jamovi

There’s one last thing I should cover in this chapter: how to quit jamovi. It’s not hard,
just close the program the same way you would any other program. However, what you
might want to do before you quit is save your work! There are two parts to this: saving
any changes to the data set, and saving the analyses that you ran.

It is good practice to save any changes to the data set as a mew data set. That
way you can always go back to the original data. To save any changes in jamovi, select
‘Export’...‘Data’ from the main jamovi menu (button with three horizontal bars in the
top left) and create a new file name for the changed data set.

Alternatively, you can save both the changed data and any analyses you have under-
taken by saving as a jamovi file. To do this, from the main jamovi menu select ‘Save
as’ and type in a file name for this ‘jamovi file (.omv)’. Remember to save the file in a
location where you can find it again later. I usually create a new folder for specific data
sets and analyses.
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3.9

Summary

Every book that tries to teach a new statistical software program to novices has to cover
roughly the same topics, and in roughly the same order. Ours is no exception, and so in
the grand tradition of doing it just the same way everyone else did it, this chapter covered
the following topics:

e Section 3.1. We downloaded and installed jamovi, and started it up.

e Section 3.2. We very briefly oriented to the part of jamovi where analyses are done
and results appear, but then deferred this until later in the book.

e Section 3.3. We spent more time looking at the spreadsheet part of jamovi, and
considered different variable types, and how to compute new variables.

e Section 3.4. We also saw how to load data files in jamovi.

e Section 3.5. Then we figured out how to open other data files, from different file
types.

e Section 3.6. And saw that sometimes we need to coerce data from one type to
another.

e Section 3.7. Installing add-on modules from the jamovi community really extends
jamovi capabilities.

e Section 3.8. Finally, we looked at good practice in terms of saving your data set and
analyses when you have finished and are about to quit jamovi.

We still haven’t arrived at anything that resembles data analysis. Maybe the next Chapter
will get us a bit closer!
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Part Ill.

Working with data
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4. Descriptive statistics

Any time that you get a new data set to look at one of the first tasks that you have to
do is find ways of summarising the data in a compact, easily understood fashion. This
is what descriptive statistics (as opposed to inferential statistics) is all about. In fact,
to many people the term “statistics” is synonymous with descriptive statistics. It is this
topic that we’ll consider in this chapter, but before going into any details, let’s take a
moment to get a sense of why we need descriptive statistics. To do this, let’s open the
aflsmall margins file and see what variables are stored in the file.

m

§ $°8 =< BR 4

Exploration T-Tests ANOVA Regression  Freguencies Factor
< afl.margins
1 56 |
2 a
3 56
4 8
5 a2
6 14
7 36
8 56
9 19
10 1
" 3
12 104
13 43
14 44

Figure 4.1: A screenshot of jamovi showing the variables stored in the aflsmall margins.csv
file
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In fact, there is just one variable here, afl.margins. We'll focus a bit on this variable
in this chapter, so I'd better tell you what it is. Unlike most of the data sets in this
book, this is actually real data, relating to the Australian Football League (AFL)." The
afl.margins variable contains the winning margin (number of points) for all 176 home and
away games played during the 2010 season.

This output doesn’t make it easy to get a sense of what the data are actually saying.
Just “looking at the data” isn’t a terribly effective way of understanding data. In order
to get some idea about what the data are actually saying we need to calculate some
descriptive statistics (this chapter) and draw some nice pictures (Chapter 5). Since the
descriptive statistics are the easier of the two topics I'll start with those, but nevertheless
I’ll show you a histogram of the afl.margins data since it should help you get a sense of
what the data we’re trying to describe actually look like, see Figure 4.2. We'll talk a lot
more about how to draw histograms in Section 5.1. For now, it’s enough to look at the
histogram and note that it provides a fairly interpretable representation of the afl.margins
data.
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Figure 4.2: A histogram of the AFL 2010 winning margin data (the afl.margins variable). As
you might expect, the larger the winning margin the less frequently you tend to see it.

Note for non-Australians: the AFL is an Australian rules football competition. You don’t need to know
anything about Australian rules in order to follow this section.
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4.1
Measures of central tendency

Drawing pictures of the data, as I did in Figure 4.2, is an excellent way to convey the
“oist” of what the data is trying to tell you. It’s often extremely useful to try to condense
the data into a few simple “summary” statistics. In most situations, the first thing that
you’ll want to calculate is a measure of central tendency. That is, you'd like to know
something about where the “average” or “middle” of your data lies. The three most
commonly used measures are the mean, median and mode. I'll explain each of these in
turn, and then discuss when each of them is useful.

411 The mean

The mean of a set of observations is just a normal, old-fashioned average. Add all of
the values up, and then divide by the total number of values. The first five AFL winning
margins were 56, 31, 56, 8 and 32, so the mean of these observations is just:

56 +31+56+8+32 183
5 5

Of course, this definition of the mean isn’t news to anyone. Averages (i.e., means) are
used so often in everyday life that this is pretty familiar stuff. However, since the concept
of a mean is something that everyone already understands, I'll use this as an excuse to
start introducing some of the mathematical notation that statisticians use to describe this
calculation, and talk about how the calculations would be done in jamovi.

= 36.60

The first piece of notation to introduce is N, which we’ll use to refer to the number of
observations that we’re averaging (in this case N = 5). Next, we need to attach a label
to the observations themselves. It’s traditional to use X for this, and to use subscripts to
indicate which observation we're actually talking about. That is, we’ll use X to refer to
the first observation, X, to refer to the second observation, and so on all the way up to Xy
for the last one. Or, to say the same thing in a slightly more abstract way, we use X; to
refer to the i-th observation. Just to make sure we're clear on the notation, the following
table lists the 5 observations in the afl.margins variable, along with the mathematical
symbol used to refer to it and the actual value that the observation corresponds to:

the observation its symbol the observed value
winning margin, game 1 X4 56 points
winning margin, game 2 Xy 31 points
winning margin, game 3 X3 56 points
winning margin, game 4 Xy 8 points
winning margin, game 5 X5 32 points
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Okay, now let’s try to write a formula for the mean. By tradition, we use X as the
notation for the mean. So the calculation for the mean could be expressed using the

following formula:
X1+ Xo+ ...+ Xyt 4+ Xn

N

This formula is entirely correct but it’s terribly long, so we make use of the summation
symbol ¥ to shorten it.* If I want to add up the first five observations I could write out
the sum the long way, X; + Xo + X3 + X4 + X5 or I could use the summation symbol
to shorten it to this: .

2,

i=1

Taken literally, this could be read as “the sum, taken over all 7 values from 1 to 5, of
the value X;”. But basically what it means is “add up the first five observations”. In
any case, we can use this notation to write out the formula for the mean, which looks

like this:

X:

1 X
X:N;&

In all honesty, I can’t imagine that all this mathematical notation helps clarify the
concept of the mean at all. In fact, it’s really just a fancy way of writing out the same
thing I said in words: add all the values up and then divide by the total number of
items. However, that’s not really the reason I went into all that detail. My goal was to
try to make sure that everyone reading this book is clear on the notation that we’ll be
using throughout the book: X for the mean, 3, for the idea of summation, X; for the
1th observation, and NV for the total number of observations. We're going to be re-using
these symbols a fair bit so it’s important that you understand them well enough to be
able to “read” the equations, and to be able to see that it’s just saying “add up lots of
things and then divide by another thing”.

“The choice to use 3 to denote summation isn’t arbitrary. It’s the Greek upper case letter sigma, which
is the analogue of the letter S in that alphabet. Similarly, there’s an equivalent symbol used to denote the
multiplication of lots of numbers, because multiplications are also called “products” we use the II symbol for
this (the Greek upper case pi, which is the analogue of the letter P).

4.1.2 Calculating the mean in jamovi

Okay, that’s the maths. So how do we get the magic computing box to do the work
for us? When the number of observations starts to become large it’s much easier to do
these sorts of calculations using a computer. To calculate the mean using all the data
we can use jamovi. The first step is to click on the ‘Exploration’ button and then click
‘Descriptives’. Then you can highlight the afl.margins variable and click the ‘right arrow’
to move it across into the ‘Variables box’. As soon as you do that a Table appears on the
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right hand side of the screen containing default ‘Descriptives’ information; see Figure 4.3.

3 398 =+ B B
Factor

Exploration T-Tests ANOVA Regression  Frequencies

Descriptives @ Descriptives

Variables Descriptives

> afl.margins afl.margins

N 176
Missing 0
Mean 35.30
Median 30.50
Minimum .00
Maximum 116.00

Split by

[J Frequency tables &b uil
> | Statistics

> | Plots

Figure 4.3: Default descriptives for the AFL 2010 winning margin data (the afl.margins vari-
able).

As you can see in Figure 4.3, the mean value for the afl.margins variable is 35.30. Other
information presented includes the total number of observations (N=176), the number of
missing values (none), and the Median, Minimum and Maximum values for the variable.

4.1.3 The median

The second measure of central tendency that people use a lot is the median, and it’s
even easier to describe than the mean. The median of a set of observations is just the
middle value. As before let’s imagine we were interested only in the first 5 AFL winning
margins: 56, 31, 56, 8 and 32. To figure out the median we sort these numbers into

ascending order:
8,31, 32,56, 56

From inspection, it’s obvious that the median value of these 5 observations is 32 since
that’s the middle one in the sorted list (I've put it in bold to make it even more obvious).
Easy stuff. But what should we do if we are interested in the first 6 games rather than
the first 57 Since the sixth game in the season had a winning margin of 14 points, our

sorted list is now
8,14,31,32, 56, 56

and there are two middle numbers, 31 and 32. The median is defined as the average of
those two numbers, which is of course 31.5. As before, it’s very tedious to do this by hand
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when you’ve got lots of numbers. In real life, of course, no-one actually calculates the
median by sorting the data and then looking for the middle value. In real life we use a
computer to do the heavy lifting for us, and jamovi has provided us with a Median value
of 30.50 for the afl.margins variable (Figure 4.3).

4.1.4 Mean or median? What'’s the difference?

Knowing how to calculate means and medians is only a part of the story. You also
need to understand what each one is saying about the data, and what that implies for
when you should use each one. This is illustrated in Figure 4.4. The mean is kind of like
the “centre of gravity” of the data set, whereas the median is the “middle value” in the
data. What this implies, as far as which one you should use, depends a little on what
type of data you've got and what you’re trying to achieve. As a rough guide:

e If your data are nominal scale you probably shouldn’t be using either the mean or
the median. Both the mean and the median rely on the idea that the numbers
assigned to values are meaningful. If the numbering scheme is arbitrary then it’s
probably best to use the mode (Section 4.1.6) instead.

e If your data are ordinal scale you’re more likely to want to use the median than the
mean. The median only makes use of the order information in your data (i.e., which
numbers are bigger) but doesn’t depend on the precise numbers involved. That’s
exactly the situation that applies when your data are ordinal scale. The mean, on
the other hand, makes use of the precise numeric values assigned to the observations,
so it’s not really appropriate for ordinal data.

e For interval and ratio scale data either one is generally acceptable. Which one you
pick depends a bit on what you're trying to achieve. The mean has the advantage
that it uses all the information in the data (which is useful when you don’t have a
lot of data). But it’s very sensitive to extreme, outlying values.

Let’s expand on that last part a little. One consequence is that there are systematic
differences between the mean and the median when the histogram is asymmetric (skewed;
see Section 4.3). This is illustrated in Figure 4.4. Notice that the median (right hand side)
is located closer to the “body” of the histogram, whereas the mean (left hand side) gets
dragged towards the “tail” (where the extreme values are). To give a concrete example,
suppose Bob (income $50,000), Kate (income $60,000) and Jane (income $65,000) are
sitting at a table. The average income at the table is $58,333 and the median income is
$60,000. Then Bill sits down with them (income $100,000,000). The average income has
now jumped to $25,043,750 but the median rises only to $62,500. If you'’re interested in
looking at the overall income at the table the mean might be the right answer. But if
you're interested in what counts as a typical income at the table the median would be a
better choice here.
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The mean is the “centre The median is the
of mass” of the data. “middle observation”
in the data set

A “balancing point” 24 observations 24 observations

Figure 4.4: An illustration of the difference between how the mean and the median should be
interpreted. The mean is basically the “centre of gravity” of the data set. If you imagine that
the histogram of the data is a solid object, then the point on which you could balance it (as if
on a see-saw) is the mean. In contrast, the median is the middle observation, with half of the
observations smaller and half of the observations larger.

415 A real life example

To try to get a sense of why you need to pay attention to the differences between the
mean and the median let’s consider a real life example. Since I tend to mock journalists
for their poor scientific and statistical knowledge, I should give credit where credit is due.
This is an excellent article on the ABC news website? from 24 September, 2010:

Senior Commonwealth Bank executives have travelled the world in the past couple of weeks
with a presentation showing how Australian house prices, and the key price to income ratios,
compare favourably with similar countries. “Housing affordability has actually been going
sideways for the last five to six years,” said Craig James, the chief economist of the bank’s
trading arm, CommSec.

This probably comes as a huge surprise to anyone with a mortgage, or who wants a mortgage,
or pays rent, or isn’t completely oblivious to what’s been going on in the Australian housing
market over the last several years. Back to the article:

CBA has waged its war against what it believes are housing doomsayers with graphs, num-
bers and international comparisons. In its presentation, the bank rejects arguments that
Australia’s housing is relatively expensive compared to incomes. It says Australia’s house
price to household income ratio of 5.6 in the major cities, and 4.3 nationwide, is comparable
to many other developed nations. It says San Francisco and New York have ratios of 7,
Auckland’s is 6.7, and Vancouver comes in at 9.3.

More excellent news! Except, the article goes on to make the observation that:

Many analysts say that has led the bank to use misleading figures and comparisons. If you
go to page four of CBA’s presentation and read the source information at the bottom of the

2www.abc.net.au/news/stories/2010/09/24/3021480 . htm
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graph and table, you would notice there is an additional source on the international com-
parison — Demographia. However, if the Commonwealth Bank had also used Demographia’s
analysis of Australia’s house price to income ratio, it would have come up with a figure closer
to 9 rather than 5.6 or 4.3

That’s, um, a rather serious discrepancy. One group of people say 9, another says 4-5. Should
we just split the difference and say the truth lies somewhere in between? Absolutely not! This
is a situation where there is a right answer and a wrong answer. Demographia is correct, and
the Commonwealth Bank is wrong. As the article points out:

[An] obvious problem with the Commonwealth Bank’s domestic price to income figures is
they compare average incomes with median house prices (unlike the Demographia figures
that compare median incomes to median prices). The median is the mid-point, effectively
cutting out the highs and lows, and that means the average is generally higher when it comes
to incomes and asset prices, because it includes the earnings of Australia’s wealthiest people.
To put it another way: the Commonwealth Bank’s figures count Ralph Norris’ multi-million
dollar pay packet on the income side, but not his (no doubt) very expensive house in the
property price figures, thus understating the house price to income ratio for middle-income
Australians.

Couldn’t have put it better myself. The way that Demographia calculated the ratio is the right
thing to do. The way that the Bank did it is incorrect. As for why an extremely quantitatively
sophisticated organisation such as a major bank made such an elementary mistake, well... T
can’t say for sure since I have no special insight into their thinking. But the article itself does
happen to mention the following facts, which may or may not be relevant:

[As] Australia’s largest home lender, the Commonwealth Bank has one of the biggest vested
interests in house prices rising. It effectively owns a massive swathe of Australian housing
as security for its home loans as well as many small business loans.

My, my.

416 Mode

The mode of a sample is very simple. It is the value that occurs most frequently. We can
illustrate the mode using a different AFL variable: who has played in the most finals? Open the
aflsmall finalists file and take a look at the afl.finalists variable, see Figure 4.5. This
variable contains the names of all 400 teams that played in all 200 finals matches played during
the period 1987 to 2010.

What we could do is read through all 400 entries and count the number of occasions on
which each team name appears in our list of finalists, thereby producing a frequency table.
However, that would be mindless and boring: exactly the sort of task that computers are great
at. So let’s use jamovi to do this for us. Under ‘Exploration’ - ‘Descriptives’ click the small
check box labelled ‘Frequency tables’ and you should get something like Figure 4.6.

Now that we have our frequency table we can just look at it and see that, over the 24 years
for which we have data, Geelong has played in more finals than any other team. Thus, the
mode of the afl.finalists data is "Geelong". We can see that Geelong (39 finals) played in
more finals than any other team during the 1987-2010 period. It’s also worth noting that in the
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Figure 4.5: A screenshot of jamovi showing the variables stored in the aflsmall finalists.csv
file
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Brisbane 25 6% 13%
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Collingweod 2 7% 26%
Essendon 22 8% 4%
Fremantle 6 2% 36%
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Melbourne 28 7% 59%
North Melbourne 2 7% 86%
Port Adelaide 17 4% 7%
Richmond 6 2% 2%
StKilda 2 6% 8%
Sydney 2 7% 85%
West Coast 8 10% 4%
Western Bulldogs 24 6% 100%

Figure 4.6: A screenshot of jamovi showing the frequency table for the afl.finalists variable
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‘Descriptives’ Table no results are calculated for Mean, Median, Minimum or Maximum. This is
because the afl.finalists variable is a nominal text variable so it makes no sense to calculate
these values.

One last point to make regarding the mode. Whilst the mode is most often calculated when
you have nominal data, because means and medians are useless for those sorts of variables, there
are some situations in which you really do want to know the mode of an ordinal, interval or ratio
scale variable. For instance, let’s go back to our afl.margins variable. This variable is clearly
ratio scale (if it’s not clear to you, it may help to re-read Section 2.2), and so in most situations
the mean or the median is the measure of central tendency that you want. But consider this
scenario: a friend of yours is offering a bet and they pick a football game at random. Without
knowing who is playing you have to guess the ezact winning margin. If you guess correctly
you win $50. If you don’t you lose $1. There are no consolation prizes for “almost” getting
the right answer. You have to guess exactly the right margin. For this bet, the mean and the
median are completely useless to you. It is the mode that you should bet on. To calculate the
mode for the afl.margins variable in jamovi, go back to that data set and on the ‘Exploration’
- ‘Descriptives’ screen you will see you can expand the section marked ‘Statistics’. Click on the
checkbox marked ‘Mode’ and you will see the modal value presented in the ‘Descriptives’ Table,
as in Figure 4.7. So the 2010 data suggest you should bet on a 3 point margin.

& o
-~ goo
2 2 :
Exploration T-Tests ANOVA Regression Frequencies Factor
Descriptives C—)) Descriptives
Variables Descriptives
> afl.margins afl.margins
N 176
Missing 0
Mean 35.30
Median 30.50
= Mode 3.00
SPIEDY) Minimum 0.00
i Maximum 116.00

[ Frequency tables ¢ il

~ | Statistics
Sample Size Central Tendency

N Missing Mean
Percentile Values Median

[J Quartiles Mode

(] cut points for | 4 O sum
Dispersion Distribution

[ std. deviation Minimum (] Skewness

[] variance Maximum [ Kurtosis

[l Range [ s.E.Mean

Figure 4.7: A screenshot of jamovi showing the modal value for the afl.margins variable
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4.2
Measures of variability

The statistics that we’ve discussed so far all relate to central tendency. That is, they all talk
about which values are “in the middle” or “popular” in the data. However, central tendency
is not the only type of summary statistic that we want to calculate. The second thing that we
really want is a measure of the variability of the data. That is, how “spread out” are the data?
How “far” away from the mean or median do the observed values tend to be? For now, let’s
assume that the data are interval or ratio scale, and we’ll continue to use the afl.margins data.
We'll use this data to discuss several different measures of spread, each with different strengths
and weaknesses.

421 Range

The range of a variable is very simple. It’s the biggest value minus the smallest value. For the
AFL winning margins data the maximum value is 116 and the minimum value is 0. Although
the range is the simplest way to quantify the notion of “variability”, it’s one of the worst. Recall
from our discussion of the mean that we want our summary measure to be robust. If the data
set has one or two extremely bad values in it we’d like our statistics to not be unduly influenced
by these cases. For example, in a variable containing very extreme outliers

~100,2,3,4,5,6,7,8,9, 10

it is clear that the range is not robust. This variable has a range of 110 but if the outlier were
removed we would have a range of only 8.

422 Interquartile range

The interquartile range (IQR) is like the range, but instead of the difference between the
biggest and smallest value the difference between the 25th percentile and the 75th percentile
is taken. If you don’t already know what a percentile is, the 10th percentile of a data set is
the smallest number x such that 10% of the data is less than z. In fact, we’'ve already come
across the idea. The median of a data set is its 50th percentile! In jamovi you can easily specify
the 25th, 50th and 75th percentiles by clicking the checkbox ‘Quartiles’ in the ‘Exploration’ -
‘Descriptives’ - ‘Statistics’ screen.

And not surprisingly, in Figure 4.8 the 50th percentile is the same as the median value.
And, by noting that 50.50 — 12.75 = 37.75, we can see that the interquartile range for the
2010 AFL winning margins data is 37.75. While it’s obvious how to interpret the range it’s
a little less obvious how to interpret the IQR. The simplest way to think about it is like this:
the interquartile range is the range spanned by the “middle half” of the data. That is, one
quarter of the data falls below the 25th percentile and one quarter of the data is above the 75th
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Median 30.50
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75th percentile 50.50

Figure 4.8: A screenshot of jamovi showing the Quartiles for the afl.margins variable

percentile, leaving the “middle half” of the data lying in between the two. And the IQR is the
range covered by that middle half.

4.2.3 Mean absolute deviation

The two measures we’ve looked at so far, the range and the interquartile range, both rely on
the idea that we can measure the spread of the data by looking at the percentiles of the data.
However, this isn’t the only way to think about the problem. A different approach is to select
a meaningful reference point (usually the mean or the median) and then report the “typical”
deviations from that reference point. What do we mean by “typical” deviation? Usually, this is
the mean or median value of these deviations. In practice, this leads to two different measures:
the “mean absolute deviation” (from the mean) and the “median absolute deviation” (from the
median). From what I've read, the measure based on the median seems to be used in statistics
and does seem to be the better of the two. But to be honest I don’t think I've seen it used
much in psychology. The measure based on the mean does occasionally show up in psychology
though. In this section I'll talk about the first one, and I'll come back to talk about the second
one later.

Since the previous paragraph might sound a little abstract, let’s go through the mean
absolute deviation from the mean a little more slowly. One useful thing about this measure is
that the name actually tells you exactly how to calculate it. Let’s think about our AFL winning
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margins data, and once again we’ll start by pretending that there are only 5 games in total,
with winning margins of 56, 31, 56, 8 and 32. Since our calculations rely on an examination
of the deviation from some reference point (in this case the mean), the first thing we need to
calculate is the mean, X. For these five observations, our mean is X = 36.6. The next step
is to convert each of our observations X; into a deviation score. We do this by calculating the
difference between the observation X; and the mean X. That is, the deviation score is defined
to be X; — X. For the first observation in our sample, this is equal to 56 — 36.6 = 19.4. Okay,
that’s simple enough. The next step in the process is to convert these deviations to absolute
deviations, and we do this by converting any negative values to positive ones. Mathematically,
we would denote the absolute value of —3 as | — 3|, and so we say that | — 3| = 3. We use the
absolute value here because we don’t really care whether the value is higher than the mean or
lower than the mean, we’re just interested in how close it is to the mean. To help make this
process as obvious as possible, the table below shows these calculations for all five observations:

English:  which game value deviation from mean absolute deviation

notation: 1 X; Xi— X 1 X; — X|
1 56 19.4 19.4
2 31 -5.6 5.6
3 56 19.4 19.4
4 8 -28.6 28.6
5 32 -4.6 4.6

Now that we have calculated the absolute deviation score for every observation in the data set,
all that we have to do to calculate the mean of these scores. Let’s do that:

19.4 4+ 5.6 +19.4 + 28.6 + 4.6

= 15.52
)

And we’re done. The mean absolute deviation for these five scores is 15.52.

However, whilst our calculations for this little example are at an end, we do have a couple of
things left to talk about. First, we should really try to write down a proper mathematical
formula. But in order do to this I need some mathematical notation to refer to the mean
absolute deviation. Irritatingly, “mean absolute deviation” and “median absolute deviation”
have the same acronym (MAD), which leads to a certain amount of ambiguity so I'd better
come up with something different for the mean absolute deviation. Sigh. What I’ll do is use
AAD instead, short for average absolute deviation. Now that we have some unambiguous
notation, here’s the formula that describes what we just calculated:

N

1 _

AAD(X) = DX — X|
i=1
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4.2.4 \Variance

Although the average absolute deviation measure has its uses, it’s not the best measure of
variability to use. From a purely mathematical perspective there are some solid reasons to prefer
squared deviations rather than absolute deviations. If we do that we obtain a measure called the
variance, which has a lot of really nice statistical properties that I'm going to ignore,® and one
massive psychological flaw that I'm going to make a big deal out of in a moment. The variance
of a data set X is sometimes written as Var(X), but it’s more commonly denoted s (the reason
for this will become clearer shortly).

The formula that we use to calculate the variance of a set of observations is as follows:

Var(X) = —Z (X —X)z
i=1

As you can see, it’s basically the same formula that we used to calculate the average absolute
deviation, except that instead of using “absolute deviations” we use “squared deviations”. It
is for this reason that the variance is sometimes referred to as the “mean square deviation”.

Now that we’ve got the basic idea, let’s have a look at a concrete example. Once again, let’s
use the first five AFL games as our data. If we follow the same approach that we took last time,
we end up with the following table:

English: which game value deviation from mean squared deviation

maths: ) Xl Xl — X (Xl — X)2
1 56 19.4 376.36
2 31 -5.6 31.36
3 56 19.4 376.36
4 8 -28.6 817.96
) 32 -4.6 21.16

That last column contains all of our squared deviations, so all we have to do is average them.
If we do that by hand, i.e. using a calculator, we end up with a variance of 324.64. Exciting,
isn’t it? For the moment, let’s ignore the burning question that you're all probably thinking
(i.e., what the heck does a variance of 324.64 actually mean?) and instead talk a bit more about
how to do the calculations in jamovi, because this will reveal something very weird. Start a new
jamovi session by clicking on the main menu button (three horizontal lines in the top left corner
and selecting ‘New’. Now type in the first five values from the afl. margins data set in column A
(56, 31, 56, 8, 32). Change the variable type to ‘Continuous’ and under ‘Descriptives’ click

3Well, I will very briefly mention the one that I think is coolest, for a very particular definition of “cool”, that
is. Variances are additive. Here’s what that means. Suppose I have two variables X and Y, whose variances are
Var(X) and Var(Y') respectively. Now imagine I want to define a new variable Z that is the sum of the two,
Z = X +Y. As it turns out, the variance of Z is equal to Var(X) + Var(Y). This is a very useful property, but
it’s not true of the other measures that I talk about in this section.

- 72 -



the ‘Variance’ check box, and you get the same values for variance as the one we calculated by
hand (324.64). No, wait, you get a completely different answer (405.80) - see Figure 4.9. That’s
just weird. Is jamovi broken? Is this a typo? Am I an idiot?

_
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Figure 4.9: A screenshot of jamovi showing the Variance for the first 5 values of the afl.margins
variable

As it happens, the answer is no.* It’s not a typo, and jamovi is not making a mistake. In
fact, it’s very simple to explain what jamovi is doing here, but slightly trickier to explain why
jamovi is doing it. So let’s start with the “what”. What jamovi is doing is evaluating a slightly
different formula to the one I showed you above. Instead of averaging the squared deviations,
which requires you to divide by the number of data points N, jamovi has chosen to divide by
N —1.

In other words, the formula that jamovi is using is this one:

4With the possible exception of the third question.
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So that’s the what. The real question is why jamovi is dividing by N — 1 and not by N.
After all, the variance is supposed to be the mean squared deviation, right? So shouldn’t we be
dividing by IV, the actual number of observations in the sample? Well, yes, we should. However,
as we’ll discuss in Chapter 8, there’s a subtle distinction between “describing a sample” and
“making guesses about the population from which the sample came”. Up to this point, it’s been
a distinction without a difference. Regardless of whether you’re describing a sample or drawing
inferences about the population, the mean is calculated exactly the same way. Not so for the
variance, or the standard deviation, or for many other measures besides. What I outlined to you
initially (i.e., take the actual average, and thus divide by N) assumes that you literally intend
to calculate the variance of the sample. Most of the time, however, you're not terribly interested
in the sample in and of itself. Rather, the sample exists to tell you something about the world.
If so, you're actually starting to move away from calculating a “sample statistic” and towards
the idea of estimating a “population parameter”. However, I'm getting ahead of myself. For
now, let’s just take it on faith that jamovi knows what it’s doing, and we’ll revisit the question
later on when we talk about estimation in Chapter 8.

Okay, one last thing. This section so far has read a bit like a mystery novel. I've shown
you how to calculate the variance, described the weird “N — 1”7 thing that jamovi does and
hinted at the reason why it’s there, but I haven’t mentioned the single most important thing.
How do you interpret the variance? Descriptive statistics are supposed to describe things, after
all, and right now the variance is really just a gibberish number. Unfortunately, the reason
why I haven’t given you the human-friendly interpretation of the variance is that there really
isn’t one. This is the most serious problem with the variance. Although it has some elegant
mathematical properties that suggest that it really is a fundamental quantity for expressing
variation, it’s completely useless if you want to communicate with an actual human. Variances
are completely uninterpretable in terms of the original variable! All the numbers have been
squared and they don’t mean anything anymore. This is a huge issue. For instance, according
to the table I presented earlier, the margin in game 1 was “376.36 points-squared higher than
the average margin”. This is ezxactly as stupid as it sounds, and so when we calculate a variance
of 324.64 we'’re in the same situation. I've watched a lot of footy games, and at no time has
anyone ever referred to “points squared”. It’s not a real unit of measurement, and since the
variance is expressed in terms of this gibberish unit, it is totally meaningless to a human.

425 Standard deviation

Okay, suppose that you like the idea of using the variance because of those nice mathematical
properties that I haven’t talked about, but since you’re a human and not a robot you’d like to
have a measure that is expressed in the same units as the data itself (i.e., points, not points-
squared). What should you do? The solution to the problem is obvious! Take the square root of
the variance, known as the standard deviation, also called the “root mean squared deviation”,
or RMSD. This solves our problem fairly neatly. Whilst nobody has a clue what “a variance
of 324.68 points-squared” really means, it’s much easier to understand “a standard deviation of
18.01 points” since it’s expressed in the original units. It is traditional to refer to the standard
deviation of a sample of data as s, though “sd” and “std dev.” are also used at times.
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Because the standard deviation is equal to the square root of the variance, you probably won’t
be surprised to see that the formula is:

=\ % 2 (X %)’

=1

and in jamovi there is a check box for ‘Std. deviation’ right above the check box for ‘Variance’.
Selecting this gives a value of 26.07 for the standard deviation.

However, as you might have guessed from our discussion of the variance, what jamovi actually
calculates is slightly different to the formula given above. Just like the we saw with the variance,
what jamovi calculates is a version that divides by N — 1 rather than N.

For reasons that will make sense when we return to this topic in Chapter 8 I'll refer to this
new quantity as ¢ (read as: “sigma hat”), and the formula for this is:

1 N _\9

Interpreting standard deviations is slightly more complex. Because the standard deviation
is derived from the variance, and the variance is a quantity that has little to no meaning that
makes sense to us humans, the standard deviation doesn’t have a simple interpretation. As a
consequence, most of us just rely on a simple rule of thumb. In general, you should expect 68%
of the data to fall within 1 standard deviation of the mean, 95% of the data to fall within 2
standard deviation of the mean, and 99.7% of the data to fall within 3 standard deviations of
the mean. This rule tends to work pretty well most of the time, but it’s not exact. It’s actually
calculated based on an assumption that the histogram is symmetric and “bell shaped”.® As you
can tell from looking at the AFL winning margins histogram in Figure 4.2, this isn’t exactly
true of our data! Even so, the rule is approximately correct. As it turns out, 65.3% of the
AFL margins data fall within one standard deviation of the mean. This is shown visually in
Figure 4.10.

42.6 Which measure to use?

We've discussed quite a few measures of spread: range, IQR, mean absolute deviation,
variance and standard deviation; and hinted at their strengths and weaknesses. Here’s a quick
summary:

e Range. Gives you the full spread of the data. It’s very vulnerable to outliers and as a
consequence it isn’t often used unless you have good reasons to care about the extremes
in the data.

5Strictly, the assumption is that the data are normally distributed, which is an important concept that we’ll
discuss more in Chapter 7 and will turn up over and over again later in the book.
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Figure 4.10: An illustration of the standard deviation from the AFL winning margins data. The
shaded bars in the histogram show how much of the data fall within one standard deviation of
the mean. In this case, 65.3% of the data set lies within this range, which is pretty consistent
with the “approximately 68% rule” discussed in the main text.

e Interquartile range. Tells you where the “middle half” of the data sits. It’s pretty robust
and complements the median nicely. This is used a lot.

o Mean absolute deviation. Tells you how far “on average” the observations are from the
mean. It’s very interpretable but has a few minor issues (not discussed here) that make
it less attractive to statisticians than the standard deviation. Used sometimes, but not
often.

e Variance. Tells you the average squared deviation from the mean. It’s mathematically
elegant and is probably the “right” way to describe variation around the mean, but it’s
completely uninterpretable because it doesn’t use the same units as the data. Almost
never used except as a mathematical tool, but it’s buried “under the hood” of a very large
number of statistical tools.

o Standard deviation. This is the square root of the variance. It’s fairly elegant mathemati-
cally and it’s expressed in the same units as the data so it can be interpreted pretty well.
In situations where the mean is the measure of central tendency, this is the default. This
is by far the most popular measure of variation.

In short, the IQR and the standard deviation are easily the two most common measures used
to report the variability of the data. But there are situations in which the others are used. I've
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described all of them in this book because there’s a fair chance you’ll run into most of these
somewhere.

4.3

Skew and kurtosis

There are two more descriptive statistics that you will sometimes see reported in the psychologi-
cal literature: skew and kurtosis. In practice, neither one is used anywhere near as frequently as
the measures of central tendency and variability that we’ve been talking about. Skew is pretty
important, so you do see it mentioned a fair bit, but I've actually never seen kurtosis reported
in a scientific article to date.

Negative Skew No Skew Positive Skew

Figure 4.11: An illustration of skewness. On the left we have a negatively skewed data set
(skewness = —.93), in the middle we have a data set with no skew (well, hardly any: skewness
= —.006), and on the right we have a positively skewed data set (skewness = .93).

Since it’s the more interesting of the two, let’s start by talking about the skewness. Skewness
is basically a measure of asymmetry and the easiest way to explain it is by drawing some pictures.
As Figure 4.11 illustrates, if the data tend to have a lot of extreme small values (i.e., the lower tail
is “longer” than the upper tail) and not so many extremely large values (left panel) then we say
that the data are negatively skewed. On the other hand, if there are more extremely large values
than extremely small ones (right panel) we say that the data are positively skewed. That’s the
qualitative idea behind skewness. If there are relatively more values that are far greater than
the mean, the distribution is positively skewed or right skewed, with a tail stretching to the
right. Negative or left skew is the opposite. A symmetric distribution has a skewness of 0.
The skewness value for a positively skewed distribution is positive, and a negative value for a
negatively skewed distribution.

- 77 -



One formula for the skewness of a data set is as follows
1 X _
skewness(X) = N5 ,;(XZ - X)3

where N is the number of observations, X is the sample mean, and & is the standard deviation
(the “divide by N — 17 version, that is).

Perhaps more helpfully, you can use jamovi to calculate skewness: it’s a check box in the
‘Statistics’ options under ‘Exploration’ - ‘Descriptives’. For the afl.margins variable, the skew-
ness figure is 0.780. If you divide the skewness estimate by the Std. error for skewness you have
an indication of how skewed the data is. Especially in small samples (Nj50), one rule of thumb
suggests that a value of 2 or less can mean that the data is not very skewed, and a value of over
2 that there is sufficient skew in the data to possibly limit its use in some statistical analyses.
Though there is no clear agreement on this interpretation. That said, this does indicate that
the AFL winning margins data is somewhat skewed (0.780 / 0.183 = 4.262).

The final measure that is sometimes referred to, though very rarely in practice, is the kur-
tosis of a data set. Put simply, kurtosis is a measure of the “pointiness” of a data set, as
illustrated in Figure 4.12. By convention, we say that the “normal curve” (black lines) has zero
kurtosis, so the pointiness of a data set is assessed relative to this curve.

Platykurtic . Leptokurtic
("too flat") Mesokurtic ("too pointy")

Figure 4.12: An illustration of kurtosis. On the left, we have a “platykurtic” data set (kurtosis
= —.95) meaning that the data set is “too flat”. In the middle we have a “mesokurtic” data set
(kurtosis is almost exactly 0) which means that the pointiness of the data is just about right.
Finally, on the right, we have a “leptokurtic” data set (kurtosis = 2.12) indicating that the data
set is “too pointy”. Note that kurtosis is measured with respect to a normal curve (black line).

In this Figure, the data on the left are not pointy enough, so the kurtosis is negative and we
call the data platykurtic. The data on the right are too pointy, so the kurtosis is positive and
we say that the data is leptokurtic. But the data in the middle are just pointy enough, so we
say that it is mesokurtic and has kurtosis zero. This is summarised in the table below:
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informal term technical name kurtosis value

“too flat” platykurtic negative
“Just pointy enough” mesokurtic Z€ro
“too pointy” leptokurtic positive

The equation for kurtosis is pretty similar in spirit to the formulas we’ve seen already for
the variance and the skewness. Except that where the variance involved squared deviations
and the skewness involved cubed deviations, the kurtosis involves raising the deviations to the
fourth power:*

N
kurtosis(X) = ﬁ Z (X — X)4 -3
i=1

I know, it’s not terribly interesting to me either.

“The “—3" part is something that statisticians tack on to ensure that the normal curve has kurtosis zero.
It looks a bit stupid, just sticking a “-3” at the end of the formula, but there are good mathematical reasons
for doing this.

More to the point, jamovi has a check box for kurtosis just below the check box for skewness,
and this gives a value for kurtosis of 0.101 with a standard error of 0.364. This means that the
AFL winning margins data are just pointy enough.

4.4

Descriptive statistics separately for each group

It is very commonly the case that you find yourself needing to look at descriptive statistics
broken down by some grouping variable. This is pretty easy to do in jamovi. For instance, let’s
say I want to look at the descriptive statistics for some clin.trial data, broken down separately
by therapy type. This is a new data set, one that you've never seen before. The data is stored
in the clinicaltrial.csv file and we’ll use it a lot in Chapter 13 (you can find a complete
description of the data at the start of that chapter). Let’s load it and see what we’ve got:

Evidently there were three drugs: a placebo, something called “anxifree” and something
called “joyzepam”, and there were 6 people administered each drug. There were 9 people
treated using cognitive behavioural therapy (CBT) and 9 people who received no psychological
treatment. And we can see from looking at the ‘Descriptives’ of the mood.gain variable that
most people did show a mood gain (mean = 0.88), though without knowing what the scale is
here it’s hard to say much more than that. Still, that’s not too bad. Overall I feel that I learned
something from that.

We can also go ahead and look at some other descriptive statistics, and this time separately
for each type of therapy. In jamovi, check Std. deviation, Skewness and Kurtosis in the ‘Statis-
tics’ options. At the same time, transfer the therapy variable into the ‘Split by’ box, and you
should get something like Figure 4.14
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Exploration T-Tasts ANOWA Regression  Freguencies Factor
& ID &a drug &4 therapy <" mood.gain

1 placebo no.therapy 0.5
2 2 placebo no.therapy 0.3
3 3 placebo no.therapy 0.1
4 4 anxifree no.therapy 0.6
5 5 anxifree no.therapy 0.4
6 6 anxifree no.therapy 0.2
7 7 joyzepam no.therapy 1.4
8 8 joyzepam no.therapy 1.7
9 9 joyzepam no.therapy 1.3
10 10 placebo CBT 0.6
1 11  placebo CBT 0.9
12 12 placebo CBT 0.3
13 13  anxifree CBT 1.1
14 14  anxifree CBT 0.8
15 15 anxifree CBT 1.2
16 16 joyzepam CBT 1.8
17 17  joyzepam CBT 1.3
18 18  joyzepam CBT 1.4

Figure 4.13: A screenshot of jamovi showing the variables stored in the clinicaltrial.csv file

What if you have multiple grouping variables? Suppose you want to look at the average
mood gain separately for all possible combinations of drug and therapy. It is possible to do
this by adding another variable, drug, into the ‘Split by’ box. Easy peasy, though sometimes if
you split too much there isn’t enough data in each breakdown combination to make meaningful
calculations. In this case jamovi tells you this by stating something like NaN or Inf.’

5Sometimes jamovi will also present numbers in an unusual way. If a number is very small, or very large,
then jamovi switches to an exponential form for numbers. For example 6.51e-4 is the same as saying that the
decimal point is moved 4 places to the left, so the actual number is 0.000651. If there is a plus sign (i.e. 6.51e+4
then the decimal point is moved to the right, i.e. 65,100.00. Usually only very small or very large numbers are
expressed in this way, for example 6.51e-16, which would be quite unwieldy to write out in the normal way.
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Figure 4.14: A screenshot of jamovi showing Descriptives split by therapy type

4.5

Standard scores

Suppose my friend is putting together a new questionnaire intended to measure “grumpiness”.
The survey has 50 questions which you can answer in a grumpy way or not. Across a big sample
(hypothetically, let’s imagine a million people or so!) the data are fairly normally distributed,
with the mean grumpiness score being 17 out of 50 questions answered in a grumpy way, and
the standard deviation is 5. In contrast, when I take the questionnaire I answer 35 out of 50
questions in a grumpy way. So, how grumpy am I? One way to think about it would be to say
that I have grumpiness of 35/50, so you might say that I'm 70% grumpy. But that’s a bit weird,
when you think about it. If my friend had phrased her questions a bit differently people might
have answered them in a different way, so the overall distribution of answers could easily move
up or down depending on the precise way in which the questions were asked. So, I'm only 70%
grumpy with respect to this set of survey questions. Even if it’s a very good questionnaire this
isn’t very a informative statement.

A simpler way around this is to describe my grumpiness by comparing me to other people.
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Shockingly, out of my friend’s sample of 1,000,000 people, only 159 people were as grumpy as
me (that’s not at all unrealistic, frankly) suggesting that I'm in the top 0.016% of people for
grumpiness. This makes much more sense than trying to interpret the raw data. This idea,
that we should describe my grumpiness in terms of the overall distribution of the grumpiness of
humans, is the qualitative idea that standardisation attempts to get at. One way to do this is to
do exactly what I just did and describe everything in terms of percentiles. However, the problem
with doing this is that “it’s lonely at the top”. Suppose that my friend had only collected a
sample of 1000 people (still a pretty big sample for the purposes of testing a new questionnaire,
I’d like to add), and this time gotten, let’s say, a mean of 16 out of 50 with a standard deviation
of 5. The problem is that almost certainly not a single person in that sample would be as grumpy
as me.

However, all is not lost. A different approach is to convert my grumpiness score into a
standard score, also referred to as a z-score. The standard score is defined as the number of
standard deviations above the mean that my grumpiness score lies. To phrase it in “pseudo-
maths” the standard score is calculated like this:

raw score — mean

standard score =
standard deviation

In actual maths, the equation for the z-score is

X, —X

Zp = -
o

So, going back to the grumpiness data, we can now transform Dani’s raw grumpiness into a

standardised grumpiness score.
35— 17
z = =

5
To interpret this value, recall the rough heuristic that I provided in Section 4.2.5 in which I
noted that 99.7% of values are expected to lie within 3 standard deviations of the mean. So the
fact that my grumpiness corresponds to a z score of 3.6 indicates that I'm very grumpy indeed.
In fact this suggests that I'm grumpier than 99.98% of people. Sounds about right.

3.6

In addition to allowing you to interpret a raw score in relation to a larger population (and
thereby allowing you to make sense of variables that lie on arbitrary scales), standard scores
serve a second useful function. Standard scores can be compared to one another in situations
where the raw scores can’t. Suppose, for instance, my friend also had another questionnaire that
measured extraversion using a 24 item questionnaire. The overall mean for this measure turns
out to be 13 with standard deviation 4, and I scored a 2. As you can imagine, it doesn’t make
a lot of sense to try to compare my raw score of 2 on the extraversion questionnaire to my raw
score of 35 on the grumpiness questionnaire. The raw scores for the two variables are “about”
fundamentally different things, so this would be like comparing apples to oranges.

What about the standard scores? Well, this is a little different. If we calculate the standard
scores we get z = (35 —17)/5 = 3.6 for grumpiness and z = (2 —13)/4 = —2.75 for extraversion.
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These two numbers can be compared to each other.” I'm much less extraverted than most people
(z = —2.75) and much grumpier than most people (z = 3.6). But the extent of my unusualness
is much more extreme for grumpiness, since 3.6 is a bigger number than 2.75. Because each
standardised score is a statement about where an observation falls relative to its own population,
it is possible to compare standardised scores across completely different variables.

4.6

Summary

Calculating some basic descriptive statistics is one of the very first things you do when analysing
real data, and descriptive statistics are much simpler to understand than inferential statistics,
so like every other statistics textbook I've started with descriptives. In this chapter, we talked
about the following topics:

o Measures of central tendency. Broadly speaking, central tendency measures tell you where
the data are. There’s three measures that are typically reported in the literature: the
mean, median and mode. (Section 4.1)

e Measures of variability. In contrast, measures of variability tell you about how “spread
out” the data are. The key measures are: range, standard deviation, and interquartile
range. (Section 4.2)

o Measures of skewness and kurtosis. We also looked at assymetry in a variable’s distribution
(skew) and pointness (kurtosis). (Section 4.3)

o Getting group summaries of variables in jamovi. Since this book focuses on doing data
analysis in jamovi, we spent a bit of time talking about how descriptive statistics are
computed for different subgroups. (Section 4.4)

o Standard scores. The z-score is a slightly unusual beast. It’s not quite a descriptive
statistic, and not quite an inference. We talked about it in Section 4.5. Make sure you
understand that section. It’ll come up again later.

In the next Chapter we’ll move on to a discussion of how to draw pictures! Everyone loves a
pretty picture, right? But before we do, I want to end on an important point. A traditional first
course in statistics spends only a small proportion of the class on descriptive statistics, maybe
one or two lectures at most. The vast majority of the lecturer’s time is spent on inferential
statistics because that’s where all the hard stuff is. That makes sense, but it hides the practical
everyday importance of choosing good descriptives. With that in mind. ..

"Though some caution is usually warranted. It’s not always the case that one standard deviation on variable
A corresponds to the same “kind” of thing as one standard deviation on variable B. Use common sense when
trying to determine whether or not the z scores of two variables can be meaningfully compared.
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46.1 Epilogue: Good descriptive statistics are descriptive!

The death of one man is a tragedy.
The death of millions is a statistic.
— Josef Stalin, Potsdam 1945

950,000 — 1,200,000
— Estimate of Soviet repression deaths,
1937-1938 (Ellman 2002)

Stalin’s infamous quote about the statistical character of the deaths of millions is worth
giving some thought. The clear intent of his statement is that the death of an individual
touches us personally and its force cannot be denied, but that the deaths of a multitude are
incomprehensible and as a consequence are mere statistics and more easily ignored. I'd argue
that Stalin was half right. A statistic is an abstraction, a description of events beyond our
personal experience, and so hard to visualise. Few if any of us can imagine what the deaths of
millions is “really” like, but we can imagine one death and this gives the lone death its feeling
of immediate tragedy, a feeling that is missing from Ellman’s cold statistical description.

Yet it is not so simple. Without numbers, without counts, without a description of what
happened, we have no chance of understanding what really happened, no opportunity even to
try to summon the missing feeling. And in truth, as I write this sitting in comfort on a Saturday
morning half a world and a whole lifetime away from the Gulags, when I put the Ellman
estimate next to the Stalin quote a dull dread settles in my stomach and a chill settles over
me. The Stalinist repression is something truly beyond my experience, but with a combination
of statistical data and those recorded personal histories that have come down to us, it is not
entirely beyond my comprehension. Because what Ellman’s numbers tell us is this: over a
two year period Stalinist repression wiped out the equivalent of every man, woman and child
currently alive in the city where I live. Each one of those deaths had it’s own story, was it’s
own tragedy, and only some of those are known to us now. Even so, with a few carefully chosen
statistics, the scale of the atrocity starts to come into focus.

Thus it is no small thing to say that the first task of the statistician and the scientist is to
summarise the data, to find some collection of numbers that can convey to an audience a sense
of what has happened. This is the job of descriptive statistics, but it’s not a job that can be
told solely using the numbers. You are a data analyst, and not a statistical software package.
Part of your job is to take these statistics and turn them into a description. When you analyse
data it is not sufficient to list off a collection of numbers. Always remember that what you're
really trying to do is communicate with a human audience. The numbers are important, but
they need to be put together into a meaningful story that your audience can interpret. That
means you need to think about framing. You need to think about context. And you need to
think about the individual events that your statistics are summarising.

-84 -



5. Drawing graphs

Above all else show the data.
~Edward Tufte!

Visualising data is one of the most important tasks facing the data analyst. It’s important
for two distinct but closely related reasons. Firstly, there’s the matter of drawing “presentation
graphics”, displaying your data in a clean, visually appealing fashion makes it easier for your
reader to understand what you’re trying to tell them. Equally important, perhaps even more
important, is the fact that drawing graphs helps you to understand the data. To that end, it’s
important to draw “exploratory graphics” that help you learn about the data as you go about
analysing it. These points might seem pretty obvious but I cannot count the number of times
I’ve seen people forget them.

To give a sense of the importance of this chapter, I want to start with a classic illustration of
just how powerful a good graph can be. To that end, Figure 5.1 shows a redrawing of one of the
most famous data visualisations of all time. This is John Snow’s 1854 map of cholera deaths.
The map is elegant in its simplicity. In the background we have a street map which helps orient
the viewer. Over the top we see a large number of small dots, each one representing the location
of a cholera case. The larger symbols show the location of water pumps, labelled by name. Even
the most casual inspection of the graph makes it very clear that the source of the outbreak is
almost certainly the Broad Street pump. Upon viewing this graph Dr Snow arranged to have
the handle removed from the pump and ended the outbreak that had killed over 500 people.
Such is the power of a good data visualisation.

The goals in this chapter are twofold. First, to discuss several fairly standard graphs that
we use a lot when analysing and presenting data, and second to show you how to create these
graphs in jamovi. The graphs themselves tend to be pretty straightforward, so in one respect
this chapter is pretty simple. Where people usually struggle is learning how to produce graphs,
and especially learning how to produce good graphs. Fortunately, learning how to draw graphs
in jamovi is reasonably simple as long as you're not too picky about what your graph looks like.
What I mean when I say this is that jamovi has a lot of very good default graphs, or plots, that
most of the time produce a clean, high-quality graphic. However, on those occasions when you
do want to do something non-standard, or if you need to make highly specific changes to the
figure, then the graphics functionality in jamovi is not yet capable of supporting advanced work
or detail editing.

The origin of this quote is Tufte’s lovely book The Visual Display of Quantitative Information.
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Figure 5.1: A stylised redrawing of John Snow’s original cholera map. Each small dot represents
the location of a cholera case and each large circle shows the location of a well. As the plot
makes clear, the cholera outbreak is centred very closely on the Broad St pump.
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Histograms

Let’s begin with the humble histogram. Histograms are one of the simplest and most useful
ways of visualising data. They make most sense when you have an interval or ratio scale
variable (e.g., the afl.margins data from Chapter 4) and what you want to do is get an overall
impression of the variable. Most of you probably know how histograms work, since they’re so
widely used, but for the sake of completeness I'll describe them. All you do is divide up the
possible values into bins and then count the number of observations that fall within each bin.
This count is referred to as the frequency or density of the bin and is displayed as a vertical
bar. The AFL winning margins data there are 33 games in which the winning margin was less
than 10 points and it is this fact that is represented by the height of the leftmost bar that we
showed earlier in Chapter 4, Figure 4.2. With these earlier graphs we used an advanced plotting
package in R which, for now, is beyond the capability of jamovi. But jamovi gets us close,
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and drawing this histogram in jamovi is pretty straightforward. Open up the ‘plots’ options
under ‘Exploration’ - ‘Descriptives’ and click the ‘histogram’ check box, as in Figure 5.2. jamovi
defaults to labelling the y-axis as ‘density’ and the x-axis with the variable name. The bins
are selected automatically, and there is no scale, or count, information on the y-axis unlike the
previous Figure 4.2. But this does not matter too much because after all what we are really
interested in is our impression of the shape of the distribution: is it normally distributed or is
there a skew or kurtosis? Our first impressions of these characteristics come from drawing a

.
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Figure 5.2: jamovi screen showing the histogram check box

One additional feature that jamovi provides is the ability to plot a ‘Density’ curve. You
can do this by clicking the ‘Density’ check box under the ‘Plots’ options (and unchecking ‘His-
togram’), and this gives us the plot shown in Figure 5.3. A density plot visualises the distribution
of data over a continuous interval or time period. This chart is a variation of a histogram that
uses kernel smoothing to plot values, allowing for smoother distributions by smoothing out
the noise. The peaks of a density plot help display where values are concentrated over the inter-
val. An advantage density plots have over histograms is that they are better at determining the
distribution shape because they’re not affected by the number of bins used (each bar used in a
typical histogram). A histogram comprising of only 4 bins wouldn’t produce a distinguishable
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enough shape of distribution as a 20-bin histogram would. However, with density plots, this
isn’t an issue.

density

0 30 60 90 120
afl.margins

Figure 5.3: A density plot of the afl.margins variable plotted in jamovi

Although this image would need a lot of cleaning up in order to make a good presentation
graphic (i.e., one you'd include in a report), it nevertheless does a pretty good job of describing
the data. In fact, the big strength of a histogram or density plot is that (properly used) it does
show the entire spread of the data, so you can get a pretty good sense about what it looks like.
The downside to histograms is that they aren’t very compact. Unlike some of the other plots
I’ll talk about it’s hard to cram 20-30 histograms into a single image without overwhelming the
viewer. And of course, if your data are nominal scale then histograms are useless.

5.2
Boxplots

Another alternative to histograms is a boxplot, sometimes called a “box and whiskers” plot.
Like histograms they’re most suited to interval or ratio scale data. The idea behind a boxplot
is to provide a simple visual depiction of the median, the interquartile range, and the range of
the data. And because they do so in a fairly compact way boxplots have become a very popular
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statistical graphic, especially during the exploratory stage of data analysis when you’re trying to
understand the data yourself. Let’s have a look at how they work, again using the afl.margins
data as our example.

Descriptives @ Descriptives
Variables Descriptives
- afl.margins afl.margins
Minimum 0.00
Maximum 116.00
25th percentile 12.75
60th percentile 30.50
75th percentile 50.50
Split by o
Y
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[ variance Maximum [J Kurtosis 30
[} rRange (] S.E.Mean
v | Plots 0
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() Histogram Box plot [ Bar plot

[ Density O violin
[] Data

Jittered

Figure 5.4: A box plot of the afl.margins variable plotted in jamovi

The easiest way to describe what a boxplot looks like is just to draw one. Click on the
‘Box plot’ check box and you will get the plot shown on the lower right of Figure 5.4. jamovi
has drawn the most basic boxplot possible. When you look at this plot this is how you should
interpret it: the thick line in the middle of the box is the median; the box itself spans the
range from the 25th percentile to the 75th percentile; and the “whiskers” go out to the most
extreme data point that doesn’t exceed a certain bound. By default, this value is 1.5 times the
interquartile range (IQR), calculated as 25th percentile - (1.5*IQR) for the lower boundary,
and 75th percentile + (1.5*IQR) for the upper boundary. Any observation whose value falls
outside this range is plotted as a circle or dot instead of being covered by the whiskers, and
is commonly referred to as an outlier. For our AFL margins data there are two observations
that fall outside this range, and these observations are plotted as dots (the upper boundary is
107, and looking over the data column in the spreadsheet there are two observations with values
higher than this, 108 and 116, so these are the dots).
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5.2.1 Violin plots
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Figure 5.5: A violin plot of the afl.margins variable plotted in jamovi, alsow showing a box
plot and data points

A variation to the traditional box plot is the violin plot. Violin plots are similar to box
plots except that they also show the kernel probability density of the data at different values.
Typically, violin plots will include a marker for the median of the data and a box indicating the
interquartile range, as in standard box plots. In jamovi you can achieve this sort of functionality
by checking both the ‘Violin’ and the 'Box plot’ check boxes. See Figure 5.5, which also has the
‘Data’ check box turned on to show the actual data points on the plot. This does tend to make
the graph a bit too busy though, in my opinion. Clarity is simplicity, so in practice it might be
better to just use a simple box plot.

5.2.2 Drawing multiple boxplots

One last thing. What if you want to draw multiple boxplots at once? Suppose, for instance, |
wanted separate boxplots showing the AFL margins not just for 2010 but for every year between
1987 and 2010. To do that the first thing we’ll have to do is find the data. These are stored in
the aflsmall2.csv file. So let’s load it into jamovi and see what is in it. You will see that it is
a pretty big data set. It contains 4296 games and the variables that we’re interested in. What
we want to do is have jamovi draw boxplots for the margin variable, but plotted separately for
each year. The way to do this is to move the year variable across into the ‘Split by’ box, as in
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Figure 5.6: jamovi screen shot showing the ‘Split by’ window

Figure 5.6

The result is shown in Figure 5.7. This version of the box plot, split by year, gives a sense
of why it’s sometimes useful to choose box plots instead of histograms. It’s possible to get a
good sense of what the data look like from year to year without getting overwhelmed with too
much detail. Now imagine what would have happened if I'd tried to cram 24 histograms into
this space: no chance at all that the reader is going to learn anything useful.

il

6168 199 190 191 1% 19 1% 15 1995 107 1% 199 A0 a0 AR A8 AW A6 A6 A7 A8 20 A0
year

margin

&

Figure 5.7: Multiple boxplots plotted in jamovi, for the margin by year variables in the afl1small2
data set

5.2.3 Using box plots to detect outliers

Because the boxplot automatically separates out those observations that lie outside a certain
range, depicting them with a dot in jamovi, people often use them as an informal method
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Figure 5.8: A boxplot showing two very suspicious outliers!

for detecting outliers: observations that are “suspiciously” distant from the rest of the data.
Here’s an example. Suppose that I'd drawn the boxplot for the AFL margins data and it came
up looking like Figure 5.8. It’s pretty clear that something funny is going on with two of the
observations. Apparently, there were two games in which the margin was over 300 points! That
doesn’t sound right to me. Now that I've become suspicious it’s time to look a bit more closely
at the data. In jamovi you can quickly find out which of these observations are suspicious and
then you can go back to the raw data to see if there has been a mistake in data entry. To do this
you need to set up a filter so that only those observations with values over a certain threshold
are included. In our example, the threshold is over 300, so that is the filter we will create. First,
click on the ‘Filters’ button at the top of the jamovi window, and then type ‘margin > 300’ into
the filter field, as in Figure 5.9.

This filter creates a new column in the spreadsheet view where only those observations that
pass the filter are included. One neat way to quickly identify which observations these are is to
tell jamovi to produce a ‘Frequency table’ (in the ‘Exploration’ - ‘Descriptives’ window) for the
ID variable (which must be a nominal variable otherwise the Frequency table is not produced).
In Figure 5.10 you can see that the ID values for the observations where the margin was over
300 are 14 and 134. These are suspicious cases, or observations, where you should go back to
the original data source to find out what is going on.

Usually you find that someone has just typed in the wrong number. Whilst this might seem
like a silly example, I should stress that this kind of thing actually happens a lot. Real world
data sets are often riddled with stupid errors, especially when someone had to type something
into a computer at some point. In fact, there’s actually a name for this phase of data analysis
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and in practice it can take up a huge chunk of our time: data cleaning. It involves searching
for typing mistakes (“typos”), missing data and all sorts of other obnoxious errors in raw data
files.

For less extreme values, even if they are flagged in a a boxplot as outliers, the decision about
whether to include outliers or exclude them in any analysis depends heavily on why you think
the data look they way they do and what you want to use the data for. You really need to
exercise good judgement here. If the outlier looks legitimate to you, then keep it. In any case,
I’ll return to the topic again in Section 12.10.

5.3
Bar graphs

Another form of graph that you often want to plot is the bar graph. Let’s use the afl.finalists
data set with the afl.finalists variable that I introduced in Section 4.1.6. What I want to
do is draw a bar graph that displays the number of finals that each team has played in over
the time spanned by the afl.finalists data set. There are lots of teams, but I am particularly
interested in just four: Brisbane, Carlton, Fremantle and Richmond. So the first step is to set
up a filter so just those four teams are included in the bar graph. This is straightforward in
jamovi and you can do it by using the ‘Filters’ function that we used previously. Open up the
‘Filters’ screen and type in the following:

afl.finalists == ‘Brisbane’ or afl.finalists == ‘Carlton’
or afl.finalists == ‘Fremantle’ or afl.finalists == ‘Richmond’ 2

When you have done this you will see, in the ‘Data’ view, that jamovi has filtered out all
values apart from those we have specified. Next, open up the ‘Exploration’ - ‘Descriptives’
window and click on the ‘Bar plot’ check box (remember to move the ‘afl.finalists’ variable
across into the ‘Variables’ box so that jamovi knows which variable to use). You should then
get a bar graph, something like that shown in Figure 5.11.

54

Saving image files using jamovi

Hold on, you might be thinking. What’s the good of being able to draw pretty pictures in jamovi
if I can’t save them and send them to friends to brag about how awesome my data is? How do I
save the picture? Simples. Just right click on the plot image and save it to a file, either as ‘eps’,
‘svg’ or ‘pdf’. These formats all produce nice images that you can the send to your friends, or
include in your assignments or papers.

2jamovi uses the symbol “==" here to mean “matches”.
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Figure 5.11: Filtering to include just four AFL teams, and drawing a bar plot in jamovi

- 95 -



55

Summary

Perhaps I'm a simple minded person, but I love pictures. Every time I write a new scientific
paper one of the first things I do is sit down and think about what the pictures will be. In my
head an article is really just a sequence of pictures linked together by a story. All the rest of
it is just window dressing. What I'm really trying to say here is that the human visual system
is a very powerful data analysis tool. Give it the right kind of information and it will supply a
human reader with a massive amount of knowledge very quickly. Not for nothing do we have
the saying “a picture is worth a thousand words”. With that in mind, I think that this is one
of the most important chapters in the book. The topics covered were:

o Common plots. Much of the chapter was focused on standard graphs that statisticians like
to produce: histograms (Section 5.1), boxplots (Section 5.2) and bar graphs (Section 5.3)

e Saving image files. Importantly, we also covered how to export your pictures (Section 5.4)

One final thing to point out. Whilst jamovi produces some really neat default graphics,
editing the plots is currently not possible. For more advanced graphics and plotting capability
the packages available in R are much more powerful. One of the most popular graphics systems
is provided by the ggplot2 package (see http://ggplot2.org/), which is loosely based on “The
grammar of graphics” (Wilkinson, Wills, Rope, Norton, and Dubbs 2006). It’s not for novices.
You need to have a pretty good grasp of R before you can start using it, and even then it takes
a while to really get the hang of it. But when you’re ready it’s worth taking the time to teach
yourself, because it’s a much more powerful and cleaner system.
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6. Pragmatic matters

The garden of life never seems to confine itself to the plots philosophers have laid
out for its convenience. Maybe a few more tractors would do the trick.
— Roger Zelazny!

This is a somewhat strange chapter, even by my standards. My goal in this chapter is to
talk a bit more honestly about the realities of working with data than you’ll see anywhere else
in the book. The problem with real world data sets is that they are messy. Very often the
data file that you start out with doesn’t have the variables stored in the right format for the
analysis you want to do. Sometimes there might be a lot of missing values in your data set.
Sometimes you only want to analyse a subset of the data. Et cetera. In other words, there’s a
lot of data manipulation that you need to do just to get the variables in your data set into
the format that you need it. The purpose of this chapter is to provide a basic introduction to
these pragmatic topics. Although the chapter is motivated by the kinds of practical issues that
arise when manipulating real data, I'll stick with the practice that I've adopted through most
of the book and rely on very small, toy data sets that illustrate the underlying issue. Because
this chapter is essentially a collection of techniques and doesn’t tell a single coherent story, it
may be useful to start with a list of topics:

e Section 6.1. Tabulating data.

Section 6.2. Using logical expressions.

Section 6.3. Transforming or recoding a variable.

Section 6.4. Some useful mathematical functions.

Section 6.5. Extracting a subset of a data set.

As you can see, the list of topics that the chapter covers is pretty broad, and there’s a lot of
content there. Even though this is one of the longest and hardest chapters in the book, I'm really
only scratching the surface of several fairly different and important topics. My advice, as usual,
is to read through the chapter once and try to follow as much of it as you can. Don’t worry too
much if you can’t grasp it all at once, especially the later sections. The rest of the book is only

The quote comes from Home is the Hangman, published in 1975.
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lightly reliant on this chapter so you can get away with just understanding the basics. However,
what you’ll probably find is that later on you’ll need to flick back to this chapter in order to
understand some of the concepts that I refer to here.

6.1
Tabulating and cross-tabulating data

A very common task when analysing data is the construction of frequency tables, or cross-
tabulation of one variable against another. These tasks can be achieved in jamovi and I'll show
you how in this section.

6.1.1 Creating tables for single variables

Let’s start with a simple example. As the father of a small child I naturally spend a lot of time
watching TV shows like In the Night Garden. In the nightgarden.csv file, I've transcribed a
short section of the dialogue. The file contains two variables of interest, speaker and utterance.
Open up this data set in jamovi and take a look at the data in the ‘spreadsheet’ view. You will
see that the data looks something like this:

‘speaker’ variable:
upsy-daisy upsy-daisy upsy-daisy upsy-daisy tombliboo tombliboo makka-pakka
makka-pakka makka-pakka makka-pakka

‘utterance’ variable:
pip pip onk onk ee oo pip pip onk onk

Looking at this it becomes very clear what happened to my sanity! With these as my data, one
task I might find myself needing to do is construct a frequency count of the number of words
each character speaks during the show. The jamovi ‘Descriptives’ screen has a check box called
‘Frequency tables” which does just this, see Figure 6.1.

Frequencies of speaker

Levels Counts % of Total Cumulative %
makka-pakka 4 40% 40%
tombliboo 2 20% 60%
upsy-daisy 4 40% 100%

Figure 6.1: Frequency table for the speaker variable
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The output here tells us on the first line that what we’re looking at is a tabulation of the
speaker variable. In the ‘Levels’ column it lists all the different speakers that exist in the data,
and in the ‘Counts’ column it tells you how many times that speaker appears in the data. In
other words, it’s a frequency table.

In jamovi, the ‘Frequency tables’ check box will only produce a table for single variables.
For a table of two variables, for example combining speaker and utterance so that we can
see how many times each speaker said a particular utterance, we need a cross-tabulation or
contingency table. In jamovi you can do this by selecting the ‘Frequencies’ - ‘Contingency
Tables’ - ‘Independent Samples’ analysis, and moving the speaker variable into the ‘Rows’ box,
and the utterances variable into the ‘Columns’ box. You then should have a contingency table
like the one shown in Figure 6.2.

_
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&& ID Rows Contingency Tables
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Figure 6.2: Contingency table for the speaker and utterances variables

Don’t worry about the “yx? Tests” table that is produced. We are going to cover this later
on in chapter 10. When interpreting the contingency table remember that these are counts, so
the fact that the first row and second column of numbers corresponds to a value of 2 indicates
that Makka-Pakka (row 1) says “onk” (column 2) twice in this data set.

6.1.2 Adding percentages to a contingency table

The contingency table shown in Figure 6.2 shows a table of raw frequencies. That is, a
count of the total number of cases for different combinations of levels of the specified variables.
However, often you want your data to be organised in terms of percentages as well as counts. You
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can find the check boxes for different percentages under the ‘Cells’ option in the ‘Contingency
Tables’ window. First, click on the ‘Row’ check box and the Contingency Table in the output
window will change to the one in Figure 6.3.

Contingency Tables

utterance

speaker ee onk 0o pip Total

makka-pakka Observed 0 2 0 2 4
% within row 0% 50% 0% 50%

tombliboo Observed 1 0 1 0 2
% within row 50% 0% 50% 0%

upsy-daisy Observed 0 2 0 2 4
% within row 0% 50% 0% 50%

Total Observed 1 4 1 4 10
% within row 10% 40% 10% 40%

Figure 6.3: Contingency table for the speaker and utterances variables, with row percentages

Contingency Tables

utterance

speaker ee onk Qo pip Total

makka-pakka Observed 0 2 0 2 4
%% within column 0% 50% 0% 50%

tombliboo Observed 1 0 1 v} 2
% within column 100% 0% 100% 0%

upsy-daisy Observed 0 2 0 2 4
% within column 0% 50% 0% 50%

Taotal Observed i 4 1 4 10

% within column 100% 100% 100% 100%

Figure 6.4: Contingency table for the speaker and utterances variables, with column percentages

What we’re looking at here is the percentage of utterances made by each character. In other
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words, 50% of Makka-Pakka’s utterances are “pip”, and the other 50% are “onk”. Let’s contrast
this with the table we get when we calculate column percentages (uncheck ‘Row’ and check
‘Column’ in the Cells options window), see Figure 6.4. In this version, what we’re seeing is the
percentage of characters associated with each utterance. For instance, whenever the utterance
“ee” is made (in this data set), 100% of the time it’s a Tombliboo saying it.

6.2

Logical expressions in jamovi

A key concept that a lot of data transformations in jamovi rely on is the idea of a logical value.
A logical value is an assertion about whether something is true or false. This is implemented in
jamovi in a pretty straightforward way. There are two logical values, namely TRUE and FALSE.
Despite the simplicity, logical values are very useful things. Let’s see how they work.

6.2.1 Assessing mathematical truths

In George Orwell’s classic book 1984 one of the slogans used by the totalitarian Party was “two
plus two equals five”. The idea being that the political domination of human freedom becomes
complete when it is possible to subvert even the most basic of truths. It’s a terrifying thought,
especially when the protagonist Winston Smith finally breaks down under torture and agrees
to the proposition. “Man is infinitely malleable”, the book says. I'm pretty sure that this isn’t
true of humans? and it’s definitely not true of jamovi. jamovi is not infinitely malleable, it has
rather firm opinions on the topic of what is and isn’t true, at least as regards basic mathematics.
If T ask it to calculate 2 + 23, it always gives the same answer, and it’s not bloody 5!

Of course, so far jamovi is just doing the calculations. I haven’t asked it to explicitly assert
that 2 + 2 = 4 is a true statement. If I want jamovi to make an explicit judgement, I can use a
command like this: 2 + 2 ==

What I've done here is use the equality operator, ==, to force jamovi to make a “true or
false” judgement.* Okay, let’s see what jamovi thinks of the Party slogan, so type this into the
compute new variable ‘formula’ box:

2+ 2 ==

And what do you get? It should be a whole set of ‘false’ values in the spreadsheet column for
your newly computed variable. Booyah! Freedom and ponies for alll Or something like that.

21 offer up my teenage attempts to be “cool” as evidence that some things just can’t be done.

3You can do this in the Compute new variable screen, though just calculating 2 + 2 for every cell of a new
variable is not very useful!

4Note that this is a very different operator to the equals operator =. A common typo that people make when
trying to write logical commands in jamovi (or other languages, since the “= versus ==" distinction is important
in many computer and statistical programs) is to accidentally type = when you really mean ==. Be especially
cautious with this, I’ve been programming in various languages since I was a teenager and I still screw this up a
lot. Hmm. I think I see why I wasn’t cool as a teenager. And why I’'m still not cool.
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Anyway, it was worth having a look at what happens if I try to force jamovi to believe that
two plus two is five by making a statement like 2 + 2 = 5. I know that if I do this in another
program, say R, then it throws up an error message. But wait, if you do this in jamovi you get a
whole set of ‘false’ values. So what is going on? Well, it seems that jamovi is being pretty smart
and realises that you are testing whether it is TRUE or FALSE that 2 + 2 = 5, regardless of

4 7

whether you use the correct equality operator, ==, or the equals sign “=".

6.2.2 Logical operations

So now we’ve seen logical operations at work. But so far we’ve only seen the simplest possible
example. You probably won’t be surprised to discover that we can combine logical operations
with other operations and functions in a more complicated way, like this:

3*%3 + 4x%x4 == b5x5
or this
SQRT(25) ==

Not only that, but as Table 6.1 illustrates, there are several other logical operators that you
can use corresponding to some basic mathematical concepts. Hopefully these are all pretty self-
explanatory. For example, the less than operator < checks to see if the number on the left is
less than the number on the right. If it’s less, then jamovi returns an answer of TRUE, but if the
two numbers are equal, or if the one on the right is larger, then jamovi returns an answer of
FALSE.

In contrast, the less than or equal to operator <= will do exactly what it says. It returns
a value of TRUE if the number of the left hand side is less than or equal to the number on the
right hand side. At this point I hope it’s pretty obvious what the greater than operator > and
the greater than or equal to operator >= do!

Next on the list of logical operators is the not equal to operator != which, as with all the
others, does what it says it does. It returns a value of TRUE when things on either side are not
identical to each other. Therefore, since 2 + 2 isn’t equal to 5, we would get ‘true’ as the value
for our newly computed variable. Try it and see:

2+21=5

We’re not quite done yet. There are three more logical operations that are worth knowing
about, listed in Table 6.2. These are the not operator !, the and operator and, and the or
operator or. Like the other logical operators, their behaviour is more or less exactly what you’d
expect given their names. For instance, if I ask you to assess the claim that “either 2 + 2 = 4
or 2+ 2 = 5" you’d say that it’s true. Since it’s an “either-or” statement, all we need is for one
of the two parts to be true. That’s what the or operator does: °

5Now, here’s a quirk in jamovi. When you have simple logical expressions like the ones we have already met, e.g.
2 + 2 == b then jamovi neatly states ‘false’ (or ‘true’) in the corresponding spreadsheet column. Underneath
the hood, jamovi stores ‘false’ as 0 and ‘true’ as 1. When we have more complex logical expressions, such as
(2+2 == 4) or (2+2 == b5), then jamovi just displays either O or 1, depending whether the logical expression
is evaluated as false, or true.

- 102 -



Table 6.1: Some logical operators. Technically I should be calling these “binary relational
operators”, but quite frankly I don’t want to. It’s my book so no-one can make me.

operation operator | example input answer
less than < 2<3 TRUE
less than or equal to <= 2 <=2 TRUE
greater than > 2>3 FALSE
greater than or equal to >= 2 >= 2 TRUE
equal to == 2 == 3 FALSE
not equal to 1= 2 1=3 TRUE

Table 6.2: Some more logical operators.

operation operator ‘ example input answer
not NOT NOT (1==1) FALSE
or or (1==1) or (2==3) TRUE

and and (1==1) and (2==3) FALSE

(242 == 4) or (2+2 == 5)

On the other hand, if I ask you to assess the claim that “both 24+ 2 =4 and 2 + 2 = 5” you'd
say that it’s false. Since this is an and statement we need both parts to be true. And that’s
what the and operator does:

(2+2 == 4) and (242 == 5)

Finally, there’s the not operator, which is simple but annoying to describe in English. If I ask
you to assess my claim that “it is not true that 2 + 2 = 5” then you would say that my claim is
true, because actually my claim is that “2 + 2 = 5 is false”. And I’'m right. If we write this in
jamovi we use this:

NOT(2+2 == 5)

In other words, since 2+2 == 5 is a FALSE statement, it must be the case that NOT(2+2 == 5) is
a TRUE one. Essentially, what we’ve really done is claim that “not false” is the same thing as
“true”. Obviously, this isn’t really quite right in real life. But jamovi lives in a much more black
or white world. For jamovi everything is either true or false. No shades of grey are allowed.

Of course, in our 2 + 2 = 5 example, we didn’t really need to use the “not” operator NOT and
the “equals to” operator == as two separate operators. We could have just used the “not equals
to” operator != like this:
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2+2 1= 5

6.2.3 Applying logical operation to text

I also want to briefly point out that you can apply these logical operators to text as well
as to logical data. It’s just that we need to be a bit more careful in understanding how jamovi
interprets the different operations. In this section I'll talk about how the equal to operator ==
applies to text, since this is the most important one. Obviously, the not equal to operator !=
gives the exact opposite answers to == so I'm implicitly talking about that one too, but I won’t
give specific commands showing the use of !=.

Okay, let’s see how it works. In one sense, it’s very simple. For instance, I can ask jamovi if
the word "cat" is the same as the word "dog", like this:

"cat" == "dOg"

That’s pretty obvious, and it’s good to know that even jamovi can figure that out. Similarly,
jamovi does recognise that a "cat" is a "cat":

"cat" == "cat"

Again, that’s exactly what we’d expect. However, what you need to keep in mind is that jamovi
is not at all tolerant when it comes to grammar and spacing. If two strings differ in any way
whatsoever, jamovi will say that they’re not equal to each other, as with the following:

" cat" == "cat"
"cat" == "CAT"
"cat" == "¢ a t"

You can also use other logical operators too. For instance jamovi also allows you to use the <
and > operators to determine which of two text ‘strings’ comes first, alphabetically speaking.
Sort of. Actually, it’s a bit more complicated than that, but let’s start with a simple example:

llcatll < I|dogl|

In jamovi, this example evaluates to ‘true’. This is because "cat" does does come before "dog"
alphabetically, so jamovi judges the statement to be true. However, if we ask jamovi to tell us
if "cat" comes before "anteater" then it will evaluate the expression as false. So far, so good.
But text data is a bit more complicated than the dictionary suggests. What about "cat" and
"CAT"? Which of these comes first? Try it and find out:

IICATII < "cat"

This in fact evaluates to ‘true’. In other words, jamovi assumes that uppercase letters come
before lowercase ones. Fair enough. No-one is likely to be surprised by that. What you might find
surprising is that jamovi assumes that all uppercase letters come before all lowercase ones. That
is, while "anteater" < "zebra" is a true statement, and the uppercase equivalent "ANTEATER" <
"ZEBRA" is also true, it is not true to say that "anteater" < "ZEBRA", as the following extract
illustrates. Try this:
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Table 6.3: The ordering of various text characters used by the < and > operators. Not shown is
the “space” character, which actually comes first on the list.

P #$%& ()x+,-./ 0123456789 :;<=>70
ABCDEFGHIJKLMNOPQRSTUVWIXYZI[
abcdefghijklmnopgqrstuvwzxyzs}lt

s

"anteater" < "ZEBRA"

This evaluates to ‘false’, and this may seem slightly counterintuitive. With that in mind, it may
help to have a quick look at Table 6.3 which lists various text characters in the order that jamovi
processes them.

6.3

Transforming and recoding a variable

It’s not uncommon in real world data analysis to find that one of your variables isn’t quite
equivalent to the variable that you really want. For instance, it’s often convenient to take a
continuous-valued variable (e.g., age) and break it up into a smallish number of categories (e.g.,
younger, middle, older). At other times, you may need to convert a numeric variable into a
different numeric variable (e.g., you may want to analyse at the absolute value of the original
variable). In this section I'll describe a few key ways you can do these things in jamovi.

6.3.1 Creating a transformed variable

The first trick to discuss is the idea of transforming a variable. Taken literally, anything you
do to a variable is a transformation, but in practice what it usually means is that you apply a
relatively simple mathematical function to the original variable in order to create a new variable
that either (a) provides a better way of describing the thing you’re actually interested in, or
(b) is more closely in agreement with the assumptions of the statistical tests you want to do.
Since, at this stage, I haven’t talked about statistical tests or their assumptions, I’ll show you
an example based on the first case.

Suppose I've run a short study in which I ask 10 people a single question:

On a scale of 1 (strongly disagree) to 7 (strongly agree), to what extent do you agree
with the proposition that “Dinosaurs are awesome” ?

Now let’s load and look at the data. The data file 1ikert.omv contains a single variable that
contains raw Likert-scale responses for these 10 people. However, if you think about it, this isn’t

the best way to represent these responses. Because of the fairly symmetric way that we set up
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the response scale, there’s a sense in which the midpoint of the scale should have been coded as
0 (no opinion), and the two endpoints should be +3 (strongly agree) and —3 (strongly disagree).
By recoding the data in this way it’s a bit more reflective of how we really think about the
responses. The recoding here is pretty straightforward, we just subtract 4 from the raw scores.
In jamovi you can do this by computing a new variable: click on the ‘Data’ - ‘Compute’ button
and you will see that a new variable has been added to the spreadsheet. Let’s call this new
variable likert.centred (go ahead and type that in) and then add the following in the formula
box, like in Figure 6.5: ‘likert.raw - 4’

0@ likert
= Data Analyses :
BX B B B Ee Y B
Paste l-D Setup Compute  Transform m Delete Filters E Delete
Clipboard Variables Rows

COMPUTED VARIABLE
likert.centred

Formula | = likert.raw - 4
Retain unused levels
Jl likertraw | gl likert.cen..® & B &cC
1 1 -3
2 | 7 3 I
3 | 3 1
4| 4
5 | 4 U version 0.9.4.0
5] 4
7 | 2 -2
8 | 6 2
9 | 5 1
10 | 5 1

Figure 6.5: Creating a new computed variable in jamovi
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One reason why it might be useful to have the data in this format is that there are a lot
of situations where you might prefer to analyse the stremgth of the opinion separately from
the direction of the opinion. We can do two different transformations on this likert.centred
variable in order to distinguish between these two different concepts. First, to compute an
opinion.strength variable, we want to take the absolute value of the centred data (using the
‘ABS’ function).% In jamovi, create another new variable using the ‘Compute’ button. Name the
variable opinion.strength and this time click on the f, button next to the ‘Formula’ box. This
shows the different ‘Functions’ and ‘Variables’ that you can add to the ‘Formula’ box, so double
click on ‘ABS’ and then double click on “likert.centred’ and you will see that the ‘Formula’ box
is populated with ABS(likert.centred) and a new variable has been created in the spreadsheet
view, as in Figure 6.6

00e® likert

HX B OF & We Y S
Paste rD Setup Compute  Transform HH pelete Filters j= Delete
Clipboard Variables Rows

COMPUTED VARIABLE
opinion.strength

= ABS(likert.centred)

Formula £
Functions Variables
Math 0 likertraw
likert.centred
ABS opinion.strength (current)
EXP B
LN c

ulll likert.raw | gl likert.cen..® gl opinion.strength * & B Variable: likert.centred

1 -3 This is a data variable.

(8]

© W N DG B W
R R R A - A R
= - m N o o o = w
- = nmNo o o = w

-
=]

v

Figure 6.6: Using the f, button to select functions and variables

Second, to compute a variable that contains only the direction of the opinion and ignores the
strength, we want to calculate the ‘sign’ of the variable. In jamovi we can use the IF function to
do this. Create another new variable using the ‘Compute’ button, name this one opinion.sign,
and then type the following into the function box:

5The absolute value of a number is its distance from zero, regardless of whether it’s sign is negative or positive.
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IF(likert.centred == 0, 0, likert.centred / opinion.strength)

When done, you’ll see that all negative numbers from the likert.centred variable are con-
verted to —1, all positive numbers are converted to 1 and zero stays as 0, like so:

-1 1-1 0 0 0-1 1 1 1

Let’s break down what this ‘IF’ command is doing. In jamovi there are three parts to an ‘IF’
statement, written as 'TF(expression, value, else)’. The first part, ‘expression’ can be a logical
or mathematical statement. In our example, we have specified ‘likert.centred == 0’, which is
TRUE for values where likert.centred is zero. The next part, ‘value’, is the new value where the
expression in part one is TRUE. In our example, we have said that for all those values where
likert.centred is zero, keep them zero. In the next part, ‘else’, we can enter another logical or
mathematical statement to be used if part one evaluates to FALSE, i.e. where likert.centred
is not zero. In our example we have divided likert.centred by opinion.strength to give ‘-1’ or
‘“+1’” depending of the sign of the original value in likert.centred.”

And we’re done. We now have three shiny new variables, all of which are useful transforma-
tions of the original likert.raw data.

6.3.2 Collapsing a variable into a smaller number of discrete levels or categories

One pragmatic task that comes up quite often is the problem of collapsing a variable into a
smaller number of discrete levels or categories. For instance, suppose I'm interested in looking
at the age distribution of people at a social gathering:

60,58,24,26,34,42,31,30,33,2,9

In some situations it can be quite helpful to group these into a smallish number of categories. For
example, we could group the data into three broad categories: young (0-20), adult (21-40) and
older (41-60). This is a quite coarse-grained classification, and the labels that I've attached only
make sense in the context of this data set (e.g., viewed more generally, a 42 year old wouldn’t
consider themselves as “older”). We can slice this variable up quite easily using the jamovi
‘IEF” function that we have already used. This time we have to specify nested ‘IF’ statements,
meaning simply that IF the first logical expression is TRUE, insert a first value, but IF a second
logical expression is TRUE, insert a second value, but IF a third logical expression is TRUE,
then insert a third value. This can be written as:

IF(Age >= 0 and Age <= 20, 1,
IF(Age >= 21 and Age <= 40, 2,
IF(Age >= 41 and Age <= 60, 3 )))

Note that there are three left parentheses used during the nesting, so the whole statement
has to end with three right parentheses otherwise you will get an error message. The jamovi
screen shot for this data manipulation, along with an accompanying frequency table, is shown
in Figure 6.7

"The reason we have to use the ‘IF’ command and keep zero as zero is that you cannot just use likert.centred
/ opinion.strength to calculate the sign of likert.centred, because mathematically dividing zero by zero does not
work. Try it and see
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00@ AgeCats

= Data Analyses :
d
Add ~ Add ~
hX B B B @ Y =
Paste a Setup Compute  Transform m Delete Filters E Delete
Clipboard Variables Rows
COMPUTED VARIABLE
AgeCats
Age collapsed into three discrete groups: 0-20 (group 1), 21-40 (group 2) and 41-
60 (group 3)
= IF(Age == @ and Age <= 2@, 1, IF(Age == 21
Formula fie gr;ti)Agge <= 4@, 2, IF(Age >=41 and Agge <=60,
Retain unused levels
Wl Age ol AgeCats ® | & B
T 60 s Descriptives
2 58 3
3 24 2 Descriptives
4 26 2 AgeCats
5 34 2 N "
6 42 3 Missing 0
7 31 2 Mean 2.09
8 30 2 Median 2
g 33 2 Minimum 1
Maximum 3
10 2 1
1 9 1
Frequencies
Frequencies of AgeCats
Levels Counts % of Total Cumulative %
1 2 18% 18%
2 6 55% 73%
3 27 % 100%

Figure 6.7: Collapsing a variable into a smaller number of discrete levels using the jamovi ‘IF’
function

It’s important to take the time to figure out whether or not the resulting categories make any
sense at all in terms of your research project. If they don’t make any sense to you as meaningful
categories, then any data analysis that uses those categories is likely to be just as meaningless.
More generally, in practice I've noticed that people have a very strong desire to carve their
(continuous and messy) data into a few (discrete and simple) categories, and then run analyses
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using the categorised data instead of the original data.® T wouldn’t go so far as to say that this
is an inherently bad idea, but it does have some fairly serious drawbacks at times, so I would
advise some caution if you are thinking about doing it.

6.3.3 Creating a transformation that can be applied to multiple variables

Sometimes you want to apply the same transformation to more than one variable, for example
when you have multiple questionnaire items that all need to be recalculated or recoded in the
same way. And one of the neat features in jamovi is that you can create a transformation, using
the ‘Data’ - ‘Transform’ button, that can then be saved and applied to multiple variables. Let’s
go back to the first example above, using the data file likert.omv that contains a single variable
with raw Likert-scale responses for 10 people. To create a transformation that you can save and
then apply across multiple variables (assuming you had more variables like this in your data
file), first in the spreadsheet editor select (i.e., click) the variable you want to use to initially
create the transformation. In our example this is likert.raw. Next click the ‘Transform’ button
in the jamovi ‘Data’ ribbon, and you’ll see something like Figure 6.8.

Give your new variable a name, let’s call it opinion.strength and then click on the ‘using
transform’ selection box and select ‘Create New Transform...”. This is where you will create,
and name, the transformation that can be re-applied to as many variables as you like. The
transformation is automatically named for us as ‘Transform 1’ (imaginative, huh. You can
change this if you like). Then type the expression “ABS($source - 4)” into the function text
box, as in Figure 6.9, press Enter or Return on your keyboard and, hey presto, you have created
a new transformation and applied it to the likert.raw variable! Good, eh. Note that instead of
using the variable label in the expression, we have instead used ‘$source’. This is so that we can
then use the same transformation with as many different variables as we like - jamovi requires
you to use ‘$source’ to refer to the source variable you are transforming. Your transformation
has also been saved and can be re-used any time you like (providing you save the dataset as an
‘.omv’ file, otherwise you'll lose it!).

You can also create a transformation with the second example we looked at, the age dis-
tribution of people at a social gathering. Go on, you know you want to! Remember that we
collapsed this variable into three groups: younger, adult and older. This time we will achieve
the same thing, but using the jamovi ‘Transform’ - ‘Add condition’ button. With this data set
(go back to it or create it again if you didn’t save it) set up a new variable transformation. Call
the transformed variable AgeCats and the transformation you will create Agegroupings. Then
click on the big “+” sign next to the function box. This is the ‘Add condition’ button and I've
stuck a big red arrow onto Figure 6.10 so you can see exactly where this is. Re-create the trans-
formation shown in Figure 6.10 and when you have done, you will see the new values appear

81f you’ve read further into the book, and are re-reading this section, then a good example of this would be
someone choosing to do an ANOVA using AgeCats as the grouping variable, instead of running a regression using
Age as a predictor. There are sometimes good reasons for doing this. For instance, if the relationship between
Age and your outcome variable is highly non-linear and you aren’t comfortable with trying to run non-linear
regression! However, unless you really do have a good rationale for doing this, it’s best not to. It tends to
introduce all sorts of other problems (e.g., the data will probably violate the normality assumption) and you can
lose a lot of statistical power.
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00e likert

= Data Analyses A
BK g g % B Y S

Paste n| Setup  Compute Transform I Delete Filters [ Delete

Clipboard Variables Rows

TRANSFORMED VARIABLE

opinion.strength

Source variable il
using transform Edit...

None

Create New Transform...

Retain unused levels

ol likert.raw ol opinion.strength . & B
1 1
2 | 7
3| 3
4 | 4
5 | 4
6 | 4
7 | 2 version 0.9.4.0
8 | 6
9 | 5
10 | 5

Figure 6.8: Creating a new variable transformation using the jamovi ‘Transform’ command
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® OO likert

= Data Analyses
X [ Add - Add -
he B H % & Y =
Paste O Setup Compute  Transform m Delete Filters E Delete

Clipboard Variables Rows
TRANSFORMED VARIABLE
® TRANSFORM

Transform 1

== /- = ABS($source - 4)

Functions Variables
Math § ssource
likert.raw

ABS opinion.strength

EXP B

LN c

LOG10

ol likert.raw gl opinion.strength ® & B Keyword: $source
1 N 1 The current value of the variable to which this transform is applied.
2 7
& 3 1
4 4 0
5 4 0
6 4 0
7 2 2
8 6 2 .
version 0.9.4.0

9 5 1
10 5 1

Figure 6.9: Specifying a transformation in jamovi, to be saved as the imaginatively named
‘Transform 1’

in the spreadsheet window. What’s more, the Agegroupings transformation has been saved and
can be re-applied any time you like. Ok, so I know that it’s unlikely you will have more than
one ‘Age’ variable, but you get the idea now of how to set up transformations in jamovi, so you
can follow this idea with other sorts of variables. A typical scenario for this is when you have a
questionnaire scale with, say, 20 items (variables) and each item was originally scored from 1 to
6 but, for some reason or quirk of the data you decide to recode all the items as 1 to 3. You can
easily do this in jamovi by creating and then re-applying your transformation for each variable
that you want to recode.
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(- NON ) AgeCats

Data Analyses
X [ Add ~ Add -
hX B OE % @ Y H
Paste 0 Setup Compute  Transform m Delete Filters E Delete
Clipboard Variables Rows
TRANSFORMED VARIABLE
® TRANSFORM
Agegroupings
+ f,-  if tsource <= 20 use 'young'
f,-  if ‘source <= 40 use 'adult’

f,~ else use 'older'

This transform is being used by 1 variable

ol Age «l AgeCats ° &8
1 60 | old g
loder | Descriptives
2 58 older
3 24 adult Descriptives
4 26 adult AgeCats
5 34 adult
1
6 42 older N
Missing 0
7 31 adult
Mean
8 30 adult Median
9 33 adult Minimum
10 2 young Maximum
1 9 young
Frequencies
Frequencies of AgeCats
Levels Counts % of Total Cumulative %
young 2 18% 18%
adult 6 55% 73%
older 3 27% 100%

Figure 6.10: jamovi transformation into three age categories, using the ‘Add condition’ button
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Table 6.4: Some of the mathematical functions available in jamovi

function example input (answer)
square root SQRT (x) SQRT(25)
absolute value ABS (%) ABS(-23) 23
logarithm (base 10) | L0G10(x) L0G10(1000) 3
logarithm (base e) | LN(x) LN (1000) 6.908
exponentiation EXP(x) EXP(6.908) 1000.245
box-cox BOXCOX(x, lamda) BOXCOX(6.908, 3)  109.551

6.4

A few more mathematical functions and operations

In Section 6.3 I discussed the ideas behind variable transformations and showed that a lot
of the transformations that you might want to apply to your data are based on fairly simple
mathematical functions and operations. In this section I want to return to that discussion and
mention several other mathematical functions and arithmetic operations that are actually quite
useful for a lot of real world data analysis. Table 6.4 gives a brief overview of the various
mathematical functions I want to talk about here, or later.” Obviously this doesn’t even come
close to cataloguing the range of possibilities available, but it does cover a range of functions
that are used regularly in data analysis and that are available in jamovi.

6.4.1 Logarithms and exponentials

As I'’ve mentioned earlier, jamovi has an useful range of mathematical functions built into it and
there really wouldn’t be much point in trying to describe or even list all of them. For the most
part, I've focused only on those functions that are strictly necessary for this book. However I
do want to make an exception for logarithms and exponentials. Although they aren’t needed
anywhere else in this book, they are everywhere in statistics more broadly. And not only that,
there are a lot of situations in which it is convenient to analyse the logarithm of a variable (i.e.,
to take a “log-transform” of the variable). I suspect that many (maybe most) readers of this
book will have encountered logarithms and exponentials before, but from past experience I know
that there’s a substantial proportion of students who take a social science statistics class who
haven’t touched logarithms since high school, and would appreciate a bit of a refresher.

In order to understand logarithms and exponentials, the easiest thing to do is to actually
calculate them and see how they relate to other simple calculations. There are three jamovi
functions in particular that I want to talk about, namely LN(), L0OG10() and EXP(). To start with,
let’s consider L0OG10(), which is known as the “logarithm in base 10”. The trick to understanding
a logarithm is to understand that it’s basically the “opposite” of taking a power. Specifically,

9We'll leave the box-cox function until later on, see page 317
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the logarithm in base 10 is closely related to the powers of 10. So let’s start by noting that
10-cubed is 1000. Mathematically, we would write this:

103 = 1000

The trick to understanding a logarithm is to recognise that the statement that “10 to the power
of 3 is equal to 1000” is equivalent to the statement that “the logarithm (in base 10) of 1000 is
equal to 3”. Mathematically, we write this as follows,

Okay, since the L0G10() function is related to the powers of 10, you might expect that there
are other logarithms (in bases other than 10) that are related to other powers too. And of course
that’s true: there’s not really anything mathematically special about the number 10. You and I
happen to find it useful because decimal numbers are built around the number 10, but the big bad
world of mathematics scoffs at our decimal numbers. Sadly, the universe doesn’t actually care
how we write down numbers. Anyway, the consequence of this cosmic indifference is that there’s
nothing particularly special about calculating logarithms in base 10. You could, for instance,
calculate your logarithms in base 2. Alternatively, a third type of logarithm, and one we see a
lot more of in statistics than either base 10 or base 2, is called the natural logarithm, and
corresponds to the logarithm in base e. Since you might one day run into it, I'd better explain
what e is. The number e, known as Euler’s number, is one of those annoying “irrational”
numbers whose decimal expansion is infinitely long, and is considered one of the most important
numbers in mathematics. The first few digits of e are:

e = 2.718282

There are quite a few situation in statistics that require us to calculate powers of e, though none
of them appear in this book. Raising e to the power z is called the exponential of x, and so
it’s very common to see e* written as exp(x). And so it’s no surprise that jamovi has a function
that calculates exponentials, called EXP(). Because the number e crops up so often in statistics,
the natural logarithm (i.e., logarithm in base e) also tends to turn up. Mathematicians often
write it as log,(z) or In(x). In fact, jamovi works the same way: the LN() function corresponds
to the natural logarithm.

And with that, I think we’ve had quite enough exponentials and logarithms for this book!

6.5
Extracting a subset of the data

One very important kind of data handling is being able to extract a particular subset of the
data. For instance, you might be interested only in analysing the data from one experimental
condition, or you may want to look closely at the data from people over 50 years in age. To
do this, the first step is getting jamovi to filter the subset of the data corresponding to the
observations that you’re interested in.
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This section returns to the nightgarden.csv data set. If you're reading this whole chapter
in one sitting, then you should already have this data set loaded into a jamovi window. For
this section, let’s focus on the two variables speaker and utterance (see Section 6.1 if you've
forgotten what those variables look like). Suppose that what I want to do is pull out only those
utterances that were made by Makka-Pakka. To that end, we need to specify a filter in jamovi.
First open up a filter window by clicking on ‘Filters’ on the main jamovi ‘Data’ toolbar. Then,
in the ‘Filter 1’ text box, next to the ‘=’ sign, type the following:

speaker == ’makka-pakka’

‘oo e jamovi
= Data Analyses
E'_:# HE Add ~ Y = Add ~
] Setup HE pelete Filters [ Delete
Clipboard Variables Rows
ROW FILTERS
+ Filter 1 active | X
104 /.~ = speaker == 'makka-pakka' +
Filter 1 & ID &5 speaker &5 utterance R
o — = = Descriptives
2 x »
Descriptives
3 X
speaker
4 %
5 x N 4
Missing 0
© X Mean
7 7 makka-pakka  pip Median
8 8 makka-pakka pip Minimum
9 9 makka-pakka  onk Maximum
10 10 makka-pakka  onk

Frequencies

Frequencies of speaker

Levels Counts % of Total Cumulative %

makka-pakka 4 100% 100%

Figure 6.11: Creating a subset of the nightgarden data using the jamovi ‘Filters’ option

When you have done this, you will see that a new column has been added to the spreadsheet
window (see Figure 6.11), labelled ‘Filter 1’, with the cases where speaker is not ‘makka-pakka’
greyed-out (i.e., filtered out) and, conversely, the cases where speaker is ‘makka-pakka’ have a
green check mark indicating they are filtered in. You can test this by running ‘Exploration’ -
‘Descriptives’ - ‘Frequency tables’ for the speaker variable and seeing what that shows. Go on,
try it!

Following on from this simple example, you can also build up more complex filters using
logical expressions in jamovi. For instance, suppose I wanted to keep only those cases when the

utterance is either “pip” or “0o0”. In this case in the ‘Filter 1’ text box, next to the ‘=’ sign,
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you would type the following:

utterance == ’pip’ or utterance == ’00’

6.6

Summary

Obviously, there’s no real coherence to this chapter. It’s just a grab bag of topics and tricks
that can be handy to know about, so the best wrap up I can give here is just to repeat this list:

e Section 6.1. Tabulating data.

Section 6.2. Using logical expressions.

Section 6.3. Transforming or recoding a variable.

Section 6.4. Some useful mathematical functions.

Section 6.5. Extracting a subset of a data set.
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Part IV.

Statistical theory
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Prelude to Part IV

Part IV of the book is by far the most theoretical, focusing as it does on the theory of statistical
inference. Over the next three chapters my goal is to give you an introduction to probability
theory (Chapter 7), sampling and estimation (Chapter 8) and statistical hypothesis testing
(Chapter 9). Before we get started though, I want to say something about the big picture.
Statistical inference is primarily about learning from data. The goal is no longer merely to
describe our data but to use the data to draw conclusions about the world. To motivate the
discussion I want to spend a bit of time talking about a philosophical puzzle known as the riddle
of induction, because it speaks to an issue that will pop up over and over again throughout the
book: statistical inference relies on assumptions. This sounds like a bad thing. In everyday life
people say things like “you should never make assumptions”, and psychology classes often talk
about assumptions and biases as bad things that we should try to avoid. From bitter personal
experience I have learned never to say such things around philosophers!

On the limits of logical reasoning

The whole art of war consists in getting at what is on the other side of the hill, or,
in other words, in learning what we do not know from what we do.

— Arthur Wellesley, 1st Duke of Wellington

I am told that quote above came about as a consequence of a carriage ride across the
countryside.!® He and his companion, J. W. Croker, were playing a guessing game, each trying
to predict what would be on the other side of each hill. In every case it turned out that Wellesley
was right and Croker was wrong. Many years later when Wellesley was asked about the game
he explained that “the whole art of war consists in getting at what is on the other side of the
hill”. Indeed, war is not special in this respect. All of life is a guessing game of one form or
another, and getting by on a day to day basis requires us to make good guesses. So let’s play a
guessing game of our own.

Suppose you and I are observing the Wellesley-Croker competition and after every three hills
you and I have to predict who will win the next one, Wellesley or Croker. Let’s say that W refers
to a Wellesley victory and C refers to a Croker victory. After three hills, our data set looks like
this:

WWW

Our conversation goes like this:

1%Source: http://www.bartleby.com/344/400.html.
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YOU: Three in a row doesn’t mean much. I suppose Wellesley might be better
at this than Croker, but it might just be luck. Still, I'm a bit of a gambler.
I’ll bet on Wellesley.

ME: I agree that three in a row isn’t informative and I see no reason to prefer
Wellesley’s guesses over Croker’s. I can’t justify betting at this stage.
Sorry. No bet for me.

Your gamble paid off: three more hills go by and Wellesley wins all three. Going into the
next round of our game the score is 1-0 in favour of you and our data set looks like this:

WWW WWW

I’ve organised the data into blocks of three so that you can see which batch corresponds to the
observations that we had available at each step in our little side game. After seeing this new
batch, our conversation continues:

YOU: Six wins in a row for Duke Wellesley. This is starting to feel a bit suspi-
cious. I'm still not certain, but I reckon that he’s going to win the next
one too.

ME: I guess I don’t see that. Sure, I agree that Wellesley has won six in a row,
but I don’t see any logical reason why that means he’ll win the seventh
one. No bet.

YOU: Do you really think so? Fair enough, but my bet worked out last time
and I'm okay with my choice.

For a second time you were right, and for a second time I was wrong. Wellesley wins the
next three hills, extending his winning record against Croker to 9-0. The data set available to
us is now this:

WWW WWW WWW
And our conversation goes like this:

YOU: Okay, this is pretty obvious. Wellesley is way better at this game. We
both agree he’s going to win the next hill, right?

ME: Is there really any logical evidence for that? Before we started this game,
there were lots of possibilities for the first 10 outcomes, and I had no idea
which one to expect. WWW WWW WWW W was one possibility, but so was WCC
CWC WWC C and WWW WWW WWW C or even CCC CCC CCC C. Because I had no
idea what would happen so I’d have said they were all equally likely. I
assume you would have too, right? I mean, that’s what it means to say
you have “no idea”, isn’t it?

YOU: I suppose so.
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ME: Well then, the observations we've made logically rule out all possibilities
except two: WWW WWW WWW Cor WWW WWW WWW W. Both of these are perfectly
consistent with the evidence we’ve encountered so far, aren’t they?

YOU: Yes, of course they are. Where are you going with this?

ME: So what’s changed then? At the start of our game, you’d have agreed with
me that these are equally plausible and none of the evidence that we’ve
encountered has discriminated between these two possibilities. Therefore,
both of these possibilities remain equally plausible and I see no logical
reason to prefer one over the other. So yes, while I agree with you that
Wellesley’s run of 9 wins in a row is remarkable, I can’t think of a good
reason to think he’ll win the 10th hill. No bet.

YOU: I see your point, but I’m still willing to chance it. I’'m betting on Wellesley.

Wellesley’s winning streak continues for the next three hills. The score in the Wellesley-Croker
game is now 12-0, and the score in our game is now 3-0. As we approach the fourth round of
our game, our data set is this:

WWW WWW WWW WWW
and the conversation continues:

YOU: Oh yeah! Three more wins for Wellesley and another victory for me.
Admit it, I was right about him! I guess we’re both betting on Wellesley
this time around, right?

ME: I don’t know what to think. I feel like we’re in the same situation we
were in last round, and nothing much has changed. There are only two
legitimate possibilities for a sequence of 13 hills that haven’t already been
ruled out, WWW WWW WWW WWW C and WWW WWW WWW WWW W. It’s just like I
said last time. If all possible outcomes were equally sensible before the
game started, shouldn’t these two be equally sensible now given that our
observations don’t rule out either one? I agree that it feels like Wellesley
is on an amazing winning streak, but where’s the logical evidence that the
streak will continue?

YOU: I think you’re being unreasonable. Why not take a look at our scorecard,
if you need evidence? You're the expert on statistics and you’ve been using
this fancy logical analysis, but the fact is you’re losing. I'm just relying on
common sense and I’'m winning. Maybe you should switch strategies.

ME: Hmm, that is a good point and I don’t want to lose the game, but I'm
afraid I don’t see any logical evidence that your strategy is better than
mine. It seems to me that if there were someone else watching our game,
what they’d have observed is a run of three wins to you. Their data would
look like this: YYY. Logically, I don’t see that this is any different to our
first round of watching Wellesley and Croker. Three wins to you doesn’t
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seem like a lot of evidence, and I see no reason to think that your strategy
is working out any better than mine. If I didn’t think that WWW was good
evidence then for Wellesley being better than Croker at their game, surely
I have no reason now to think that YYY is good evidence that you're better
at ours?

YOU: Okay, now I think you’re being a jerk.

ME: I don’t see the logical evidence for that.

Learning without making assumptions is a myth

There are lots of different ways in which we could dissect this dialogue, but since this is a
statistics book pitched at psychologists and not an introduction to the philosophy and psychology
of reasoning, I'll keep it brief. What I've described above is sometimes referred to as the riddle
of induction. It seems entirely reasonable to think that a 12-0 winning record by Wellesley is
pretty strong evidence that he will win the 13th game, but it is not easy to provide a proper
logical justification for this belief. On the contrary, despite the obviousness of the answer, it’s
not actually possible to justify betting on Wellesley without relying on some assumption that
you don’t have any logical justification for.

The riddle of induction is most associated with the philosophical work of David Hume and
more recently Nelson Goodman, but you can find examples of the problem popping up in fields as
diverse as literature (Lewis Carroll) and machine learning (the “no free lunch” theorem). There
really is something weird about trying to “learn what we do not know from what we do know”.
The critical point is that assumptions and biases are unavoidable if you want to learn anything
about the world. There is no escape from this, and it is just as true for statistical inference as
it is for human reasoning. In the dialogue I was taking aim at your perfectly sensible inferences
as a human being, but the common sense reasoning that you relied on is no different to what
a statistician would have done. Your “common sense” half of the dialog relied on an implicit
assumption that there exists some difference in skill between Wellesley and Croker, and what
you were doing was trying to work out what that difference in skill level would be. My “logical
analysis” rejects that assumption entirely. All I was willing to accept is that there are sequences
of wins and losses and that I did not know which sequences would be observed. Throughout
the dialogue I kept insisting that all logically possible data sets were equally plausible at the
start of the Wellesely-Croker game, and the only way in which I ever revised my beliefs was to
eliminate those possibilities that were factually inconsistent with the observations.

That sounds perfectly sensible on its own terms. In fact, it even sounds like the hallmark
of good deductive reasoning. Like Sherlock Holmes, my approach was to rule out that which
is impossible in the hope that what would be left is the truth. Yet as we saw, ruling out the
impossible never led me to make a prediction. On its own terms everything I said in my half of
the dialogue was entirely correct. An inability to make any predictions is the logical consequence
of making “no assumptions”. In the end I lost our game because you did make some assumptions
and those assumptions turned out to be right. Skill is a real thing, and because you believed in
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the existence of skill you were able to learn that Wellesley had more of it than Croker. Had you
relied on a less sensible assumption to drive your learning you might not have won the game.

Ultimately there are two things you should take away from this. First, as I've said, you
cannot avoid making assumptions if you want to learn anything from your data. But second,
once you realise that assumptions are necessary it becomes important to make sure you make
the right ones! A data analysis that relies on few assumptions is not necessarily better than
one that makes many assumptions, it all depends on whether those assumptions are good ones
for your data. As we go through the rest of this book I’ll often point out the assumptions that
underpin a particular statistical technique, and how you can check whether those assumptions
are sensible.
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7. Introduction to probability

[God] has afforded us only the twilight . .. of Probability.
— John Locke

Up to this point in the book we’ve discussed some of the key ideas in experimental design,
and we’ve talked a little about how you can summarise a data set. To a lot of people this
is all there is to statistics: collecting all the numbers, calculating averages, drawing pictures,
and putting them all in a report somewhere. Kind of like stamp collecting but with numbers.
However, statistics covers much more than that. In fact, descriptive statistics is one of the
smallest parts of statistics and one of the least powerful. The bigger and more useful part of
statistics is that it provides information that lets you make inferences about data.

Once you start thinking about statistics in these terms, that statistics is there to help us
draw inferences from data, you start seeing examples of it everywhere. For instance, here’s a
tiny extract from a newspaper article in the Sydney Morning Herald (30 Oct 2010):

“I have a tough job,” the Premier said in response to a poll which found her government is
now the most unpopular Labor administration in polling history, with a primary vote of just
23 per cent.

This kind of remark is entirely unremarkable in the papers or in everyday life, but let’s have
a think about what it entails. A polling company has conducted a survey, usually a pretty
big one because they can afford it. I'm too lazy to track down the original survey so let’s just
imagine that they called 1000 New South Wales (NSW) voters at random, and 230 (23%) of
those claimed that they intended to vote for the Australian Labor Party (ALP). For the 2010
Federal election the Australian Electoral Commission reported 4,610,795 enrolled voters in NSW,
so the opinions of the remaining 4,609,795 voters (about 99.98% of voters) remain unknown to
us. Even assuming that no-one lied to the polling company the only thing we can say with
100% confidence is that the true ALP primary vote is somewhere between 230/4610795 (about
0.005%) and 4610025/4610795 (about 99.83%). So, on what basis is it legitimate for the polling
company, the newspaper, and the readership to conclude that the ALP primary vote is only
about 23%7?

The answer to the question is pretty obvious. If I call 1000 people at random, and 230 of
them say they intend to vote for the ALP, then it seems very unlikely that these are the only
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230 people out of the entire voting public who actually intend to vote ALP. In other words, we
assume that the data collected by the polling company is pretty representative of the population
at large. But how representative? Would we be surprised to discover that the true ALP primary
vote is actually 24%7 29%7? 37%? At this point everyday intuition starts to break down a bit.
No-one would be surprised by 24%, and everybody would be surprised by 37%, but it’s a bit
hard to say whether 29% is plausible. We need some more powerful tools than just looking at
the numbers and guessing.

Inferential statistics provides the tools that we need to answer these sorts of questions,
and since these kinds of questions lie at the heart of the scientific enterprise, they take up the
lions share of every introductory course on statistics and research methods. However, the theory
of statistical inference is built on top of probability theory. And it is to probability theory
that we must now turn. This discussion of probability theory is basically background detail.
There’s not a lot of statistics per se in this chapter, and you don’t need to understand this
material in as much depth as the other chapters in this part of the book. Nevertheless, because
probability theory does underpin so much of statistics, it’s worth covering some of the basics.

7.1
How are probability and statistics different?

Before we start talking about probability theory, it’s helpful to spend a moment thinking about
the relationship between probability and statistics. The two disciplines are closely related but
they’re not identical. Probability theory is “the doctrine of chances”. It’s a branch of mathe-
matics that tells you how often different kinds of events will happen. For example, all of these
questions are things you can answer using probability theory:

What are the chances of a fair coin coming up heads 10 times in a row?

If T roll a six sided dice twice, how likely is it that I'll roll two sixes?

How likely is it that five cards drawn from a perfectly shuffled deck will all be hearts?
What are the chances that I’ll win the lottery?

Notice that all of these questions have something in common. In each case the “truth of
the world” is known and my question relates to the “what kind of events” will happen. In the
first question I know that the coin is fair so there’s a 50% chance that any individual coin flip
will come up heads. In the second question I know that the chance of rolling a 6 on a single
die is 1 in 6. In the third question I know that the deck is shuffled properly. And in the fourth
question I know that the lottery follows specific rules. You get the idea. The critical point is
that probabilistic questions start with a known model of the world, and we use that model
to do some calculations. The underlying model can be quite simple. For instance, in the coin
flipping example we can write down the model like this:

P(heads) = 0.5

which you can read as “the probability of heads is 0.5”. As we’ll see later, in the same way that
percentages are numbers that range from 0% to 100%, probabilities are just numbers that range
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from 0 to 1. When using this probability model to answer the first question I don’t actually
know exactly what’s going to happen. Maybe I'll get 10 heads, like the question says. But
maybe I'll get three heads. That’s the key thing. In probability theory the model is known but
the data are not.

So that’s probability. What about statistics? Statistical questions work the other way
around. In statistics we do not know the truth about the world. All we have is the data and it
is from the data that we want to learn the truth about the world. Statistical questions tend to
look more like these:

e If my friend flips a coin 10 times and gets 10 heads are they playing a trick on me?
o If five cards off the top of the deck are all hearts how likely is it that the deck was shuffled?

e If the lottery commissioner’s spouse wins the lottery how likely is it that the lottery was
rigged?

This time around the only thing we have are data. What I know is that I saw my friend flip
the coin 10 times and it came up heads every time. And what I want to infer is whether or not
I should conclude that what I just saw was actually a fair coin being flipped 10 times in a row,
or whether I should suspect that my friend is playing a trick on me. The data I have look like
this:

HHHHHHHHHHH

and what I'm trying to do is work out which “model of the world” I should put my trust
in. If the coin is fair then the model I should adopt is one that says that the probability of
heads is 0.5, that is P(heads) = 0.5. If the coin is not fair then I should conclude that the
probability of heads is not 0.5, which we would write as P(heads) # 0.5. In other words, the
statistical inference problem is to figure out which of these probability models is right. Clearly,
the statistical question isn’t the same as the probability question, but they’re deeply connected
to one another. Because of this, a good introduction to statistical theory will start with a
discussion of what probability is and how it works.

7.2
What does probability mean?

Let’s start with the first of these questions. What is “probability”? It might seem surprising to
you but while statisticians and mathematicians (mostly) agree on what the rules of probability
are, there’s much less of a consensus on what the word really means. It seems weird because
we’re all very comfortable using words like “chance”, “likely”, “possible” and “probable”, and
it doesn’t seem like it should be a very difficult question to answer. But if you’ve ever had that
experience in real life you might walk away from the conversation feeling like you didn’t quite
get it right, and that (like many everyday concepts) it turns out that you don’t really know what
it’s all about.
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So TI’ll have a go at it. Let’s suppose I want to bet on a soccer game between two teams of
robots, Arduino Arsenal and C Milan. After thinking about it, I decide that there is an 80%
probability of Arduino Arsenal winning. What do I mean by that? Here are three possibilities:

e They’re robot teams so I can make them play over and over again, and if I did that Arduino
Arsenal would win 8 out of every 10 games on average.

e For any given game, I would agree that betting on this game is only “fair” if a $1 bet on
C Milan gives a $5 payoff (i.e. T get my $1 back plus a $4 reward for being correct), as
would a $4 bet on Arduino Arsenal (i.e., my $4 bet plus a $1 reward).

e My subjective “belief” or “confidence” in an Arduino Arsemal victory is four times as
strong as my belief in a C' Milan victory.

Each of these seems sensible. However, they’re not identical and not every statistician would
endorse all of them. The reason is that there are different statistical ideologies (yes, really!)
and depending on which one you subscribe to, you might say that some of those statements are
meaningless or irrelevant. In this section I give a brief introduction the two main approaches
that exist in the literature. These are by no means the only approaches, but they’re the two big
ones.

7.2.1 The frequentist view

The first of the two major approaches to probability, and the more dominant one in statistics,
is referred to as the frequentist view and it defines probability as a long-run frequency.
Suppose we were to try flipping a fair coin over and over again. By definition this is a coin that
has P(H) = 0.5. What might we observe? One possibility is that the first 20 flips might look
like this:

T,4,H,H,H,T,T,4,4,4,4,T,H,H4,T,T,T,T,T,H

In this case 11 of these 20 coin flips (55%) came up heads. Now suppose that I’d been keeping a
running tally of the number of heads (which I'll call Ng) that I've seen, across the first N flips,
and calculate the proportion of heads Ny /N every time. Here’s what I'd get (I did literally flip
coins to produce this!):

number of flips 1 2 3 4 5 6 7 8 9 10
number of heads | 0 1 2 3 4 4 4 5 6 7
proportion .00 .50 .67 .75 .80 .67 .57 .63 .67 .70

number of flips 1 12 13 14 15 16 17 18 19 20
number of heads | 8 8 9 10 10 10 10 10 10 11
proportion 13 .67 69 .71 67 .63 .59 .56 .53 .55

Notice that at the start of the sequence the proportion of heads fluctuates wildly, starting at
.00 and rising as high as .80. Later on, one gets the impression that it dampens out a bit, with
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more and more of the values actually being pretty close to the “right” answer of .50. This is the
frequentist definition of probability in a nutshell. Flip a fair coin over and over again, and as
N grows large (approaches infinity, denoted N — o0) the proportion of heads will converge to
50%. There are some subtle technicalities that the mathematicians care about, but qualitatively
speaking that’s how the frequentists define probability. Unfortunately, I don’t have an infinite
number of coins or the infinite patience required to flip a coin an infinite number of times.
However, I do have a computer and computers excel at mindless repetitive tasks. So I asked my
computer to simulate flipping a coin 1000 times and then drew a picture of what happens to
the proportion Ng/N as N increases. Actually, I did it four times just to make sure it wasn’t
a fluke. The results are shown in Figure 7.1. As you can see, the proportion of observed heads
eventually stops fluctuating and settles down. When it does, the number at which it finally
settles is the true probability of heads.

The frequentist definition of probability has some desirable characteristics. First, it is ob-
jective. The probability of an event is necessarily grounded in the world. The only way that
probability statements can make sense is if they refer to (a sequence of) events that occur in the
physical universe.! Secondly, it is unambiguous. Any two people watching the same sequence
of events unfold, trying to calculate the probability of an event, must inevitably come up with
the same answer.

However, it also has undesirable characteristics. First, infinite sequences don’t exist in the
physical world. Suppose you picked up a coin from your pocket and started to flip it. Every
time it lands it impacts on the ground. Each impact wears the coin down a bit. Eventually
the coin will be destroyed. So, one might ask whether it really makes sense to pretend that an
“infinite” sequence of coin flips is even a meaningful concept, or an objective one. We can’t
say that an “infinite sequence” of events is a real thing in the physical universe, because the
physical universe doesn’t allow infinite anything. More seriously, the frequentist definition has
a narrow scope. There are lots of things out there that human beings are happy to assign
probability to in everyday language, but cannot (even in theory) be mapped onto a hypothetical
sequence of events. For instance, if a meteorologist comes on TV and says “the probability of
rain in Adelaide on 2 November 2048 is 60%” we humans are happy to accept this. But it’s not
clear how to define this in frequentist terms. There’s only one city of Adelaide, and only one
2 November 2048. There’s no infinite sequence of events here, just a one-off thing. Frequentist
probability genuinely forbids us from making probability statements about a single event. From
the frequentist perspective it will either rain tomorrow or it will not. There is no “probability”
that attaches to a single non-repeatable event. Now, it should be said that there are some
very clever tricks that frequentists can use to get around this. One possibility is that what the
meteorologist means is something like “There is a category of days for which I predict a 60%
chance of rain, and if we look only across those days for which I make this prediction, then on
60% of those days it will actually rain”. It’s very weird and counterintuitive to think of it this
way, but you do see frequentists do this sometimes. And it will come up later in this book (see
Section 8.5).

IThis doesn’t mean that frequentists can’t make hypothetical statements, of course. It’s just that if you want
to make a statement about probability then it must be possible to redescribe that statement in terms of a sequence
of potentially observable events, together with the relative frequencies of different outcomes that appear within
that sequence.
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Figure 7.1: An illustration of how frequentist probability works. If you flip a fair coin over and
over again the proportion of heads that you’ve seen eventually settles down and converges to the
true probability of 0.5. Each panel shows four different simulated experiments. In each case we
pretend we flipped a coin 1000 times and kept track of the proportion of flips that were heads
as we went along. Although none of these sequences actually ended up with an exact value of
.5, if we’d extended the experiment for an infinite number of coin flips they would have.
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7.22 The Bayesian view

The Bayesian view of probability is often called the subjectivist view, and although it
has been a minority view among statisticians it has been steadily gaining traction for the last
several decades. There are many flavours of Bayesianism, making it hard to say exactly what
“the” Bayesian view is. The most common way of thinking about subjective probability is to
define the probability of an event as the degree of belief that an intelligent and rational agent
assigns to that truth of that event. From that perspective, probabilities don’t exist in the world
but rather in the thoughts and assumptions of people and other intelligent beings.

However, in order for this approach to work we need some way of operationalising “degree
of belief”. One way that you can do this is to formalise it in terms of “rational gambling”,
though there are many other ways. Suppose that I believe that there’s a 60% probability of
rain tomorrow. If someone offers me a bet that if it rains tomorrow then I win $5, but if it
doesn’t rain I lose $5. Clearly, from my perspective, this is a pretty good bet. On the other
hand, if T think that the probability of rain is only 40% then it’s a bad bet to take. So we
can operationalise the notion of a “subjective probability” in terms of what bets I'm willing to
accept.

What are the advantages and disadvantages to the Bayesian approach? The main advantage
is that it allows you to assign probabilities to any event you want to. You don’t need to be
limited to those events that are repeatable. The main disadvantage (to many people) is that we
can’t be purely objective. Specifying a probability requires us to specify an entity that has the
relevant degree of belief. This entity might be a human, an alien, a robot, or even a statistician.
But there has to be an intelligent agent out there that believes in things. To many people
this is uncomfortable, it seems to make probability arbitrary. Whilst the Bayesian approach
requires that the agent in question be rational (i.e., obey the rules of probability), it does allow
everyone to have their own beliefs. I can believe the coin is fair and you don’t have to, even
though we’re both rational. The frequentist view doesn’t allow any two observers to attribute
different probabilities to the same event. When that happens then at least one of them must be
wrong. The Bayesian view does not prevent this from occurring. Two observers with different
background knowledge can legitimately hold different beliefs about the same event. In short,
where the frequentist view is sometimes considered to be too narrow (forbids lots of things that
that we want to assign probabilities to), the Bayesian view is sometimes thought to be too broad
(allows too many differences between observers).

7.2.3 What'’s the difference? And who is right?

Now that you’ve seen each of these two views independently it’s useful to make sure you can
compare the two. Go back to the hypothetical robot soccer game at the start of the section.
What do you think a frequentist and a Bayesian would say about these three statements? Which
statement would a frequentist say is the correct definition of probability? Which one would a
Bayesian opt for? Would some of these statements be meaningless to a frequentist or a Bayesian?
If you’ve understood the two perspectives you should have some sense of how to answer those
questions.

Okay, assuming you understand the difference then you might be wondering which of them
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is right? Honestly, I don’t know that there is a right answer. As far as I can tell there’s nothing
mathematically incorrect about the way frequentists think about sequences of events, and there’s
nothing mathematically incorrect about the way that Bayesians define the beliefs of a rational
agent. In fact, when you dig down into the details Bayesians and frequentists actually agree
about a lot of things. Many frequentist methods lead to decisions that Bayesians agree a rational
agent would make. Many Bayesian methods have very good frequentist properties.

For the most part, I'm a pragmatist so I'll use any statistical method that I trust. As it
turns out, that makes me prefer Bayesian methods for reasons I'll explain towards the end of
the book. But I'm not fundamentally opposed to frequentist methods. Not everyone is quite so
relaxed. For instance, consider Sir Ronald Fisher, one of the towering figures of 20th century
statistics and a vehement opponent to all things Bayesian, whose paper on the mathematical
foundations of statistics referred to Bayesian probability as “an impenetrable jungle [that] arrests
progress towards precision of statistical concepts” (Fisher 1922b, p. 311). Or the psychologist
Paul Meehl, who suggests that relying on frequentist methods could turn you into “a potent but
sterile intellectual rake who leaves in his merry path a long train of ravished maidens but no
viable scientific offspring” (Meehl 1967, p. 114). The history of statistics, as you might gather,
is not devoid of entertainment.

In any case, whilst I personally prefer the Bayesian view, the majority of statistical analyses
are based on the frequentist approach. My reasoning is pragmatic. The goal of this book is to
cover roughly the same territory as a typical undergraduate stats class in psychology, and if you
want to understand the statistical tools used by most psychologists you’ll need a good grasp of
frequentist methods. I promise you that this isn’t wasted effort. Even if you end up wanting
to switch to the Bayesian perspective, you really should read through at least one book on the
“orthodox” frequentist view. Besides, I won’t completely ignore the Bayesian perspective. Every
now and then I'll add some commentary from a Bayesian point of view, and I’ll revisit the topic
in more depth in Chapter 16.

7.3
Basic probability theory

Ideological arguments between Bayesians and frequentists notwithstanding, it turns out that
people mostly agree on the rules that probabilities should obey. There are lots of different ways
of arriving at these rules. The most commonly used approach is based on the work of Andrey
Kolmogorov, one of the great Soviet mathematicians of the 20th century. I won’t go into a lot
of detail, but I'll try to give you a bit of a sense of how it works. And in order to do so I'm
going to have to talk about my trousers.

7.3.1 Introducing probability distributions

One of the disturbing truths about my life is that I only own 5 pairs of trousers. Three pairs
of jeans, the bottom half of a suit, and a pair of tracksuit pants. Even sadder, I've given them
names: I call them X;, X9, X3, X4y and X5. I really have, that’s why they call me Mister
Imaginative. Now, on any given day, I pick out exactly one of pair of trousers to wear. Not

- 134 -



even I'm so stupid as to try to wear two pairs of trousers, and thanks to years of training I
never go outside without wearing trousers anymore. If I were to describe this situation using
the language of probability theory, I would refer to each pair of trousers (i.e., each X) as an
elementary event. The key characteristic of elementary events is that every time we make
an observation (e.g., every time I put on a pair of trousers) then the outcome will be one and
only one of these events. Like I said, these days I always wear exactly one pair of trousers so
my trousers satisfy this constraint. Similarly, the set of all possible events is called a sample
space. Granted, some people would call it a “wardrobe”, but that’s because they’re refusing to
think about my trousers in probabilistic terms. Sad.

Okay, now that we have a sample space (a wardrobe), which is built from lots of possible
elementary events (trousers), what we want to do is assign a probability of one of these el-
ementary events. For an event X, the probability of that event P(X) is a number that lies
between 0 and 1. The bigger the value of P(X), the more likely the event is to occur. So, for
example, if P(X) = 0 it means the event X is impossible (i.e., I never wear those trousers). On
the other hand, if P(X) = 1 it means that event X is certain to occur (i.e., I always wear those
trousers). For probability values in the middle it means that I sometimes wear those trousers.
For instance, if P(X) = 0.5 it means that I wear those trousers half of the time.

At this point, we’re almost done. The last thing we need to recognise is that “something al-
ways happens”. Every time I put on trousers, I really do end up wearing trousers (crazy, right?).
What this somewhat trite statement means, in probabilistic terms, is that the probabilities of the
elementary events need to add up to 1. This is known as the law of total probability, not that
any of us really care. More importantly, if these requirements are satisfied then what we have
is a probability distribution. For example, this is an example of a probability distribution:

Which trousers? Label Probability

Blue jeans X1 PX;)=.5
Grey jeans Xy P(X2)=.3
Black jeans X3 P(X3)=.1
Black suit Xu P(X4) =0
Blue tracksuit Xs P(X5)=.1

Each of the events has a probability that lies between 0 and 1, and if we add up the probability
of all events they sum to 1. Awesome. We can even draw a nice bar graph (see Section 5.3)
to visualise this distribution, as shown in Figure 7.2. And, at this point, we've all achieved
something. You’ve learned what a probability distribution is, and I've finally managed to find
a way to create a graph that focuses entirely on my trousers. Everyone wins!

The only other thing that I need to point out is that probability theory allows you to talk
about non elementary events as well as elementary ones. The easiest way to illustrate the
concept is with an example. In the trousers example it’s perfectly legitimate to refer to the
probability that I wear jeans. In this scenario, the “Dan wears jeans” event is said to have
happened as long as the elementary event that actually did occur is one of the appropriate ones.
In this case “blue jeans”, “black jeans” or “grey jeans”. In mathematical terms we defined the
“jeans” event E to correspond to the set of elementary events (X1, Xo, X3). If any of these
elementary events occurs then E is also said to have occurred. Having decided to write down
the definition of the F this way, it’s pretty straightforward to state what the probability P(E)
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Figure 7.2: A visual depiction of the “trousers” probability distribution. There are five “ele-
mentary events”, corresponding to the five pairs of trousers that I own. Each event has some
probability of occurring: this probability is a number between 0 to 1. The sum of these proba-
bilities is 1.

is: we just add everything up. In this particular case
P(E) = P(X1) + P(X3) + P(X3)

and, since the probabilities of blue, grey and black jeans respectively are .5, .3 and .1, the
probability that I wear jeans is equal to .9.

At this point you might be thinking that this is all terribly obvious and simple and you’d
be right. All we’ve really done is wrap some basic mathematics around a few common sense
intuitions. However, from these simple beginnings it’s possible to construct some extremely
powerful mathematical tools. I'm definitely not going to go into the details in this book, but
what I will do is list, in Table 7.1, some of the other rules that probabilities satisfy. These rules
can be derived from the simple assumptions that I’ve outlined above, but since we don’t actually
use these rules for anything in this book I won’t do so here.
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Table 7.1: Some basic rules that probabilities must satisfy. You don’t really need to know these
rules in order to understand the analyses that we’ll talk about later in the book, but they are
important if you want to understand probability theory a bit more deeply.

English Notation Formula

not A P(—-A) = 1-P(A)

AorB P(AuB) = P(A)+P(B)—P(AnB)
Aand B P(AnB) = P(A|B)P(B)

7.4

The binomial distribution

As you might imagine, probability distributions vary enormously and there’s an enormous range
of distributions out there. However, they aren’t all equally important. In fact, the vast majority
of the content in this book relies on one of five distributions: the binomial distribution, the
normal distribution, the ¢ distribution, the x? (“chi-square”) distribution and the F distribution.
Given this, what I’ll do over the next few sections is provide a brief introduction to all five of
these, paying special attention to the binomial and the normal. I’ll start with the binomial
distribution since it’s the simplest of the five.

7.4.1 Introducing the binomial

The theory of probability originated in the attempt to describe how games of chance work, so it
seems fitting that our discussion of the binomial distribution should involve a discussion of
rolling dice and flipping coins. Let’s imagine a simple “experiment”. In my hot little hand I'm
holding 20 identical six-sided dice. On one face of each die there’s a picture of a skull, the other
five faces are all blank. If I proceed to roll all 20 dice, what’s the probability that I'll get exactly
4 skulls? Assuming that the dice are fair, we know that the chance of any one die coming up
skulls is 1 in 6. To say this another way, the skull probability for a single die is approximately
.167. This is enough information to answer our question, so let’s have a look at how it’s done.

As usual, we’ll want to introduce some names and some notation. We'll let N denote the
number of dice rolls in our experiment, which is often referred to as the size parameter of our
binomial distribution. We’ll also use 6 to refer to the the probability that a single die comes up
skulls, a quantity that is usually called the success probability of the binomial.? Finally, we’ll
use X to refer to the results of our experiment, namely the number of skulls I get when I roll

2Note that the term “success” is pretty arbitrary and doesn’t actually imply that the outcome is something
to be desired. If 0 referred to the probability that any one passenger gets injured in a bus crash I'd still call it
the success probability, but that doesn’t mean I want people to get hurt in bus crashes!
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Table 7.2: Formulas for the binomial and normal distributions. We don’t really use these
formulas for anything in this book, but they’re pretty important for more advanced work,
so I thought it might be best to put them here in a table, where they can’t get in the way
of the text. In the equation for the binomial, X! is the factorial function (i.e., multiply all
whole numbers from 1 to X), and for the normal distribution “exp” refers to the exponential
function, which we discussed in Chapter 6. If these equations don’t make a lot of sense to you,
don’t worry too much about them.

Binomial Normal
N! _ 1 X — p)?

the dice. Since the actual value of X is due to chance we refer to it as a random variable. In
any case, now that we have all this terminology and notation we can use it to state the problem
a little more precisely. The quantity that we want to calculate is the probability that X = 4
given that we know that # = .167 and N = 20. The general “form” of the thing I’'m interested
in calculating could be written as

P(X | 6,N)

and we’re interested in the special case where X = 4, § = .167 and N = 20. There’s only one
more piece of notation I want to refer to before moving on to discuss the solution to the problem.
If T want to say that X is generated randomly from a binomial distribution with parameters 6
and IV, the notation I would use is as follows:

X ~ Binomial(#, N)

Yeah, yeah. I know what you’re thinking: notation, notation, notation. Really, who cares? Very
few readers of this book are here for the notation, so I should probably move on and talk about
how to use the binomial distribution. I've included the formula for the binomial distribution
in Table 7.2, since some readers may want to play with it themselves, but since most people
probably don’t care that much and because we don’t need the formula in this book, I won’t talk
about it in any detail. Instead, I just want to show you what the binomial distribution looks
like.

To that end, Figure 7.3 plots the binomial probabilities for all possible values of X for our
dice rolling experiment, from X = 0 (no skulls) all the way up to X = 20 (all skulls). Note
that this is basically a bar chart, and is no different to the “trousers probability” plot I drew in
Figure 7.2. On the horizontal axis we have all the possible events, and on the vertical axis we
can read off the probability of each of those events. So, the probability of rolling 4 skulls out
of 20 is about 0.20 (the actual answer is 0.2022036, as we’ll see in a moment). In other words,
you’d expect that to happen about 20% of the times you repeated this experiment.

To give you a feel for how the binomial distribution changes when we alter the values of 6 and
N, let’s suppose that instead of rolling dice I'm actually flipping coins. This time around, my
experiment involves flipping a fair coin repeatedly and the outcome that I'm interested in is the
number of heads that I observe. In this scenario, the success probability is now § = 1/2. Suppose
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Figure 7.3: The binomial distribution with size parameter of N = 20 and an underlying success
probability of # = 1/6. Each vertical bar depicts the probability of one specific outcome (i.e.,
one possible value of X). Because this is a probability distribution, each of the probabilities
must be a number between 0 and 1, and the heights of the bars must sum to 1 as well.

I were to flip the coin N = 20 times. In this example, I've changed the success probability but
kept the size of the experiment the same. What does this do to our binomial distribution?
Well, as Figure 7.4a shows, the main effect of this is to shift the whole distribution, as you’d
expect. Okay, what if we flipped a coin N = 100 times? Well, in that case we get Figure 7.4b.
The distribution stays roughly in the middle but there’s a bit more variability in the possible
outcomes.

75
The normal distribution

While the binomial distribution is conceptually the simplest distribution to understand, it’s not
the most important one. That particular honour goes to the normal distribution, also referred
to as “the bell curve” or a “Gaussian distribution”. A normal distribution is described using
two parameters: the mean of the distribution p and the standard deviation of the distribution
.
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Figure 7.4: Two binomial distributions, involving a scenario in which I'm flipping a fair coin,
so the underlying success probability is § = 1/2. In panel (a), we assume I'm flipping the coin
N = 20 times. In panel (b) we assume that the coin is flipped N = 100 times.
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Figure 7.5: The normal distribution with mean p = 0 and standard deviation ¢ = 1. The z-axis
corresponds to the value of some variable, and the y-axis tells us something about how likely
we are to observe that value. However, notice that the y-axis is labelled “Probability Density”
and not “Probability”. There is a subtle and somewhat frustrating characteristic of continuous
distributions that makes the y axis behave a bit oddly: the height of the curve here isn’t actually
the probability of observing a particular x value. On the other hand, it is true that the heights
of the curve tells you which x values are more likely (the higher ones!). (see Section 7.5.1 for all
the annoying details)

The notation that we sometimes use to say that a variable X is normally distributed is as
follows:
X ~ Normal(p, o)

Of course, that’s just notation. It doesn’t tell us anything interesting about the normal
distribution itself. As was the case with the binomial distribution, I have included the formula
for the normal distribution in this book, because I think it’s important enough that everyone
who learns statistics should at least look at it, but since this is an introductory text I don’t want
to focus on it, so I've tucked it away in Table 7.2.

Instead of focusing on the maths, let’s try to get a sense for what it means for a variable to be
normally distributed. To that end, have a look at Figure 7.5 which plots a normal distribution
with mean p = 0 and standard deviation ¢ = 1. You can see where the name “bell curve”
comes from; it looks a bit like a bell. Notice that, unlike the plots that I drew to illustrate
the binomial distribution, the picture of the normal distribution in Figure 7.5 shows a smooth
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Figure 7.6: An illustration of what happens when you change the mean of a normal distribution.
The solid line depicts a normal distribution with a mean of ;4 = 4. The dashed line shows a
normal distribution with a mean of u = 7. In both cases, the standard deviation is ¢ = 1. Not
surprisingly, the two distributions have the same shape, but the dashed line is shifted to the
right.

curve instead of “histogram-like” bars. This isn’t an arbitrary choice, the normal distribution
is continuous whereas the binomial is discrete. For instance, in the die rolling example from
the last section it was possible to get 3 skulls or 4 skulls, but impossible to get 3.9 skulls. The
figures that I drew in the previous section reflected this fact. In Figure 7.3, for instance, there’s
a bar located at X = 3 and another one at X = 4 but there’s nothing in between. Continuous
quantities don’t have this constraint. For instance, suppose we’re talking about the weather.
The temperature on a pleasant Spring day could be 23 degrees, 24 degrees, 23.9 degrees, or
anything in between since temperature is a continuous variable. And so a normal distribution
might be quite appropriate for describing Spring temperatures.?

With this in mind, let’s see if we can’t get an intuition for how the normal distribution
works. First, let’s have a look at what happens when we play around with the parameters of
the distribution. To that end, Figure 7.6 plots normal distributions that have different means

3In practice, the normal distribution is so handy that people tend to use it even when the variable isn’t actually
continuous. As long as there are enough categories (e.g., Likert scale responses to a questionnaire), it’s pretty
standard practice to use the normal distribution as an approximation. This works out much better in practice
than you’d think.
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Figure 7.7: An illustration of what happens when you change the the standard deviation of a
normal distribution. Both distributions plotted in this figure have a mean of ;1 = 5, but they have
different standard deviations. The solid line plots a distribution with standard deviation o = 1,
and the dashed line shows a distribution with standard deviation o = 2. As a consequence, both
distributions are “centred” on the same spot, but the dashed line is wider than the solid one.

but have the same standard deviation. As you might expect, all of these distributions have
the same “width”. The only difference between them is that they’ve been shifted to the left or
to the right. In every other respect they’re identical. In contrast, if we increase the standard
deviation while keeping the mean constant, the peak of the distribution stays in the same place
but the distribution gets wider, as you can see in Figure 7.7. Notice, though, that when we
widen the distribution the height of the peak shrinks. This has to happen, in the same way
that the heights of the bars that we used to draw a discrete binomial distribution have to sum
to 1, the total area under the curve for the normal distribution must equal 1. Before moving
on, I want to point out one important characteristic of the normal distribution. Irrespective
of what the actual mean and standard deviation are, 68.3% of the area falls within 1 standard
deviation of the mean. Similarly, 95.4% of the distribution falls within 2 standard deviations of
the mean, and 99.7% of the distribution is within 3 standard deviations. This idea is illustrated
in Figure 7.8.
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Figure 7.8: The area under the curve tells you the probability that an observation falls within
a particular range. The solid lines plot normal distributions with mean p = 0 and standard
deviation ¢ = 1. The shaded areas illustrate “areas under the curve” for two important cases.
In panel a, we can see that there is a 68.3% chance that an observation will fall within one
standard deviation of the mean. In panel b, we see that there is a 95.4% chance that an
observation will fall within two standard deviations of the mean.

Shaded Area = 15.9% Shaded Area = 34.1%
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Figure 7.9: Two more examples of the “area under the curve idea”. There is a 15.9% chance that
an observation is one standard deviation below the mean or smaller (panel a), and a 34.1% chance
that the observation is somewhere between one standard deviation below the mean and the mean
(panel b). Notice that if you add these two numbers together you get 15.9% + 34.1% = 50%.
For normally distributed data, there is a 50% chance that an observation falls below the mean.
And of course that also implies that there is a 50% chance that it falls above the mean.
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7.5.1 Probability density

There’s something I've been trying to hide throughout my discussion of the normal distribu-
tion, something that some introductory textbooks omit completely. They might be right to do
so. This “thing” that I'm hiding is weird and counter-intuitive even by the admittedly distorted
standards that apply in statistics. Fortunately, it’s not something that you need to understand
at a deep level in order to do basic statistics. Rather, it’s something that starts to become
important later on when you move beyond the basics. So, if it doesn’t make complete sense,
don’t worry too much, but try to make sure that you follow the gist of it.

Throughout my discussion of the normal distribution there’s been one or two things that
don’t quite make sense. Perhaps you noticed that the y-axis in these figures is labelled “Proba-
bility Density” rather than density. Maybe you noticed that I used p(X) instead of P(X) when
giving the formula for the normal distribution.

As it turns out, what is presented here isn’t actually a probability, it’s something else. To
understand what that something is you have to spend a little time thinking about what it really
means to say that X is a continuous variable. Let’s say we’re talking about the temperature
outside. The thermometer tells me it’s 23 degrees, but I know that’s not really true. It’s not
exactly 23 degrees. Maybe it’s 23.1 degrees, I think to myself. But I know that that’s not really
true either because it might actually be 23.09 degrees. But I know that... well, you get the idea.
The tricky thing with genuinely continuous quantities is that you never really know exactly what
they are.

Now think about what this implies when we talk about probabilities. Suppose that tomor-
row’s maximum temperature is sampled from a normal distribution with mean 23 and standard
deviation 1. What’s the probability that the temperature will be exactly 23 degrees? The answer
is “zero”, or possibly “a number so close to zero that it might as well be zero”. Why is this?
It’s like trying to throw a dart at an infinitely small dart board. No matter how good your aim,
you’ll never hit it. In real life you’ll never get a value of exactly 23. It’ll always be something
like 23.1 or 22.99998 or suchlike. In other words, it’s completely meaningless to talk about
the probability that the temperature is exactly 23 degrees. However, in everyday language if I
told you that it was 23 degrees outside and it turned out to be 22.9998 degrees you probably
wouldn’t call me a liar. Because in everyday language “23 degrees” usually means something
like “somewhere between 22.5 and 23.5 degrees”. And while it doesn’t feel very meaningful to
ask about the probability that the temperature is exactly 23 degrees, it does seem sensible to
ask about the probability that the temperature lies between 22.5 and 23.5, or between 20 and
30, or any other range of temperatures.

The point of this discussion is to make clear that when we're talking about continuous
distributions it’s not meaningful to talk about the probability of a specific value. However, what
we can talk about is the probability that the value lies within a particular range of values. To
find out the probability associated with a particular range what you need to do is calculate the
“area under the curve”. We’ve seen this concept already, in Figure 7.8 the shaded areas shown
depict genuine probabilities (e.g., in Figure 7.8a it shows the probability of observing a value
that falls within 1 standard deviation of the mean).

Okay, so that explains part of the story. I've explained a little bit about how continuous
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probability distributions should be interpreted (i.e., area under the curve is the key thing). But
what does the formula for p(x) that I described earlier actually mean? Obviously, p(x) doesn’t
describe a probability, but what is it? The name for this quantity p(x) is a probability density,
and in terms of the plots we’ve been drawing it corresponds to the height of the curve. The
densities themselves aren’t meaningful in and of themselves, but they’re “rigged” to ensure that
the area under the curve is always interpretable as genuine probabilities. To be honest, that’s
about as much as you really need to know for now.*

7.6

Other useful distributions

The normal distribution is the distribution that statistics makes most use of (for reasons to be
discussed shortly), and the binomial distribution is a very useful one for lots of purposes. But
the world of statistics is filled with probability distributions, some of which we’ll run into in
passing. In particular, the three that will appear in this book are the ¢ distribution, the x?
distribution and the F' distribution. I won’t give formulas for any of these, or talk about them
in too much detail, but I will show you some pictures.

0.4

0.3

Probability Density
0.2

0.1

0.0

Observed Value

Figure 7.10: A t distribution with 3 degrees of freedom (solid line). It looks similar to a normal
distribution, but it’s not quite the same. For comparison purposes I've plotted a standard
normal distribution as the dashed line.

4For those readers who know a little calculus, T’ll give a slightly more precise explanation. In the same way
that probabilities are non-negative numbers that must sum to 1, probability densities are non-negative numbers
that must integrate to 1 (where the integral is taken across all possible values of X). To calculate the probability
that X falls between a and b we calculate the definite integral of the density function over the corresponding
range, S{bl p(x) dz. If you don’t remember or never learned calculus, don’t worry about this. It’s not needed for
this book.
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Figure 7.11: A x? distribution with 3 degrees of freedom. Notice that the observed values must
always be greater than zero, and that the distribution is pretty skewed. These are the key
features of a chi-square distribution.
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Figure 7.12: An F distribution with 3 and 5 degrees of freedom. Qualitatively speaking, it looks
pretty similar to a chi-square distribution, but they’re not quite the same in general.
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e The t distribution is a continuous distribution that looks very similar to a normal dis-
tribution, see Figure 7.10. Note that the “tails” of the ¢ distribution are “heavier” (i.e.,
extend further outwards) than the tails of the normal distribution). That’s the impor-
tant difference between the two. This distribution tends to arise in situations where you
think that the data actually follow a normal distribution, but you don’t know the mean
or standard deviation. We’ll run into this distribution again in Chapter 11.

e The \? distribution is another distribution that turns up in lots of different places. The
situation in which we’ll see it is when doing categorical data analysis (Chapter 10), but
it’s one of those things that actually pops up all over the place. When you dig into the
maths (and who doesn’t love doing that?), it turns out that the main reason why the
x? distribution turns up all over the place is that if you have a bunch of variables that
are normally distributed, square their values and then add them up (a procedure referred
to as taking a “sum of squares”), this sum has a x? distribution. You’d be amazed how
often this fact turns out to be useful. Anyway, here’s what a x? distribution looks like:
Figure 7.11.

e The F distribution looks a bit like a x? distribution, and it arises whenever you need to
compare two 2 distributions to one another. Admittedly, this doesn’t exactly sound like
something that any sane person would want to do, but it turns out to be very important
in real world data analysis. Remember when I said that x? turns out to be the key
distribution when we’re taking a “sum of squares”? Well, what that means is if you want
to compare two different “sums of squares”, you're probably talking about something that
has an F' distribution. Of course, as yet I still haven’t given you an example of anything
that involves a sum of squares, but I will in Chapter 13. And that’s where we’ll run into
the F' distribution. Oh, and there’s a picture in Figure 7.12.

Okay, time to wrap this section up. We’ve seen three new distributions: y2, ¢t and F. They’re
all continuous distributions, and they’re all closely related to the normal distribution. The main
thing for our purposes is that you grasp the basic idea that these distributions are all deeply
related to one another, and to the normal distribution. Later on in this book we’re going to run
into data that are normally distributed, or at least assumed to be normally distributed. What
I want you to understand right now is that, if you make the assumption that your data are
normally distributed, you shouldn’t be surprised to see x?2, t and F' distributions popping up all
over the place when you start trying to do your data analysis.

1.7

Summary

In this chapter we’ve talked about probability. We’ve talked about what probability means and
why statisticians can’t agree on what it means. We talked about the rules that probabilities have
to obey. And we introduced the idea of a probability distribution and spent a good chunk of the
chapter talking about some of the more important probability distributions that statisticians
work with. The section by section breakdown looks like this:
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Probability theory versus statistics (Section 7.1)

Frequentist versus Bayesian views of probability (Section 7.2)

Basics of probability theory (Section 7.3)

Binomial distribution (Section 7.4), normal distribution (Section 7.5), and others (Sec-
tion 7.6)

As you’d expect, my coverage is by no means exhaustive. Probability theory is a large
branch of mathematics in its own right, entirely separate from its application to statistics and
data analysis. As such, there are thousands of books written on the subject and universities
generally offer multiple classes devoted entirely to probability theory. Even the “simpler” task
of documenting standard probability distributions is a big topic. I've described five standard
probability distributions in this chapter, but sitting on my bookshelf I have a 45-chapter book
called “Statistical Distributions” (Evans, Hastings, and Peacock 2011) that lists a lot more than
that. Fortunately for you, very little of this is necessary. You’re unlikely to need to know dozens
of statistical distributions when you go out and do real world data analysis, and you definitely
won’t need them for this book, but it never hurts to know that there’s other possibilities out
there.

Picking up on that last point, there’s a sense in which this whole chapter is something of
a digression. Many undergraduate psychology classes on statistics skim over this content very
quickly (I know mine did), and even the more advanced classes will often “forget” to revisit
the basic foundations of the field. Most academic psychologists would not know the difference
between probability and density, and until recently very few would have been aware of the
difference between Bayesian and frequentist probability. However, I think it’s important to
understand these things before moving onto the applications. For example, there are a lot of
rules about what you’re “allowed” to say when doing statistical inference and many of these can
seem arbitrary and weird. However, they start to make sense if you understand that there is this
Bayesian/frequentist distinction. Similarly, in Chapter 11 we’re going to talk about something
called the t-test, and if you really want to have a grasp of the mechanics of the ¢-test it really
helps to have a sense of what a t-distribution actually looks like. You get the idea, I hope.
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8. Estimating unknown quantities from a sample

At the start of the last chapter I highlighted the critical distinction between descriptive statistics
and inferential statistics. As discussed in Chapter 4, the role of descriptive statistics is to
concisely summarise what we do know. In contrast, the purpose of inferential statistics is to
“learn what we do not know from what we do”. Now that we have a foundation in probability
theory we are in a good position to think about the problem of statistical inference. What kinds
of things would we like to learn about? And how do we learn them? These are the questions that
lie at the heart of inferential statistics, and they are traditionally divided into two “big ideas”:
estimation and hypothesis testing. The goal in this chapter is to introduce the first of these
big ideas, estimation theory, but I'm going to witter on about sampling theory first because
estimation theory doesn’t make sense until you understand sampling. As a consequence, this
chapter divides naturally into two parts Sections 8.1 through 8.3 are focused on sampling theory,
and Sections 8.4 and 8.5 make use of sampling theory to discuss how statisticians think about
estimation.

8.1
Samples, populations and sampling

In the prelude to Part IV I discussed the riddle of induction and highlighted the fact that all
learning requires you to make assumptions. Accepting that this is true, our first task to come
up with some fairly general assumptions about data that make sense. This is where sampling
theory comes in. If probability theory is the foundations upon which all statistical theory builds,
sampling theory is the frame around which you can build the rest of the house. Sampling theory
plays a huge role in specifying the assumptions upon which your statistical inferences rely. And
in order to talk about “making inferences” the way statisticians think about it we need to be a
bit more explicit about what it is that we’re drawing inferences from (the sample) and what it
is that we're drawing inferences about (the population).

In almost every situation of interest what we have available to us as researchers is a sample
of data. We might have run experiment with some number of participants, a polling company
might have phoned some number of people to ask questions about voting intentions, and so on.
In this way the data set available to us is finite and incomplete. We can’t possibly get every
person in the world to do our experiment, for example a polling company doesn’t have the time
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or the money to ring up every voter in the country. In our earlier discussion of descriptive
statistics (Chapter 4) this sample was the only thing we were interested in. Our only goal was
to find ways of describing, summarising and graphing that sample. This is about to change.

8.1.1 Defining a population

A sample is a concrete thing. You can open up a data file and there’s the data from your
sample. A population, on the other hand, is a more abstract idea. It refers to the set of all
possible people, or all possible observations, that you want to draw conclusions about and is
generally much bigger than the sample. In an ideal world the researcher would begin the study
with a clear idea of what the population of interest is, since the process of designing a study
and testing hypotheses with the data does depend on the population about which you want to
make statements.

Sometimes it’s easy to state the population of interest. For instance, in the “polling company”
example that opened the chapter the population consisted of all voters enrolled at the time of the
study, millions of people. The sample was a set of 1000 people who all belong to that population.
In most studies the situation is much less straightforward. In a typical psychological experiment
determining the population of interest is a bit more complicated. Suppose I run an experiment
using 100 undergraduate students as my participants. My goal, as a cognitive scientist, is to try
to learn something about how the mind works. So, which of the following would count as “the
population”:

e All of the undergraduate psychology students at the University of Adelaide?

e Undergraduate psychology students in general, anywhere in the world?

e Australians currently living?

e Australians of similar ages to my sample?

e Anyone currently alive?

e Any human being, past, present or future?

e Any biological organism with a sufficient degree of intelligence operating in a terrestrial

environment?

e Any intelligent being?

Each of these defines a real group of mind-possessing entities, all of which might be of interest
to me as a cognitive scientist, and it’s not at all clear which one ought to be the true population
of interest. As another example, consider the Wellesley-Croker game that we discussed in the
prelude. The sample here is a specific sequence of 12 wins and 0 losses for Wellesley. What is
the population?

e All outcomes until Wellesley and Croker arrived at their destination?
e All outcomes if Wellesley and Croker had played the game for the rest of their lives?

o All outcomes if Wellseley and Croker lived forever and played the game until the world
ran out of hills?

All outcomes if we created an infinite set of parallel universes and the Wellesely /Croker
pair made guesses about the same 12 hills in each universe?
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Figure 8.1: Simple random sampling without replacement from a finite population

Again, it’s not obvious what the population is.

8.1.2 Simple random samples

Irrespective of how I define the population, the critical point is that the sample is a subset
of the population and our goal is to use our knowledge of the sample to draw inferences about
the properties of the population. The relationship between the two depends on the procedure by
which the sample was selected. This procedure is referred to as a sampling method and it is
important to understand why it matters.

To keep things simple, let’s imagine that we have a bag containing 10 chips. Each chip has
a unique letter printed on it so we can distinguish between the 10 chips. The chips come in
two colours, black and white. This set of chips is the population of interest and it is depicted
graphically on the left of Figure 8.1. As you can see from looking at the picture there are 4
black chips and 6 white chips, but of course in real life we wouldn’t know that unless we looked
in the bag. Now imagine you run the following “experiment”: you shake up the bag, close your
eyes, and pull out 4 chips without putting any of them back into the bag. First out comes the
a chip (black), then the ¢ chip (white), then j (white) and then finally b (black). If you wanted
you could then put all the chips back in the bag and repeat the experiment, as depicted on the
right hand side of Figure 8.1. Each time you get different results but the procedure is identical
in each case. The fact that the same procedure can lead to different results each time we refer
to as a random process.! However, because we shook the bag before pulling any chips out, it
seems reasonable to think that every chip has the same chance of being selected. A procedure in
which every member of the population has the same chance of being selected is called a simple
random sample. The fact that we did not put the chips back in the bag after pulling them
out means that you can’t observe the same thing twice, and in such cases the observations are

!The proper mathematical definition of randomness is extraordinarily technical, and way beyond the scope of
this book. We’ll be non-technical here and say that a process has an element of randomness to it whenever it is
possible to repeat the process and get different answers each time.

- 153 -



biased sampling
(without replacement)

population

000G0
OOOOD \ 0000

Figure 8.2: Biased sampling without replacement from a finite population
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Figure 8.3: Simple random sampling with replacement from a finite population

said to have been sampled without replacement.

To help make sure you understand the importance of the sampling procedure, consider an
alternative way in which the experiment could have been run. Suppose that my 5-year old son
had opened the bag and decided to pull out four black chips without putting any of them back
in the bag. This biased sampling scheme is depicted in Figure 8.2. Now consider the evidential
value of seeing 4 black chips and 0 white chips. Clearly it depends on the sampling scheme,
does it not? If you know that the sampling scheme is biased to select only black chips then a
sample that consists of only black chips doesn’t tell you very much about the population! For
this reason statisticians really like it when a data set can be considered a simple random sample,
because it makes the data analysis much easier.

A third procedure is worth mentioning. This time around we close our eyes, shake the bag,
and pull out a chip. This time, however, we record the observation and then put the chip back
in the bag. Again we close our eyes, shake the bag, and pull out a chip. We then repeat this
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procedure until we have 4 chips. Data sets generated in this way are still simple random samples,
but because we put the chips back in the bag immediately after drawing them it is referred to as
a sample with replacement. The difference between this situation and the first one is that it
is possible to observe the same population member multiple times, as illustrated in Figure 8.3.

In my experience, most psychology experiments tend to be sampling without replacement,
because the same person is not allowed to participate in the experiment twice. However, most
statistical theory is based on the assumption that the data arise from a simple random sample
with replacement. In real life this very rarely matters. If the population of interest is large (e.g.,
has more than 10 entities!) the difference between sampling with- and without- replacement
is too small to be concerned with. The difference between simple random samples and biased
samples, on the other hand, is not such an easy thing to dismiss.

8.1.3 Most samples are not simple random samples

As you can see from looking at the list of possible populations that I showed above, it is
almost impossible to obtain a simple random sample from most populations of interest. When
I run experiments I'd consider it a minor miracle if my participants turned out to be a random
sampling of the undergraduate psychology students at Adelaide university, even though this is
by far the narrowest population that I might want to generalise to. A thorough discussion of
other types of sampling schemes is beyond the scope of this book, but to give you a sense of
what’s out there I'll list a few of the more important ones.

e Stratified sampling. Suppose your population is (or can be) divided into several different
sub-populations, or strata. Perhaps you’re running a study at several different sites, for
example. Instead of trying to sample randomly from the population as a whole, you in-
stead try to collect a separate random sample from each of the strata. Stratified sampling
is sometimes easier to do than simple random sampling, especially when the population
is already divided into the distinct strata. It can also be more efficient than simple ran-
dom sampling, especially when some of the sub-populations are rare. For instance, when
studying schizophrenia it would be much better to divide the population into two? strata
(schizophrenic and not-schizophrenic) and then sample an equal number of people from
each group. If you selected people randomly you would get so few schizophrenic people in
the sample that your study would be useless. This specific kind of of stratified sampling is
referred to as oversampling because it makes a deliberate attempt to over-represent rare
groups.

e Snowball sampling is a technique that is especially useful when sampling from a “hidden”
or hard to access population and is especially common in social sciences. For instance,
suppose the researchers want to conduct an opinion poll among transgender people. The
research team might only have contact details for a few trans folks, so the survey starts by
asking them to participate (stage 1). At the end of the survey the participants are asked
to provide contact details for other people who might want to participate. In stage 2 those
new contacts are surveyed. The process continues until the researchers have sufficient data.

2Nothing in life is that simple. There’s not an obvious division of people into binary categories like
“schizophrenic” and “not schizophrenic”. But this isn’t a clinical psychology text so please forgive me a few
simplifications here and there.
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The big advantage to snowball sampling is that it gets you data in situations that might
otherwise be impossible to get any. On the statistical side, the main disadvantage is that
the sample is highly non-random, and non-random in ways that are difficult to address.
On the real life side, the disadvantage is that the procedure can be unethical if not handled
well, because hidden populations are often hidden for a reason. I chose transgender people
as an example here to highlight this issue. If you weren’t careful you might end up outing
people who don’t want to be outed (very, very bad form), and even if you don’t make
that mistake it can still be intrusive to use people’s social networks to study them. It’s
certainly very hard to get people’s informed consent before contacting them, yet in many
cases the simple act of contacting them and saying “hey we want to study you” can be
hurtful. Social networks are complex things, and just because you can use them to get
data doesn’t always mean you should.

o (Convenience sampling is more or less what it sounds like. The samples are chosen in a
way that is convenient to the researcher, and not selected at random from the population
of interest. Snowball sampling is one type of convenience sampling, but there are many
others. A common example in psychology are studies that rely on undergraduate psychol-
ogy students. These samples are generally non-random in two respects. First, reliance
on undergraduate psychology students automatically means that your data are restricted
to a single sub-population. Second, the students usually get to pick which studies they
participate in, so the sample is a self selected subset of psychology students and not a
randomly selected subset. In real life most studies are convenience samples of one form or
another. This is sometimes a severe limitation, but not always.

8.1.4 How much does it matter if you don’t have a simple random sample?

Okay, so real world data collection tends not to involve nice simple random samples. Does
that matter? A little thought should make it clear to you that it can matter if your data are not
a simple random sample. Just think about the difference between Figures 8.1 and 8.2. However,
it’s not quite as bad as it sounds. Some types of biased samples are entirely unproblematic.
For instance, when using a stratified sampling technique you actually know what the bias is
because you created it deliberately, often to increase the effectiveness of your study, and there
are statistical techniques that you can use to adjust for the biases you’ve introduced (not covered
in this book!). So in those situations it’s not a problem.

More generally though, it’s important to remember that random sampling is a means to
an end, and not the end in itself. Let’s assume you’ve relied on a convenience sample, and as
such you can assume it’s biased. A bias in your sampling method is only a problem if it causes
you to draw the wrong conclusions. When viewed from that perspective, I'd argue that we
don’t need the sample to be randomly generated in every respect, we only need it to be random
with respect to the psychologically-relevant phenomenon of interest. Suppose I'm doing a study
looking at working memory capacity. In study 1, I actually have the ability to sample randomly
from all human beings currently alive, with one exception: I can only sample people born on
a Monday. In study 2, I am able to sample randomly from the Australian population. I want
to generalise my results to the population of all living humans. Which study is better? The
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answer, obviously, is study 1. Why? Because we have no reason to think that being “born on a
Monday” has any interesting relationship to working memory capacity. In contrast, I can think
of several reasons why “being Australian” might matter. Australia is a wealthy, industrialised
country with a very well-developed education system. People growing up in that system will have
had life experiences much more similar to the experiences of the people who designed the tests
for working memory capacity. This shared experience might easily translate into similar beliefs
about how to “take a test”, a shared assumption about how psychological experimentation works,
and so on. These things might actually matter. For instance, “test taking” style might have
taught the Australian participants how to direct their attention exclusively on fairly abstract
test materials much more than people who haven’t grown up in a similar environment. This
could therefore lead to a misleading picture of what working memory capacity is.

There are two points hidden in this discussion. First, when designing your own studies, it’s
important to think about what population you care about and try hard to sample in a way that
is appropriate to that population. In practice, you're usually forced to put up with a “sample
of convenience” (e.g., psychology lecturers sample psychology students because that’s the least
expensive way to collect data, and our coffers aren’t exactly overflowing with gold), but if so
you should at least spend some time thinking about what the dangers of this practice might
be. Second, if you’re going to criticise someone else’s study because they’ve used a sample of
convenience rather than laboriously sampling randomly from the entire human population, at
least have the courtesy to offer a specific theory as to how this might have distorted the results.

8.1.5 Population parameters and sample statistics

Okay. Setting aside the thorny methodological issues associated with obtaining a random
sample, let’s consider a slightly different issue. Up to this point we have been talking about
populations the way a scientist might. To a psychologist a population might be a group of
people. To an ecologist a population might be a group of bears. In most cases the populations
that scientists care about are concrete things that actually exist in the real world. Statisticians,
however, are a funny lot. On the one hand, they are interested in real world data and real science
in the same way that scientists are. On the other hand, they also operate in the realm of pure
abstraction in the way that mathematicians do. As a consequence, statistical theory tends to be a
bit abstract in how a population is defined. In much the same way that psychological researchers
operationalise our abstract theoretical ideas in terms of concrete measurements (Section 2.1),
statisticians operationalise the concept of a “population” in terms of mathematical objects that
they know how to work with. You've already come across these objects in Chapter 7. They’re
called probability distributions.

The idea is quite simple. Let’s say we're talking about IQ scores. To a psychologist the
population of interest is a group of actual humans who have 1Q scores. A statistician “simpli-
fies” this by operationally defining the population as the probability distribution depicted in
Figure 8.4a. IQ tests are designed so that the average 1Q is 100, the standard deviation of 1Q
scores is 15, and the distribution of IQ scores is normal. These values are referred to as the
population parameters because they are characteristics of the entire population. That is, we
say that the population mean p is 100 and the population standard deviation o is 15.

Now suppose I run an experiment. I select 100 people at random and administer an IQ test,
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Figure 8.4: The population distribution of IQ scores (panel a) and two samples drawn randomly
from it. In panel b we have a sample of 100 observations, and panel ¢ we have a sample of 10,000
observations.

giving me a simple random sample from the population. My sample would consist of a collection
of numbers like this:

106 101 98 80 74 ... 107 72 100

Each of these IQ scores is sampled from a normal distribution with mean 100 and standard
deviation 15. So if I plot a histogram of the sample I get something like the one shown in
Figure 8.4b. As you can see, the histogram is roughly the right shape but it’s a very crude
approximation to the true population distribution shown in Figure 8.4a. When I calculate the
mean of my sample, I get a number that is fairly close to the population mean 100 but not
identical. In this case, it turns out that the people in my sample have a mean IQ of 98.5, and
the standard deviation of their 1Q scores is 15.9. These sample statistics are properties of
my data set, and although they are fairly similar to the true population values they are not the
same. In general, sample statistics are the things you can calculate from your data set and the
population parameters are the things you want to learn about. Later on in this chapter I'll talk
about how you can estimate population parameters using your sample statistics (Section 8.4)
and how to work out how confident you are in your estimates (Section 8.5) but before we get to
that there’s a few more ideas in sampling theory that you need to know about.

8.2
The law of large numbers

In the previous section I showed you the results of one fictitious IQ experiment with a sample
size of N = 100. The results were somewhat encouraging as the true population mean is 100 and
the sample mean of 98.5 is a pretty reasonable approximation to it. In many scientific studies
that level of precision is perfectly acceptable, but in other situations you need to be a lot more
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precise. If we want our sample statistics to be much closer to the population parameters, what
can we do about it?

The obvious answer is to collect more data. Suppose that we ran a much larger experiment,
this time measuring the IQs of 10,000 people. We can simulate the results of this experiment
using jamovi. The IQsim.omv file is a jamovi data file. In this file I have generated 10,000
random numbers sampled from a normal distribution for a population with mean = 100 and
sd = 15. This was done by computing a new variable using the = NORM(100,15) function. A
histogram and density plot shows that this larger sample is a much better approximation to the
true population distribution than the smaller one. This is reflected in the sample statistics. The
mean 1Q for the larger sample turns out to be 99.68 and the standard deviation is 14.90. These
values are now very close to the true population. See Figure 8.5

I feel a bit silly saying this, but the thing I want you to take away from this is that large
samples generally give you better information. I feel silly saying it because it’s so bloody obvious
that it shouldn’t need to be said. In fact, it’s such an obvious point that when Jacob Bernoulli,
one of the founders of probability theory, formalised this idea back in 1713 he was kind of a jerk
about it. Here’s how he described the fact that we all share this intuition:

For even the most stupid of men, by some instinct of nature, by himself and without
any instruction (which is a remarkable thing), is convinced that the more observations
have been made, the less danger there is of wandering from one’s goal (see Stigler
1986, p65)

Okay, so the passage comes across as a bit condescending (not to mention sexist), but his main
point is correct. It really does feel obvious that more data will give you better answers. The
question is, why is this so? Not surprisingly, this intuition that we all share turns out to be
correct, and statisticians refer to it as the law of large numbers. The law of large numbers
is a mathematical law that applies to many different sample statistics but the simplest way to
think about it is as a law about averages. The sample mean is the most obvious example of a
statistic that relies on averaging (because that’s what the mean is... an average), so let’s look
at that. When applied to the sample mean what the law of large numbers states is that as the
sample gets larger, the sample mean tends to get closer to the true population mean. Or, to say
it a little bit more precisely, as the sample size “approaches” infinity (written as N — o), the
sample mean approaches the population mean (X — p).3

I don’t intend to subject you to a proof that the law of large numbers is true, but it’s one
of the most important tools for statistical theory. The law of large numbers is the thing we can
use to justify our belief that collecting more and more data will eventually lead us to the truth.
For any particular data set the sample statistics that we calculate from it will be wrong, but the
law of large numbers tells us that if we keep collecting more data those sample statistics will
tend to get closer and closer to the true population parameters.

3Technically, the law of large numbers pertains to any sample statistic that can be described as an average
of independent quantities. That’s certainly true for the sample mean. However, it’s also possible to write many
other sample statistics as averages of one form or another. The variance of a sample, for instance, can be rewritten
as a kind of average and so is subject to the law of large numbers. The minimum value of a sample, however,
cannot be written as an average of anything and is therefore not governed by the law of large numbers.
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Figure 8.5: A random sample drawn from a normal distribution using jamovi
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8.3
Sampling distributions and the central limit theorem

The law of large numbers is a very powerful tool but it’s not going to be good enough to answer
all our questions. Among other things, all it gives us is a “long run guarantee”. In the long run,
if we were somehow able to collect an infinite amount of data, then the law of large numbers
guarantees that our sample statistics will be correct. But as John Maynard Keynes famously
argued in economics, a long run guarantee is of little use in real life.

[The] long run is a misleading guide to current affairs. In the long run we are
all dead. Economists set themselves too easy, too useless a task, if in tempestuous
seasons they can only tell us, that when the storm is long past, the ocean is flat again.
(Keynes 1923, p. 80)

As in economics, so too in psychology and statistics. It is not enough to know that we will
eventually arrive at the right answer when calculating the sample mean. Knowing that an
infinitely large data set will tell me the exact value of the population mean is cold comfort when
my actual data set has a sample size of N = 100. In real life, then, we must know something
about the behaviour of the sample mean when it is calculated from a more modest data set!

8.3.1 Sampling distribution of the mean

With this in mind, let’s abandon the idea that our studies will have sample sizes of 10,000
and consider instead a very modest experiment indeed. This time around we’ll sample N = 5
people and measure their IQ scores. As before, I can simulate this experiment in jamovi =
NORM(100,15) function, but I only need 5 participant IDs this time, not 10,000. These are the
five numbers that jamovi generated:

90 82 94 99 110

The mean IQ in this sample turns out to be exactly 95. Not surprisingly, this is much
less accurate than the previous experiment. Now imagine that I decided to replicate the
experiment. That is, I repeat the procedure as closely as possible and I randomly sample 5 new
people and measure their IQ. Again, jamovi allows me to simulate the results of this procedure,
and generates these five numbers:

78 88 111 111 117

This time around, the mean IQ in my sample is 101. If I repeat the experiment 10 times
I obtain the results shown in Table 8.1, and as you can see the sample mean varies from one
replication to the next.

Now suppose that I decided to keep going in this fashion, replicating this “five IQ scores”
experiment over and over again. Every time I replicate the experiment I write down the sample
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Table 8.1: Ten replications of the IQ experiment, each with a sample size of N = 5.

Person 1 Person 2 Person 3 Person 4 Person 5 | Sample Mean
Replication 1 90 82 94 99 110 95.0
Replication 2 78 88 111 111 117 101.0
Replication 3 111 122 91 98 86 101.6
Replication 4 98 96 119 99 107 103.8
Replication 5 105 113 103 103 98 104.4
Replication 6 81 89 93 85 114 92.4
Replication 7 100 93 108 98 133 106.4
Replication 8 107 100 105 117 85 102.8
Replication 9 86 119 108 73 116 100.4
Replication 10 95 126 112 120 76 105.8

mean. Over time, I'd be amassing a new data set, in which every experiment generates a single
data point. The first 10 observations from my data set are the sample means listed in Table 8.1,
so my data set starts out like this:

95.0 101.0 101.6 103.8 104.4 ...

What if I continued like this for 10,000 replications, and then drew a histogram. Well that’s
exactly what I did, and you can see the results in Figure 8.6. As this picture illustrates, the
average of 5 IQ scores is usually between 90 and 110. But more importantly, what it highlights
is that if we replicate an experiment over and over again, what we end up with is a distribution
of sample means! This distribution has a special name in statistics, it’s called the sampling
distribution of the mean.

Sampling distributions are another important theoretical idea in statistics, and they’re crucial
for understanding the behaviour of small samples. For instance, when I ran the very first “five
1Q scores” experiment, the sample mean turned out to be 95. What the sampling distribution
in Figure 8.6 tells us, though, is that the “five IQ scores” experiment is not very accurate. If
I repeat the experiment, the sampling distribution tells me that I can expect to see a sample
mean anywhere between 80 and 120.

8.3.2 Sampling distributions exist for any sample statistic!

One thing to keep in mind when thinking about sampling distributions is that any sample
statistic you might care to calculate has a sampling distribution. For example, suppose that
each time I replicated the “five IQ scores” experiment I wrote down the largest 1QQ score in the
experiment. This would give me a data set that started out like this:

110 117 122 119 113 ...

Doing this over and over again would give me a very different sampling distribution, namely
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Figure 8.6: The sampling distribution of the mean for the “five IQ scores experiment”. If you
sample 5 people at random and calculate their average 1Q you’ll almost certainly get a number
between 80 and 120, even though there are quite a lot of individuals who have IQs above 120 or
below 80. For comparison, the black line plots the population distribution of IQ scores.
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Figure 8.7: The sampling distribution of the mazimum for the “five IQ scores experiment”. If
you sample 5 people at random and select the one with the highest IQ score you’ll probably see
someone with an IQ between 100 and 140.

the sampling distribution of the maximum. The sampling distribution of the maximum of 5 1Q
scores is shown in Figure 8.7. Not surprisingly, if you pick 5 people at random and then find
the person with the highest 1Q score, they’re going to have an above average 1Q. Most of the
time you’ll end up with someone whose 1Q is measured in the 100 to 140 range.
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Figure 8.8: An illustration of the how sampling distribution of the mean depends on sample
size. In each panel I generated 10,000 samples of IQ data and calculated the mean IQ observed
within each of these data sets. The histograms in these plots show the distribution of these
means (i.e., the sampling distribution of the mean). Each individual IQ score was drawn from
a normal distribution with mean 100 and standard deviation 15, which is shown as the solid
black line. In panel a, each data set contained only a single observation, so the mean of each
sample is just one person’s IQ score. As a consequence, the sampling distribution of the mean
is of course identical to the population distribution of IQ scores. However, when we raise the
sample size to 2 the mean of any one sample tends to be closer to the population mean than a
one person’s IQ score, and so the histogram (i.e., the sampling distribution) is a bit narrower
than the population distribution. By the time we raise the sample size to 10 (panel ¢), we can
see that the distribution of sample means tend to be fairly tightly clustered around the true
population mean.

8.3.3 The central limit theorem

At this point I hope you have a pretty good sense of what sampling distributions are, and
in particular what the sampling distribution of the mean is. In this section I want to talk about
how the sampling distribution of the mean changes as a function of sample size. Intuitively, you
already know part of the answer. If you only have a few observations, the sample mean is likely
to be quite inaccurate. If you replicate a small experiment and recalculate the mean you’ll get
a very different answer. In other words, the sampling distribution is quite wide. If you replicate
a large experiment and recalculate the sample mean you’ll probably get the same answer you
got last time, so the sampling distribution will be very narrow. You can see this visually in
Figure 8.8, showing that the bigger the sample size, the narrower the sampling distribution gets.
We can quantify this effect by calculating the standard deviation of the sampling distribution,
which is referred to as the standard error. The standard error of a statistic is often denoted
SE, and since we’re usually interested in the standard error of the sample mean, we often use
the acronym SEM. As you can see just by looking at the picture, as the sample size N increases,
the SEM decreases.

Okay, so that’s one part of the story. However, there’s something I've been glossing over so
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far. All my examples up to this point have been based on the “IQ scores” experiments, and
because IQ scores are roughly normally distributed I've assumed that the population distribution
is normal. What if it isn’t normal? What happens to the sampling distribution of the mean? The
remarkable thing is this, no matter what shape your population distribution is, as /N increases
the sampling distribution of the mean starts to look more like a normal distribution. To give you
a sense of this I ran some simulations. To do this, I started with the “ramped” distribution shown
in the histogram in Figure 8.9. As you can see by comparing the triangular shaped histogram to
the bell curve plotted by the black line, the population distribution doesn’t look very much like
a normal distribution at all. Next, I simulated the results of a large number of experiments. In
each experiment I took N = 2 samples from this distribution, and then calculated the sample
mean. Figure 8.9b plots the histogram of these sample means (i.e., the sampling distribution of
the mean for N = 2). This time, the histogram produces a n-shaped distribution. It’s still not
normal, but it’s a lot closer to the black line than the population distribution in Figure 8.9a.
When I increase the sample size to N = 4, the sampling distribution of the mean is very close
to normal (Figure 8.9¢), and by the time we reach a sample size of N = 8 it’s almost perfectly
normal. In other words, as long as your sample size isn’t tiny, the sampling distribution of the
mean will be approximately normal no matter what your population distribution looks like!

On the basis of these figures, it seems like we have evidence for all of the following claims
about the sampling distribution of the mean.

e The mean of the sampling distribution is the same as the mean of the population

e The standard deviation of the sampling distribution (i.e., the standard error) gets smaller
as the sample size increases

e The shape of the sampling distribution becomes normal as the sample size increases

As it happens, not only are all of these statements true, there is a very famous theorem in
statistics that proves all three of them, known as the central limit theorem. Among other
things, the central limit theorem tells us that if the population distribution has mean p and
standard deviation o, then the sampling distribution of the mean also has mean p and the
standard error of the mean is o

SEM = —
VN
Because we divide the population standard deviation o by the square root of the sample size N,
the SEM gets smaller as the sample size increases. It also tells us that the shape of the sampling
distribution becomes normal.

This result is useful for all sorts of things. It tells us why large experiments are more reliable
than small ones, and because it gives us an explicit formula for the standard error it tells us how
much more reliable a large experiment is. It tells us why the normal distribution is, well, normal.
In real experiments, many of the things that we want to measure are actually averages of lots
of different quantities (e.g., arguably, “general” intelligence as measured by IQ is an average of

4As usual, m being a bit sloppy here. The central limit theorem is a bit more general than this section
implies. Like most introductory stats texts I've discussed one situation where the central limit theorem holds:
when you're taking an average across lots of independent events drawn from the same distribution. However, the
central limit theorem is much broader than this. There’s a whole class of things called “U-statistics” for instance,
all of which satisfy the central limit theorem and therefore become normally distributed for large sample sizes.
The mean is one such statistic, but it’s not the only one.
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Figure 8.9: A demonstration of the central limit theorem. In panel a, we have a non-normal
population distribution, and panels b-d show the sampling distribution of the mean for samples
of size 2,4 and 8 for data drawn from the distribution in panel a. As you can see, even though the
original population distribution is non-normal the sampling distribution of the mean becomes
pretty close to normal by the time you have a sample of even 4 observations.
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a large number of “specific” skills and abilities), and when that happens, the averaged quantity
should follow a normal distribution. Because of this mathematical law, the normal distribution
pops up over and over again in real data.

8.4
Estimating population parameters

In all the IQ examples in the previous sections we actually knew the population parameters ahead
of time. As every undergraduate gets taught in their very first lecture on the measurement of
intelligence, 1Q scores are defined to have mean 100 and standard deviation 15. However, this
is a bit of a lie. How do we know that IQ scores have a true population mean of 1007 Well,
we know this because the people who designed the tests have administered them to very large
samples, and have then “rigged” the scoring rules so that their sample has mean 100. That’s
not a bad thing of course, it’s an important part of designing a psychological measurement.
However, it’s important to keep in mind that this theoretical mean of 100 only attaches to the
population that the test designers used to design the tests. Good test designers will actually
go to some lengths to provide “test norms” that can apply to lots of different populations (e.g.,
different age groups, nationalities etc).

This is very handy, but of course almost every research project of interest involves looking
at a different population of people to those used in the test norms. For instance, suppose you
wanted to measure the effect of low level lead poisoning on cognitive functioning in Port Pirie,
a South Australian industrial town with a lead smelter. Perhaps you decide that you want to
compare IQ scores among people in Port Pirie to a comparable sample in Whyalla, a South
Australian industrial town with a steel refinery.” Regardless of which town you're thinking
about, it doesn’t make a lot of sense simply to assume that the true population mean IQ is
100. No-one has, to my knowledge, produced sensible norming data that can automatically be
applied to South Australian industrial towns. We’re going to have to estimate the population
parameters from a sample of data. So how do we do this?

SPlease note that if you were actually interested in this question you would need to be a lot more careful than
I’'m being here. You can’t just compare 1Q scores in Whyalla to Port Pirie and assume that any differences are
due to lead poisoning. Even if it were true that the only differences between the two towns corresponded to the
different refineries (and it isn’t, not by a long shot), you need to account for the fact that people already believe
that lead pollution causes cognitive deficits. If you recall back to Chapter 2, this means that there are different
demand effects for the Port Pirie sample than for the Whyalla sample. In other words, you might end up with an
illusory group difference in your data, caused by the fact that people think that there is a real difference. I find
it pretty implausible to think that the locals wouldn’t be well aware of what you were trying to do if a bunch
of researchers turned up in Port Pirie with lab coats and IQ tests, and even less plausible to think that a lot of
people would be pretty resentful of you for doing it. Those people won’t be as co-operative in the tests. Other
people in Port Pirie might be more motivated to do well because they don’t want their home town to look bad.
The motivational effects that would apply in Whyalla are likely to be weaker, because people don’t have any
concept of “iron ore poisoning” in the same way that they have a concept for “lead poisoning”. Psychology is
hard.
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8.4.1 Estimating the population mean

Suppose we go to Port Pirie and 100 of the locals are kind enough to sit through an 1Q test.
The average IQ score among these people turns out to be X = 98.5. So what is the true mean IQ
for the entire population of Port Pirie? Obviously, we don’t know the answer to that question.
It could be 97.2, but it could also be 103.5. Our sampling isn’t exhaustive so we cannot give a
definitive answer. Nevertheless, if I was forced at gunpoint to give a “best guess” I'd have to
say 98.5. That’s the essence of statistical estimation: giving a best guess.

In this example estimating the unknown poulation parameter is straightforward. I calculate
the sample mean and I use that as my estimate of the population mean. It’s pretty simple,
and in the next section I'll explain the statistical justification for this intuitive answer. However,
for the moment what I want to do is make sure you recognise that the sample statistic and the
estimate of the population parameter are conceptually different things. A sample statistic is a
description of your data, whereas the estimate is a guess about the population. With that in
mind, statisticians often different notation to refer to them. For instance, if the true population
mean is denoted u, then we would use i to refer to our estimate of the population mean. In
contrast, the sample mean is denoted X or sometimes m. However, in simple random samples
the estimate of the population mean is identical to the sample mean. If I observe a sample
mean of X = 98.5 then my estimate of the population mean is also i = 98.5. To help keep the
notation clear, here’s a handy table:

Symbol What is it? Do we know what it is?
X Sample mean Yes, calculated from the raw data
L True population mean Almost never known for sure
[ Estimate of the population mean Yes, identical to the sample mean in

simple random samples

8.4.2 [Estimating the population standard deviation

So far, estimation seems pretty simple, and you might be wondering why I forced you to
read through all that stuff about sampling theory. In the case of the mean our estimate of the
population parameter (i.e. i) turned out to identical to the corresponding sample statistic (i.e.
X). However, that’s not always true. To see this, let’s have a think about how to construct an
estimate of the population standard deviation, which we’ll denote &. What shall we use
as our estimate in this case? Your first thought might be that we could do the same thing we
did when estimating the mean, and just use the sample statistic as our estimate. That’s almost
the right thing to do, but not quite.

Here’s why. Suppose I have a sample that contains a single observation. For this example, it
helps to consider a sample where you have no intuitions at all about what the true population
values might be, so let’s use something completely fictitious. Suppose the observation in question
measures the cromulence of my shoes. It turns out that my shoes have a cromulence of 20. So
here’s my sample:

20
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This is a perfectly legitimate sample, even if it does have a sample size of N = 1. It has a
sample mean of 20 and because every observation in this sample is equal to the sample mean
(obviously!) it has a sample standard deviation of 0. As a description of the sample this seems
quite right, the sample contains a single observation and therefore there is no variation observed
within the sample. A sample standard deviation of s = 0 is the right answer here. But as an
estimate of the population standard deviation it feels completely insane, right? Admittedly, you
and I don’t know anything at all about what “cromulence” is, but we know something about
data. The only reason that we don’t see any variability in the sample is that the sample is too
small to display any variation! So, if you have a sample size of N = 1 it feels like the right
answer is just to say “no idea at all”.

Notice that you don’t have the same intuition when it comes to the sample mean and the
population mean. If forced to make a best guess about the population mean it doesn’t feel
completely insane to guess that the population mean is 20. Sure, you probably wouldn’t feel
very confident in that guess because you have only the one observation to work with, but it’s
still the best guess you can make.

Let’s extend this example a little. Suppose I now make a second observation. My data set
now has N = 2 observations of the cromulence of shoes, and the complete sample now looks like
this:

20, 22

This time around, our sample is just large enough for us to be able to observe some variability:
two observations is the bare minimum number needed for any variability to be observed! For
our new data set, the sample mean is X = 21, and the sample standard deviation is s = 1.
What intuitions do we have about the population? Again, as far as the population mean goes,
the best guess we can possibly make is the sample mean. If forced to guess we’d probably guess
that the population mean cromulence is 21. What about the standard deviation? This is a little
more complicated. The sample standard deviation is only based on two observations, and if
you're at all like me you probably have the intuition that, with only two observations we haven’t
given the population “enough of a chance” to reveal its true variability to us. It’s not just that
we suspect that the estimate is wrong, after all with only two observations we expect it to be
wrong to some degree. The worry is that the error is systematic. Specifically, we suspect that
the sample standard deviation is likely to be smaller than the population standard deviation.

This intuition feels right, but it would be nice to demonstrate this somehow. There are in
fact mathematical proofs that confirm this intuition, but unless you have the right mathematical
background they don’t help very much. Instead, what I’ll do is simulate the results of some
experiments. With that in mind, let’s return to our IQ studies. Suppose the true population
mean 1Q is 100 and the standard deviation is 15. First I'll conduct an experiment in which I
measure N = 2 IQ scores and I'll calculate the sample standard deviation. If I do this over
and over again, and plot a histogram of these sample standard deviations, what I have is the
sampling distribution of the standard deviation. I've plotted this distribution in Figure 8.10.
Even though the true population standard deviation is 15 the average of the sample standard
deviations is only 8.5. Notice that this is a very different result to what we found in Figure 8.8b
when we plotted the sampling distribution of the mean, where the population mean is 100 and
the average of the sample means is also 100.
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Figure 8.10: The sampling distribution of the sample standard deviation for a “two IQ scores”
experiment. The true population standard deviation is 15 (dashed line), but as you can see from
the histogram the vast majority of experiments will produce a much smaller sample standard
deviation than this. On average, this experiment would produce a sample standard deviation of
only 8.5, well below the true value! In other words, the sample standard deviation is a biased
estimate of the population standard deviation.
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Now let’s extend the simulation. Instead of restricting ourselves to the situation where
N = 2, let’s repeat the exercise for sample sizes from 1 to 10. If we plot the average sample
mean and average sample standard deviation as a function of sample size, you get the results
shown in Figure 8.11. On the left hand side (panel a) I've plotted the average sample mean
and on the right hand side (panel b) I've plotted the average standard deviation. The two
plots are quite different:on average, the average sample mean is equal to the population mean.
It is an unbiased estimator, which is essentially the reason why your best estimate for the
population mean is the sample mean.® The plot on the right is quite different: on average,
the sample standard deviation s is smaller than the population standard deviation o. It is a
biased estimator. In other words, if we want to make a “best guess” & about the value of the
population standard deviation ¢ we should make sure our guess is a little bit larger than the
sample standard deviation s.

5T should note that I’'m hiding something here. Unbiasedness is a desirable characteristic for an estimator, but
there are other things that matter besides bias. However, it’s beyond the scope of this book to discuss this in any
detail. I just want to draw your attention to the fact that there’s some hidden complexity here.
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Figure 8.11: An illustration of the fact that the sample mean is an unbiased estimator of the
population mean (panel a), but the sample standard deviation is a biased estimator of the
population standard deviation (panel b). For the figure I generated 10,000 simulated data sets
with 1 observation each, 10,000 more with 2 observations, and so on up to a sample size of 10.
Each data set consisted of fake IQ) data, that is the data were normally distributed with a true
population mean of 100 and standard deviation 15. On average, the sample means turn out to
be 100, regardless of sample size (panel a). However, the sample standard deviations turn out
to be systematically too small (panel b), especially for small sample sizes.
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The fix to this systematic bias turns out to be very simple. Here’s how it works. Before
tackling the standard deviation let’s look at the variance. If you recall from Section 4.2, the
sample variance is defined to be the average of the squared deviations from the sample mean.
That is:

1 N
2 _ L Y)\2
s _;1(& X)

The sample variance s? is a biased estimator of the population variance o2. But as it turns

out, we only need to make a tiny tweak to transform this into an unbiased estimator. All we
have to do is divide by N —1 rather than by N. If we do that, we obtain the following formula:

N
2 1 S
g

2
v LX)
=1
This is an unbiased estimator of the population variance o. Moreover, this finally answers
the question we raised in Section 4.2. Why did jamovi give us slightly different answers for
variance? It’s because jamovi calculates 62 not s?, that’s why. A similar story applies for
the standard deviation. If we divide by IV — 1 rather than N our estimate of the population

standard deviation becomes:

. 1
6= | —

N-—-1:
7

M=

(X, — X)2

=1

and when we use jamovi’s built in standard deviation function, what it’s doing is calculating
&, not s.%

“Okay, I'm hiding something else here. In a bizarre and counter-intuitive twist, since é* is an unbiased
estimator of o2, you’d assume that taking the square root would be fine and 6 would be an unbiased estimator
of o. Right? Weirdly, it’s not. There’s actually a subtle, tiny bias in &. This is just bizarre: 2 is an unbiased
estimate of the population variance o2, but when you take the square root, it turns out that & is a biased
estimator of the population standard deviation o. Weird, weird, weird, right? So, why is & biased? The technical
answer is “because non-linear transformations (e.g., the square root) don’t commute with expectation”, but
that just sounds like gibberish to everyone who hasn’t taken a course in mathematical statistics. Fortunately,
it doesn’t matter for practical purposes. The bias is small, and in real life everyone uses ¢ and it works just
fine. Sometimes mathematics is just annoying.

One final point. In practice, a lot of people tend to refer to ¢ (i.e., the formula where we
divide by N — 1) as the sample standard deviation. Technically, this is incorrect. The sample
standard deviation should be equal to s (i.e., the formula where we divide by N). These aren’t
the same thing, either conceptually or numerically. One is a property of the sample, the other
is an estimated characteristic of the population. However, in almost every real life application
what we actually care about is the estimate of the population parameter, and so people always
report ¢ rather than s. This is the right number to report, of course. It’s just that people tend
to get a little bit imprecise about terminology when they write it up, because “sample standard
deviation” is shorter than “estimated population standard deviation”. It’s no big deal, and in
practice I do the same thing everyone else does. Nevertheless, I think it’s important to keep
the two concepts separate. It’s never a good idea to confuse “known properties of your sample”
with “guesses about the population from which it came”. The moment you start thinking that
s and & are the same thing, you start doing exactly that.
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To finish this section off, here’s another couple of tables to help keep things clear.

Symbol  What is it? Do we know what it is?

S Sample standard deviation Yes, calculated from the raw data

o Population standard deviation Almost never known for sure

I Estimate of the population Yes, but not the same as the

standard deviation sample standard deviation
Symbol  What is it? Do we know what it is?
52 Sample variance Yes, calculated from the raw data
o? Population variance Almost never known for sure
&2 Estimate of the population Yes, but not the same as the
variance sample variance

8.5

Estimating a confidence interval

Statistics means never having to say you’re certain

— Unknown origin”

Up to this point in this chapter, I’ve outlined the basics of sampling theory which statisticians
rely on to make guesses about population parameters on the basis of a sample of data. As this
discussion illustrates, one of the reasons we need all this sampling theory is that every data set
leaves us with a some of uncertainty, so our estimates are never going to be perfectly accurate.
The thing that has been missing from this discussion is an attempt to quantify the amount of
uncertainty that attaches to our estimate. It’s not enough to be able guess that, say, the mean
IQ of undergraduate psychology students is 115 (yes, I just made that number up). We also
want to be able to say something that expresses the degree of certainty that we have in our
guess. For example, it would be nice to be able to say that there is a 95% chance that the true
mean lies between 109 and 121. The name for this is a confidence interval for the mean.

Armed with an understanding of sampling distributions, constructing a confidence interval
for the mean is actually pretty easy. Here’s how it works. Suppose the true population mean is
and the standard deviation is o. I've just finished running my study that has N participants, and
the mean IQ among those participants is X. We know from our discussion of the central limit
theorem (Section 8.3.3) that the sampling distribution of the mean is approximately normal.
We also know from our discussion of the normal distribution Section 7.5 that there is a 95%

"This quote appears on a great many t-shirts and websites, and even gets a mention in a few academic pa-
pers (e.g., http://www.amstat.org/publications/jse/v10n3/friedman.html, but I've never found the original
source.
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chance that a normally-distributed quantity will fall within about two standard deviations of
the true mean.

To be more precise, the more correct answer is that there is a 95% chance that a normally-
distributed quantity will fall within 1.96 standard deviations of the true mean. Next, recall that
the standard deviation of the sampling distribution is referred to as the standard error, and the
standard error of the mean is written as SEM. When we put all these pieces together, we learn
that there is a 95% probability that the sample mean X that we have actually observed lies
within 1.96 standard errors of the population mean.

Mathematically, we write this as:
p—(1.96 x SEM) < X < p+ (1.96 x SEM)

where the SEM is equal to a/\/ﬁ and we can be 95% confident that this is true. However,
that’s not answering the question that we’re actually interested in. The equation above tells
us what we should expect about the sample mean given that we know what the population
parameters are. What we want is to have this work the other way around. We want to
know what we should believe about the population parameters, given that we have observed a
particular sample. However, it’s not too difficult to do this. Using a little high school algebra,
a sneaky way to rewrite our equation is like this:

X —(1.96 x SEM) < pu < X +(1.96 x SEM)

What this is telling is is that the range of values has a 95% probability of containing the popu-
lation mean p. We refer to this range as a 95% confidence interval, denoted Clgs. In short,
as long as N is sufficiently large (large enough for us to believe that the sampling distribution
of the mean is normal), then we can write this as our formula for the 95% confidence interval:

— g
Clgs = X + (1.96 x ——
% ( W)

Of course, there’s nothing special about the number 1.96. It just happens to be the multiplier
you need to use if you want a 95% confidence interval. If I'd wanted a 70% confidence interval,
I would have used 1.04 as the magic number rather than 1.96.

8.5.1 A slight mistake in the formula

As usual, I lied. The formula that I've given above for the 95% confidence interval is ap-
proximately correct, but I glossed over an important detail in the discussion. Notice my formula
requires you to use the standard error of the mean, SEM, which in turn requires you to use the
true population standard deviation o. Yet, in Section 8.4 I stressed the fact that we don’t actu-
ally know the true population parameters. Because we don’t know the true value of ¢ we have to
use an estimate of the population standard deviation & instead. This is pretty straightforward to
do, but this has the consequence that we need to use the percentiles of the ¢-distribution rather
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than the normal distribution to calculate our magic number, and the answer depends on the
sample size. When N is very large, we get pretty much the same value using the ¢-distribution
or the normal distribution: 1.96. But when N is small we get a much bigger number when we
use the t distribution: 2.26.

There’s nothing too mysterious about what’s happening here. Bigger values mean that the
confidence interval is wider, indicating that we’re more uncertain about what the true value of
i actually is. When we use the ¢ distribution instead of the normal distribution we get bigger
numbers, indicating that we have more uncertainty. And why do we have that extra uncertainty?
Well, because our estimate of the population standard deviation & might be wrong! If it’s wrong,
it implies that we’re a bit less sure about what our sampling distribution of the mean actually
looks like, and this uncertainty ends up getting reflected in a wider confidence interval.

8.5.2 Interpreting a confidence interval

The hardest thing about confidence intervals is understanding what they mean. Whenever
people first encounter confidence intervals, the first instinct is almost always to say that “there
is a 95% probability that the true mean lies inside the confidence interval”. It’s simple and it
seems to capture the common sense idea of what it means to say that I am “95% confident”. Un-
fortunately, it’s not quite right. The intuitive definition relies very heavily on your own personal
beliefs about the value of the population mean. I say that I am 95% confident because those
are my beliefs. In everyday life that’s perfectly okay, but if you remember back to Section 7.2,
you’ll notice that talking about personal belief and confidence is a Bayesian idea. However, con-
fidence intervals are not Bayesian tools. Like everything else in this chapter, confidence intervals
are frequentist tools, and if you are going to use frequentist methods then it’s not appropriate
to attach a Bayesian interpretation to them. If you use frequentist methods, you must adopt
frequentist interpretations!

Okay, so if that’s not the right answer, what is? Remember what we said about frequentist
probability. The only way we are allowed to make “probability statements” is to talk about
a sequence of events, and to count up the frequencies of different kinds of events. From that
perspective, the interpretation of a 95% confidence interval must have something to do with
replication. Specifically, if we replicated the experiment over and over again and computed
a 95% confidence interval for each replication, then 95% of those intervals would contain the
true mean. More generally, 95% of all confidence intervals constructed using this procedure
should contain the true population mean. This idea is illustrated in Figure 8.12, which shows
50 confidence intervals constructed for a “measure 10 IQ scores” experiment (top panel) and
another 50 confidence intervals for a “measure 25 IQ) scores” experiment (bottom panel). A bit
fortuitously, across the 100 replications that I simulated, it turned out that exactly 95 of them
contained the true mean.

The critical difference here is that the Bayesian claim makes a probability statement about
the population mean (i.e., it refers to our uncertainty about the population mean), which is
not allowed under the frequentist interpretation of probability because you can’t “replicate” a
population! In the frequentist claim, the population mean is fixed and no probabilistic claims can
be made about it. Confidence intervals, however, are repeatable so we can replicate experiments.
Therefore a frequentist is allowed to talk about the probability that the confidence interval (a
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Figure 8.12: 95% confidence intervals. The top (panel a) shows 50 simulated replications of an
experiment in which we measure the IQs of 10 people. The dot marks the location of the sample
mean and the line shows the 95% confidence interval. In total 47 of the 50 confidence intervals
do contain the true mean (i.e., 100), but the three intervals marked with asterisks do not. The
lower graph (panel b) shows a similar simulation, but this time we simulate replications of an
experiment that measures the 1Qs of 25 people.
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random variable) contains the true mean, but is not allowed to talk about the probability that
the true population mean (not a repeatable event) falls within the confidence interval.

I know that this seems a little pedantic, but it does matter. It matters because the difference
in interpretation leads to a difference in the mathematics. There is a Bayesian alternative to
confidence intervals, known as credible intervals. In most situations credible intervals are quite
similar to confidence intervals, but in other cases they are drastically different. As promised,
though, T’ll talk more about the Bayesian perspective in Chapter 16.

8.5.3 Calculating confidence intervals in jamovi

As far as I can tell, jamovi does not (yet) include a simple way to calculate confidence
intervals for the mean as part of the ‘Descriptives’ functionality. But the ‘Descriptives’ do have
a check box for the S.E. Mean, so you can use this to calculate the lower 95% confidence interval
as:

Mean - (1.96 * S.E. Mean) , and the upper 95% confidence interval as:
Mean + (1.96 * S.E. Mean)

95% confidence intervals are the de facto standard in psychology. So, for example, if T load
the IQsim.omv file, check mean and S.E mean under ‘Descriptives, I can work out the confidence
interval associated with the simulated mean 1Q:

Lower 95% CI = 99.68 - (1.96 * 0.15) = 99.39
Upper 95% CI = 99.68 + (1.96 * 0.15) = 99.98

So, in our simulated large sample data with N=10,000, the mean IQ score is 99.68 with a
95% CI from 99.39 to 99.98. Hopefully that’s fairly clear. So, although there currently is not
a straightforward way to get jamovi to calculate the confidence interval as part of the variable
‘Descriptives’ options, if we wanted to we could pretty easily work it out by hand.

Similarly, when it comes to plotting confidence intervals in jamovi, this is not (yet) available
as part of the ‘Descriptives’ options. However, when we get onto learning about specific statis-
tical tests, for example in Chapter 13, we will see that we can plot confidence intervals as part
of the data analysis. That’s pretty cool, so we’ll show you how to do that later on.

8.6

Summary

In this chapter I've covered two main topics. The first half of the chapter talks about sampling
theory, and the second half talks about how we can use sampling theory to construct estimates
of the population parameters. The section breakdown looks like this:

Basic ideas about samples, sampling and populations (Section 8.1)

Statistical theory of sampling: the law of large numbers (Section 8.2), sampling distribu-
tions and the central limit theorem (Section 8.3).

Estimating means and standard deviations (Section 8.4)

Estimating a confidence interval (Section 8.5)
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As always, there’s a lot of topics related to sampling and estimation that aren’t covered in this
chapter, but for an introductory psychology class this is fairly comprehensive I think. For most
applied researchers you won’t need much more theory than this. One big question that I haven’t
touched on in this chapter is what you do when you don’t have a simple random sample. There
is a lot of statistical theory you can draw on to handle this situation, but it’s well beyond the
scope of this book.
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9. Hypothesis testing

The process of induction is the process of assuming the simplest law that can be made
to harmonize with our experience. This process, however, has no logical foundation
but only a psychological one. It is clear that there are no grounds for believing that
the simplest course of events will really happen. It is an hypothesis that the sun will
rise tomorrow: and this means that we do not know whether it will rise.

— Ludwig Wittgenstein'

In the last chapter I discussed the ideas behind estimation, which is one of the two “big ideas”
in inferential statistics. It’s now time to turn our attention to the other big idea, which is
hypothesis testing. In its most abstract form, hypothesis testing is really a very simple idea. The
researcher has some theory about the world and wants to determine whether or not the data
actually support that theory. However, the details are messy and most people find the theory
of hypothesis testing to be the most frustrating part of statistics. The structure of the chapter
is as follows. First, I'll describe how hypothesis testing works in a fair amount of detail, using a
simple running example to show you how a hypothesis test is “built”. I'll try to avoid being too
dogmatic while doing so, and focus instead on the underlying logic of the testing procedure.?
Afterwards, I'll spend a bit of time talking about the various dogmas, rules and heresies that
surround the theory of hypothesis testing.

9.1

A menagerie of hypotheses

Eventually we all succumb to madness. For me, that day will arrive once I’m finally promoted to
full professor. Safely ensconced in my ivory tower, happily protected by tenure, I will finally be

The quote comes from Wittgenstein’s (1922) text, Tractatus Logico-Philosphicus.

2A technical note. The description below differs subtly from the standard description given in a lot of intro-
ductory texts. The orthodox theory of null hypothesis testing emerged from the work of Sir Ronald Fisher and
Jerzy Neyman in the early 20th century; but Fisher and Neyman actually had very different views about how it
should work. The standard treatment of hypothesis testing that most texts use is a hybrid of the two approaches.
The treatment here is a little more Neyman-style than the orthodox view, especially as regards the meaning of
the p value.
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able to take leave of my senses (so to speak) and indulge in that most thoroughly unproductive
line of psychological research, the search for extrasensory perception (ESP).3

Let’s suppose that this glorious day has come. My first study is a simple one in which I seek
to test whether clairvoyance exists. Each participant sits down at a table and is shown a card
by an experimenter. The card is black on one side and white on the other. The experimenter
takes the card away and places it on a table in an adjacent room. The card is placed black
side up or white side up completely at random, with the randomisation occurring only after the
experimenter has left the room with the participant. A second experimenter comes in and asks
the participant which side of the card is now facing upwards. It’s purely a one-shot experiment.
Each person sees only one card and gives only one answer, and at no stage is the participant
actually in contact with someone who knows the right answer. My data set, therefore, is very
simple. I have asked the question of N people and some number X of these people have given
the correct response. To make things concrete, let’s suppose that I have tested N = 100 people
and X = 62 of these got the answer right. A surprisingly large number, sure, but is it large
enough for me to feel safe in claiming I’ve found evidence for ESP? This is the situation where
hypothesis testing comes in useful. However, before we talk about how to test hypotheses, we
need to be clear about what we mean by hypotheses.

9.1.1 Research hypotheses versus statistical hypotheses

The first distinction that you need to keep clear in your mind is between research hypotheses
and statistical hypotheses. In my ESP study my overall scientific goal is to demonstrate that
clairvoyance exists. In this situation I have a clear research goal: I am hoping to discover
evidence for ESP. In other situations I might actually be a lot more neutral than that, so I
might say that my research goal is to determine whether or not clairvoyance exists. Regardless
of how I want to portray myself, the basic point that I'm trying to convey here is that a research
hypothesis involves making a substantive, testable scientific claim. If you are a psychologist
then your research hypotheses are fundamentally about psychological constructs. Any of the
following would count as research hypotheses:

e Listening to music reduces your ability to pay attention to other things. This is a claim
about the causal relationship between two psychologically meaningful concepts (listening
to music and paying attention to things), so it’s a perfectly reasonable research hypothesis.

o Intelligence is related to personality. Like the last one, this is a relational claim about two
psychological constructs (intelligence and personality), but the claim is weaker: correla-
tional not causal.

e Intelligence is speed of information processing. This hypothesis has a quite different char-
acter. It’s not actually a relational claim at all. It’s an ontological claim about the funda-
mental character of intelligence (and I'm pretty sure it’s wrong). It’s worth expanding on

3My apologies to anyone who actually believes in this stuff, but on my reading of the literature on ESP it’s
just not reasonable to think this is real. To be fair, though, some of the studies are rigorously designed, so it’s
actually an interesting area for thinking about psychological research design. And of course it’s a free country
so you can spend your own time and effort proving me wrong if you like, but I wouldn’t think that’s a terribly
practical use of your intellect.
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this one actually. It’s usually easier to think about how to construct experiments to test
research hypotheses of the form “does X affect Y?” than it is to address claims like “what
is X?” And in practice what usually happens is that you find ways of testing relational
claims that follow from your ontological ones. For instance, if I believe that intelligence is
speed of information processing in the brain, my experiments will often involve looking for
relationships between measures of intelligence and measures of speed. As a consequence
most everyday research questions do tend to be relational in nature, but they’re almost
always motivated by deeper ontological questions about the state of nature.

Notice that in practice, my research hypotheses could overlap a lot. My ultimate goal in the ESP
experiment might be to test an ontological claim like “ESP exists”, but I might operationally
restrict myself to a narrower hypothesis like “Some people can ‘see’ objects in a clairvoyant
fashion”. That said, there are some things that really don’t count as proper research hypotheses
in any meaningful sense:

e Love is a battlefield. This is too vague to be testable. Whilst it’s okay for a research
hypothesis to have a degree of vagueness to it, it has to be possible to operationalise your
theoretical ideas. Maybe I’'m just not creative enough to see it, but I can’t see how this
can be converted into any concrete research design. If that’s true then this isn’t a scientific
research hypothesis, it’s a pop song. That doesn’t mean it’s not interesting. A lot of deep
questions that humans have fall into this category. Maybe one day science will be able to
construct testable theories of love, or to test to see if God exists, and so on. But right now
we can’t, and I wouldn’t bet on ever seeing a satisfying scientific approach to either.

o The first rule of tautology club is the first rule of tautology club. This is not a substantive
claim of any kind. It’s true by definition. No conceivable state of nature could possibly be
inconsistent with this claim. We say that this is an unfalsifiable hypothesis, and as such it
is outside the domain of science. Whatever else you do in science your claims must have
the possibility of being wrong.

e More people in my experiment will say “yes” than “no”. This one fails as a research
hypothesis because it’s a claim about the data set, not about the psychology (unless of
course your actual research question is whether people have some kind of “yes” bias!).
Actually, this hypothesis is starting to sound more like a statistical hypothesis than a
research hypothesis.

As you can see, research hypotheses can be somewhat messy at times and ultimately they
are scientific claims. Statistical hypotheses are neither of these two things. Statistical hy-
potheses must be mathematically precise and they must correspond to specific claims about the
characteristics of the data generating mechanism (i.e., the “population”). Even so, the intent is
that statistical hypotheses bear a clear relationship to the substantive research hypotheses that
you care about! For instance, in my ESP study my research hypothesis is that some people are
able to see through walls or whatever. What I want to do is to “map” this onto a statement
about how the data were generated. So let’s think about what that statement would be. The
quantity that I'm interested in within the experiment is P(“correct”), the true-but-unknown
probability with which the participants in my experiment answer the question correctly. Let’s
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use the Greek letter 6 (theta) to refer to this probability. Here are four different statistical
hypotheses:

e If ESP doesn’t exist and if my experiment is well designed then my participants are just
guessing. So I should expect them to get it right half of the time and so my statistical
hypothesis is that the true probability of choosing correctly is 8 = 0.5.

e Alternatively, suppose ESP does exist and participants can see the card. If that’s true
people will perform better than chance and the statistical hypothesis is that 8 > 0.5.

e A third possibility is that ESP does exist, but the colours are all reversed and people don’t
realise it (okay, that’s wacky, but you never know). If that’s how it works then you'd
expect people’s performance to be below chance. This would correspond to a statistical
hypothesis that 8 < 0.5.

e Finally, suppose ESP exists but I have no idea whether people are seeing the right colour
or the wrong one. In that case the only claim I could make about the data would be that
the probability of making the correct answer is not equal to 0.5. This corresponds to the
statistical hypothesis that 6 # 0.5.

All of these are legitimate examples of a statistical hypothesis because they are statements about
a population parameter and are meaningfully related to my experiment.

What this discussion makes clear, I hope, is that when attempting to construct a statistical
hypothesis test the researcher actually has two quite distinct hypotheses to consider. First, he
or she has a research hypothesis (a claim about psychology), and this then corresponds to a
statistical hypothesis (a claim about the data generating population). In my ESP example these
might be:

Dani’s research hypothesis: “ESP exists”
Dani’s statistical hypothesis: 6 # 0.5

And a key thing to recognise is this. A statistical hypothesis test is a test of the statistical
hypothesis, not the research hypothesis. If your study is badly designed then the link between
your research hypothesis and your statistical hypothesis is broken. To give a silly example,
suppose that my ESP study was conducted in a situation where the participant can actually see
the card reflected in a window. If that happens I would be able to find very strong evidence
that 6 # 0.5, but this would tell us nothing about whether “ESP exists”.

9.1.2 Null hypotheses and alternative hypotheses

So far, so good. I have a research hypothesis that corresponds to what I want to believe
about the world, and I can map it onto a statistical hypothesis that corresponds to what I
want to believe about how the data were generated. It’s at this point that things get somewhat
counter-intuitive for a lot of people. Because what I’'m about to do is invent a new statistical
hypothesis (the “null” hypothesis, Hp) that corresponds to the exact opposite of what I want
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to believe, and then focus exclusively on that almost to the neglect of the thing I'm actually
interested in (which is now called the “alternative” hypothesis, Hi). In our ESP example, the
null hypothesis is that § = 0.5, since that’s what we’d expect if ESP didn’t exist. My hope, of
course, is that ESP is totally real and so the alternative to this null hypothesis is 8 # 0.5. In
essence, what we’re doing here is dividing up the possible values of # into two groups: those
values that I really hope aren’t true (the null), and those values that I'd be happy with if they
turn out to be right (the alternative). Having done so, the important thing to recognise is that
the goal of a hypothesis test is not to show that the alternative hypothesis is (probably) true.
The goal is to show that the null hypothesis is (probably) false. Most people find this pretty
weird.

The best way to think about it, in my experience, is to imagine that a hypothesis test is
a criminal trial?, the trial of the null hypothesis. The null hypothesis is the defendant, the
researcher is the prosecutor, and the statistical test itself is the judge. Just like a criminal trial,
there is a presumption of innocence. The null hypothesis is deemed to be true unless you, the
researcher, can prove beyond a reasonable doubt that it is false. You are free to design your
experiment however you like (within reason, obviously!) and your goal when doing so is to
maximise the chance that the data will yield a conviction for the crime of being false. The catch
is that the statistical test sets the rules of the trial and those rules are designed to protect the
null hypothesis, specifically to ensure that if the null hypothesis is actually true the chances
of a false conviction are guaranteed to be low. This is pretty important. After all, the null
hypothesis doesn’t get a lawyer, and given that the researcher is trying desperately to prove it
to be false someone has to protect it.

9.2
Two types of errors

Before going into details about how a statistical test is constructed it’s useful to understand the
philosophy behind it. T hinted at it when pointing out the similarity between a null hypothesis
test and a criminal trial, but I should now be explicit. Ideally, we would like to construct our
test so that we never make any errors. Unfortunately, since the world is messy, this is never
possible. Sometimes you’re just really unlucky. For instance, suppose you flip a coin 10 times in
a row and it comes up heads all 10 times. That feels like very strong evidence for a conclusion
that the coin is biased, but of course there’s a 1 in 1024 chance that this would happen even
if the coin was totally fair. In other words, in real life we always have to accept that there’s a
chance that we made a mistake. As a consequence the goal behind statistical hypothesis testing
is not to eliminate errors, but to minimise them.

At this point, we need to be a bit more precise about what we mean by “errors”. First, let’s
state the obvious. It is either the case that the null hypothesis is true or that it is false, and our

4This analogy only works if you’re from an adversarial legal system like UK /US/Australia. As I understand
these things, the French inquisitorial system is quite different.
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test will either retain the null hypothesis or reject it.> So, as the table below illustrates, after
we run the test and make our choice one of four things might have happened:

‘ retain Hy reject Hy
Hj is true | correct decision  error (type I)
Hj is false | error (type II)  correct decision

As a consequence there are actually two different types of error here. If we reject a null hypothesis
that is actually true then we have made a type I error. On the other hand, if we retain the
null hypothesis when it is in fact false then we have made a type 1I error.

Remember how I said that statistical testing was kind of like a criminal trial? Well, I meant
it. A criminal trial requires that you establish “beyond a reasonable doubt” that the defendant
did it. All of the evidential rules are (in theory, at least) designed to ensure that there’s (almost)
no chance of wrongfully convicting an innocent defendant. The trial is designed to protect the
rights of a defendant, as the English jurist William Blackstone famously said, it is “better that
ten guilty persons escape than that one innocent suffer.” In other words, a criminal trial doesn’t
treat the two types of error in the same way. Punishing the innocent is deemed to be much
worse than letting the guilty go free. A statistical test is pretty much the same. The single most
important design principle of the test is to control the probability of a type I error, to keep it
below some fixed probability. This probability, which is denoted «, is called the significance
level of the test. And I’ll say it again, because it is so central to the whole set-up, a hypothesis
test is said to have significance level « if the type I error rate is no larger than «.

So, what about the type II error rate? Well, we’d also like to keep those under control too,
and we denote this probability by 5. However, it’s much more common to refer to the power
of the test, that is the probability with which we reject a null hypothesis when it really is false,
which is 1 — 3. To help keep this straight, here’s the same table again but with the relevant
numbers added:

‘ retain Hy reject Hy
Hy is true | 1 — a (probability of correct retention) a (type I error rate)
H is false B (type II error rate) 1 — B (power of the test)

A “powerful” hypothesis test is one that has a small value of 3, while still keeping « fixed at
some (small) desired level. By convention, scientists make use of three different « levels: .05, .01

5An aside regarding the language you use to talk about hypothesis testing. First, one thing you really want
to avoid is the word “prove”. A statistical test really doesn’t prove that a hypothesis is true or false. Proof
implies certainty and, as the saying goes, statistics means never having to say you're certain. On that point
almost everyone would agree. However, beyond that there’s a fair amount of confusion. Some people argue that
you're only allowed to make statements like “rejected the null”, “failed to reject the null”, or possibly “retained
the null”. According to this line of thinking you can’t say things like “accept the alternative” or “accept the
null”. Personally I think this is too strong. In my opinion, this conflates null hypothesis testing with Karl
Popper’s falsificationist view of the scientific process. Whilst there are similarities between falsificationism and
null hypothesis testing, they aren’t equivalent. However, whilst I personally think it’s fine to talk about accepting
a hypothesis (on the proviso that “acceptance” doesn’t actually mean that it’s necessarily true, especially in the
case of the null hypothesis), many people will disagree. And more to the point, you should be aware that this
particular weirdness exists so that you're not caught unawares by it when writing up your own results.
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and .001. Notice the asymmetry here; the tests are designed to ensure that the a level is kept
small but there’s no corresponding guarantee regarding 5. We’d certainly like the type II error
rate to be small and we try to design tests that keep it small, but this is typically secondary
to the overwhelming need to control the type I error rate. As Blackstone might have said if he
were a statistician, it is “better to retain 10 false null hypotheses than to reject a single true
one”. To be honest, I don’t know that I agree with this philosophy. There are situations where
I think it makes sense, and situations where I think it doesn’t, but that’s neither here nor there.
It’s how the tests are built.

9.3

Test statistics and sampling distributions

At this point we need to start talking specifics about how a hypothesis test is constructed. To
that end, let’s return to the ESP example. Let’s ignore the actual data that we obtained, for
the moment, and think about the structure of the experiment. Regardless of what the actual
numbers are, the form of the data is that X out of N people correctly identified the colour of
the hidden card. Moreover, let’s suppose for the moment that the null hypothesis really is true,
that ESP doesn’t exist and the true probability that anyone picks the correct colour is exactly
0 = 0.5. What would we expect the data to look like? Well, obviously we’d expect the proportion
of people who make the correct response to be pretty close to 50%. Or, to phrase this in more
mathematical terms, we’d say that X /N is approximately 0.5. Of course, we wouldn’t expect
this fraction to be exactly 0.5. If, for example, we tested N = 100 people and X = 53 of them
got the question right, we’d probably be forced to concede that the data are quite consistent
with the null hypothesis. On the other hand, if X = 99 of our participants got the question
right then we’d feel pretty confident that the null hypothesis is wrong. Similarly, if only X = 3
people got the answer right we’d be similarly confident that the null was wrong. Let’s be a
little more technical about this. We have a quantity X that we can calculate by looking at our
data. After looking at the value of X we make a decision about whether to believe that the null
hypothesis is correct, or to reject the null hypothesis in favour of the alternative. The name for
this thing that we calculate to guide our choices is a test statistic.

Having chosen a test statistic, the next step is to state precisely which values of the test
statistic would cause is to reject the null hypothesis, and which values would cause us to keep it.
In order to do so we need to determine what the sampling distribution of the test statistic
would be if the null hypothesis were actually true (we talked about sampling distributions earlier
in Section 8.3.1). Why do we need this? Because this distribution tells us exactly what values
of X our null hypothesis would lead us to expect. And, therefore, we can use this distribution
as a tool for assessing how closely the null hypothesis agrees with our data.

How do we actually determine the sampling distribution of the test statistic? For a lot of
hypothesis tests this step is actually quite complicated, and later on in the book you’ll see me
being slightly evasive about it for some of the tests (some of them I don’t even understand
myself). However, sometimes it’s very easy. And, fortunately for us, our ESP example provides
us with one of the easiest cases. Our population parameter 6 is just the overall probability
that people respond correctly when asked the question, and our test statistic X is the count
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Sampling Distribution for X if the Null is True
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Figure 9.1: The sampling distribution for our test statistic X when the null hypothesis is true.
For our ESP scenario this is a binomial distribution. Not surprisingly, since the null hypothesis
says that the probability of a correct response is § = .5, the sampling distribution says that the
most likely value is 50 (out of 100) correct responses. Most of the probability mass lies between
40 and 60.

of the number of people who did so out of a sample size of N. We've seen a distribution like
this before, in Section 7.4, and that’s exactly what the binomial distribution describes! So, to
use the notation and terminology that I introduced in that section, we would say that the null
hypothesis predicts that X is binomially distributed, which is written

X ~ Binomial(#, N)

Since the null hypothesis states that & = 0.5 and our experiment has N = 100 people, we have
the sampling distribution we need. This sampling distribution is plotted in Figure 9.1. No
surprises really, the null hypothesis says that X = 50 is the most likely outcome, and it says
that we’re almost certain to see somewhere between 40 and 60 correct responses.
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9.4
Making decisions

Okay, we're very close to being finished. We’ve constructed a test statistic (X) and we chose
this test statistic in such a way that we’re pretty confident that if X is close to N/2 then we
should retain the null, and if not we should reject it. The question that remains is this. Exactly
which values of the test statistic should we associate with the null hypothesis, and exactly which
values go with the alternative hypothesis? In my ESP study, for example, I've observed a value
of X = 62. What decision should I make? Should I choose to believe the null hypothesis or the
alternative hypothesis?

9.4.1 Critical regions and critical values

To answer this question we need to introduce the concept of a critical region for the test
statistic X. The critical region of the test corresponds to those values of X that would lead us
to reject null hypothesis (which is why the critical region is also sometimes called the rejection
region). How do we find this critical region? Well, let’s consider what we know:

e X should be very big or very small in order to reject the null hypothesis.
e If the null hypothesis is true, the sampling distribution of X is Binomial(0.5, V).

e If a = .05, the critical region must cover 5% of this sampling distribution.

It’s important to make sure you understand this last point. The critical region corresponds to
those values of X for which we would reject the null hypothesis, and the sampling distribution
in question describes the probability that we would obtain a particular value of X if the null
hypothesis were actually true. Now, let’s suppose that we chose a critical region that covers
20% of the sampling distribution, and suppose that the null hypothesis is actually true. What
would be the probability of incorrectly rejecting the null? The answer is of course 20%. And,
therefore, we would have built a test that had an « level of 0.2. If we want « = .05, the critical
region is only allowed to cover 5% of the sampling distribution of our test statistic.

As it turns out those three things uniquely solve the problem. Our critical region consists of
the most extreme values, known as the tails of the distribution. This is illustrated in Figure 9.2.
If we want a = .05 then our critical regions correspond to X < 40 and X > 60.5 That is, if the
number of people saying “true” is between 41 and 59, then we should retain the null hypothesis.
If the number is between 0 to 40, or between 60 to 100, then we should reject the null hypothesis.
The numbers 40 and 60 are often referred to as the critical values since they define the edges
of the critical region.

SStrictly speaking, the test I just constructed has o = .057, which is a bit too generous. However, if I’d chosen
39 and 61 to be the boundaries for the critical region then the critical region only covers 3.5% of the distribution.
I figured that it makes more sense to use 40 and 60 as my critical values, and be willing to tolerate a 5.7% type I
error rate, since that’s as close as I can get to a value of a = .05.
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Critical Regions for a Two-Sided Test
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Figure 9.2: The critical region associated with the hypothesis test for the ESP study, for a
hypothesis test with a significance level of o = .05. The plot shows the sampling distribution
of X under the null hypothesis (i.e., same as Figure 9.1). The grey bars correspond to those
values of X for which we would retain the null hypothesis. The blue (darker shaded) bars show
the critical region, those values of X for which we would reject the null. Because the alternative
hypothesis is two sided (i.e., allows both # < .5 and 6 > .5), the critical region covers both tails
of the distribution. To ensure an « level of .05, we need to ensure that each of the two regions
encompasses 2.5% of the sampling distribution.

At this point, our hypothesis test is essentially complete:

1. (1) we choose an « level (e.g., a = .05;

2. (2) come up with some test statistic (e.g., X) that does a good job (in some meaningful
sense) of comparing Hy to Hi;

3. (3) figure out the sampling distribution of the test statistic on the assumption that the
null hypothesis is true (in this case, binomial); and then

4. (4) calculate the critical region that produces an appropriate « level (0-40 and 60-100).

All that we have to do now is calculate the value of the test statistic for the real data (e.g.,
X = 62) and then compare it to the critical values to make our decision. Since 62 is greater than
the critical value of 60 we would reject the null hypothesis. Or, to phrase it slightly differently,
we say that the test has produced a statistically significant result.
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9.42 A note on statistical “significance”

Like other occult techniques of divination, the statistical method has a private jargon
deliberately contrived to obscure its methods from non-practitioners.

— Attributed to G. O. Ashley”

A very brief digression is in order at this point, regarding the word “significant”. The concept
of statistical significance is actually a very simple one, but has a very unfortunate name. If the
data allow us to reject the null hypothesis, we say that “the result is statistically significant”,
which is often shortened to “the result is significant”. This terminology is rather old and dates
back to a time when “significant” just meant something like “indicated”, rather than its modern
meaning which is much closer to “important”. As a result, a lot of modern readers get very
confused when they start learning statistics because they think that a “significant result” must
be an important one. It doesn’t mean that at all. All that “statistically significant” means
is that the data allowed us to reject a null hypothesis. Whether or not the result is actually
important in the real world is a very different question, and depends on all sorts of other things.

9.4.3 The difference between one sided and two sided tests

There’s one more thing I want to point out about the hypothesis test that I've just constructed.
If we take a moment to think about the statistical hypotheses I've been using,

Ho: 0=.5
Hi: 0#.5

we notice that the alternative hypothesis covers both the possibility that 8 < .5 and the possibility
that # > .5. This makes sense if I really think that ESP could produce either better-than-
chance performance or worse-than-chance performance (and there are some people who think
that). In statistical language this is an example of a two-sided test. It’s called this because
the alternative hypothesis covers the area on both “sides” of the null hypothesis, and as a
consequence the critical region of the test covers both tails of the sampling distribution (2.5%
on either side if v = .05), as illustrated earlier in Figure 9.2.

However, that’s not the only possibility. I might only be willing to believe in ESP if it
produces better than chance performance. If so, then my alternative hypothesis would only
covers the possibility that 8 > .5, and as a consequence the null hypothesis now becomes 6 < .5

Hy : 0<.5
H1: 0> .5

When this happens, we have what’s called a one-sided test and the critical region only covers
one tail of the sampling distribution. This is illustrated in Figure 9.3.
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Critical Region for a One-Sided Test

critical region
(5% of the distribution)

s

0 20 40 60 80 100

Number of Correct Responses (X)

Figure 9.3: The critical region for a one sided test. In this case, the alternative hypothesis is
that # > .5 so we would only reject the null hypothesis for large values of X. As a consequence,
the critical region only covers the upper tail of the sampling distribution, specifically the upper
5% of the distribution. Contrast this to the two-sided version in Figure 9.2.

9.5
The p value of a test

In one sense, our hypothesis test is complete. We’ve constructed a test statistic, figured out its
sampling distribution if the null hypothesis is true, and then constructed the critical region for
the test. Nevertheless, I've actually omitted the most important number of all, the p value.
It is to this topic that we now turn. There are two somewhat different ways of interpreting
a p value, one proposed by Sir Ronald Fisher and the other by Jerzy Neyman. Both versions
are legitimate, though they reflect very different ways of thinking about hypothesis tests. Most
introductory textbooks tend to give Fisher’s version only, but I think that’s a bit of a shame. To
my mind, Neyman’s version is cleaner and actually better reflects the logic of the null hypothesis
test. You might disagree though, so I've included both. I'll start with Neyman’s version.

"The internet seems fairly convinced that Ashley said this, though I can’t for the life of me find anyone willing
to give a source for the claim.
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9.5.1 A softer view of decision making

One problem with the hypothesis testing procedure that I've described is that it makes no dis-
tinction at all between a result that is “barely significant” and those that are “highly significant”.
For instance, in my ESP study the data I obtained only just fell inside the critical region, so
I did get a significant effect but it was a pretty near thing. In contrast, suppose that I'd run
a study in which X = 97 out of my N = 100 participants got the answer right. This would
obviously be significant too but my a much larger margin, such that there’s really no ambiguity
about this at all. The procedure that I have already described makes no distinction between
the two. If I adopt the standard convention of allowing o = .05 as my acceptable Type I error
rate, then both of these are significant results.

This is where the p value comes in handy. To understand how it works, let’s suppose that
we ran lots of hypothesis tests on the same data set, but with a different value of « in each case.
When we do that for my original ESP data what we’d get is something like this

Value of « ‘0.05 0.04 0.03 0.02 0.01
Reject the null? ‘ Yes Yes Yes No No

When we test the ESP data (X = 62 successes out of N = 100 observations), using « levels of
.03 and above, we’d always find ourselves rejecting the null hypothesis. For « levels of .02 and
below we always end up retaining the null hypothesis. Therefore, somewhere between .02 and
.03 there must be a smallest value of o that would allow us to reject the null hypothesis for this
data. This is the p value. As it turns out the ESP data has p = .021. In short,

p is defined to be the smallest Type I error rate («) that you have to be willing to
tolerate if you want to reject the null hypothesis.

If it turns out that p describes an error rate that you find intolerable, then you must retain
the null. If you’re comfortable with an error rate equal to p, then it’s okay to reject the null
hypothesis in favour of your preferred alternative.

In effect, p is a summary of all the possible hypothesis tests that you could have run, taken
across all possible o values. And as a consequence it has the effect of “softening” our decision
process. For those tests in which p < a you would have rejected the null hypothesis, whereas
for those tests in which p > « you would have retained the null. In my ESP study I obtained
X = 62 and as a consequence I've ended up with p = .021. So the error rate I have to tolerate
is 2.1%. In contrast, suppose my experiment had yielded X = 97. What happens to my p value
now? This time it’s shrunk to p = 1.36 x 1072, which is a tiny, tiny® Type I error rate. For this
second case I would be able to reject the null hypothesis with a lot more confidence, because I
only have to be “willing” to tolerate a type I error rate of about 1 in 10 trillion trillion in order
to justify my decision to reject.

8That’s p = .000000000000000000000000136 for folks that don’t like scientific notation!
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9.5.2 The probability of extreme data

The second definition of the p-value comes from Sir Ronald Fisher, and it’s actually this one
that you tend to see in most introductory statistics textbooks. Notice how, when I constructed
the critical region, it corresponded to the tails (i.e., extreme values) of the sampling distribution?
That’s not a coincidence, almost all “good” tests have this characteristic (good in the sense of
minimising our type II error rate, 3). The reason for that is that a good critical region almost
always corresponds to those values of the test statistic that are least likely to be observed if the
null hypothesis is true. If this rule is true, then we can define the p-value as the probability that
we would have observed a test statistic that is at least as extreme as the one we actually did
get. In other words, if the data are extremely implausible according to the null hypothesis, then
the null hypothesis is probably wrong.

9.5.3 A common mistake

Okay, so you can see that there are two rather different but legitimate ways to interpret the
p value, one based on Neyman’s approach to hypothesis testing and the other based on Fisher’s.
Unfortunately, there is a third explanation that people sometimes give, especially when they’re
first learning statistics, and it is absolutely and completely wrong. This mistaken approach is
to refer to the p value as “the probability that the null hypothesis is true”. It’s an intuitively
appealing way to think, but it’s wrong in two key respects. First, null hypothesis testing is
a frequentist tool and the frequentist approach to probability does not allow you to assign
probabilities to the null hypothesis. According to this view of probability, the null hypothesis
is either true or it is not, it cannot have a “5% chance” of being true. Second, even within the
Bayesian approach, which does let you assign probabilities to hypotheses, the p value would not
correspond to the probability that the null is true. This interpretation is entirely inconsistent
with the mathematics of how the p value is calculated. Put bluntly, despite the intuitive appeal
of thinking this way, there is no justification for interpreting a p value this way. Never do it.

9.6
Reporting the results of a hypothesis test

When writing up the results of a hypothesis test there’s usually several pieces of information that
you need to report, but it varies a fair bit from test to test. Throughout the rest of the book I'll
spend a little time talking about how to report the results of different tests (see Section 10.1.9 for
a particularly detailed example), so that you can get a feel for how it’s usually done. However,
regardless of what test you’re doing, the one thing that you always have to do is say something
about the p value and whether or not the outcome was significant.

The fact that you have to do this is unsurprising, it’s the whole point of doing the test.
What might be surprising is the fact that there is some contention over exactly how you’re
supposed to do it. Leaving aside those people who completely disagree with the entire framework
underpinning null hypothesis testing, there’s a certain amount of tension that exists regarding
whether or not to report the exact p value that you obtained, or if you should state only that
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p < « for a significance level that you chose in advance (e.g., p < .05).

9.6.1 The issue

To see why this is an issue, the key thing to recognise is that p values are terribly convenient.
In practice, the fact that we can compute a p value means that we don’t actually have to specify
any « level at all in order to run the test. Instead, what you can do is calculate your p value and
interpret it directly. If you get p = .062, then it means that you’d have to be willing to tolerate
a Type I error rate of 6.2% to justify rejecting the null. If you personally find 6.2% intolerable
then you retain the null. Therefore, the argument goes, why don’t we just report the actual p
value and let the reader make up their own minds about what an acceptable Type I error rate
is? This approach has the big advantage of “softening” the decision making process. In fact, if
you accept the Neyman definition of the p value, that’s the whole point of the p value. We no
longer have a fixed significance level of a = .05 as a bright line separating “accept” from “reject”
decisions, and this removes the rather pathological problem of being forced to treat p = .051 in
a fundamentally different way to p = .049.

This flexibility is both the advantage and the disadvantage to the p value. The reason why a
lot of people don’t like the idea of reporting an exact p value is that it gives the researcher a bit
too much freedom. In particular, it lets you change your mind about what error tolerance you're
willing to put up with after you look at the data. For instance, consider my ESP experiment.
Suppose I ran my test and ended up with a p value of .09. Should I accept or reject? Now, to
be honest, I haven’t yet bothered to think about what level of Type I error I'm “really” willing
to accept. I don’t have an opinion on that topic. But I do have an opinion about whether or
not ESP exists, and I definitely have an opinion about whether my research should be published
in a reputable scientific journal. And amazingly, now that I’ve looked at the data I'm starting
to think that a 9% error rate isn’t so bad, especially when compared to how annoying it would
be to have to admit to the world that my experiment has failed. So, to avoid looking like I just
made it up after the fact, I now say that my « is .1, with the argument that a 10% type I error
rate isn’t too bad and at that level my test is significant! I win.

In other words, the worry here is that I might have the best of intentions, and be the most
honest of people, but the temptation to just “shade” things a little bit here and there is really,
really strong. As anyone who has ever run an experiment can attest, it’s a long and difficult
process and you often get very attached to your hypotheses. It’s hard to let go and admit the
experiment didn’t find what you wanted it to find. And that’s the danger here. If we use the
“raw” p-value, people will start interpreting the data in terms of what they want to believe, not
what the data are actually saying and, if we allow that, why are we even bothering to do science
at all? Why not let everyone believe whatever they like about anything, regardless of what the
facts are? Okay, that’s a bit extreme, but that’s where the worry comes from. According to this
view, you really must specify your o value in advance and then only report whether the test was
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Table 9.1: A commonly adopted convention for reporting p values: in many places it is conven-
tional to report one of four different things (e.g., p < .05) as shown below. I've included the
“significance stars” notation (i.e., a * indicates p < .05) because you sometimes see this notation
produced by statistical software. It’s also worth noting that some people will write n.s. (not
significant) rather than p > .05.

Usual notation | Signif. stars | English translation The null is...
p> .05 The test wasn’t significant Retained
p < .05 * The test was significant at a = .05 Rejected

but not at o = .01 or o« = .001.

p < .01 ok The test was significant at a = .05 Rejected
and a = .01 but not at a = .001.

p < .001 ok The test was significant at all levels Rejected

significant or not. It’s the only way to keep ourselves honest.

9.6.2 Two proposed solutions

In practice, it’s pretty rare for a researcher to specify a single « level ahead of time. Instead,
the convention is that scientists rely on three standard significance levels: .05, .01 and .001.
When reporting your results, you indicate which (if any) of these significance levels allow you
to reject the null hypothesis. This is summarised in Table 9.1. This allows us to soften the
decision rule a little bit, since p < .01 implies that the data meet a stronger evidential standard
than p < .05 would. Nevertheless, since these levels are fixed in advance by convention, it does
prevent people choosing their « level after looking at the data.

Nevertheless, quite a lot of people still prefer to report exact p values. To many people, the
advantage of allowing the reader to make up their own mind about how to interpret p = .06
outweighs any disadvantages. In practice, however, even among those researchers who prefer
exact p values it is quite common to just write p < .001 instead of reporting an exact value for
small p. This is in part because a lot of software doesn’t actually print out the p value when it’s
that small (e.g., SPSS just writes p = .000 whenever p < .001), and in part because a very small
p value can be kind of misleading. The human mind sees a number like .0000000001 and it’s hard
to suppress the gut feeling that the evidence in favour of the alternative hypothesis is a near
certainty. In practice however, this is usually wrong. Life is a big, messy, complicated thing, and
every statistical test ever invented relies on simplifications, approximations and assumptions. As
a consequence, it’s probably not reasonable to walk away from any statistical analysis with a
feeling of confidence stronger than p < .001 implies. In other words, p < .001 is really code for
“as far as this test is concerned, the evidence is overwhelming.”

In light of all this, you might be wondering exactly what you should do. There’s a fair bit of
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contradictory advice on the topic, with some people arguing that you should report the exact p
value, and other people arguing that you should use the tiered approach illustrated in Table 9.1.
As a result, the best advice I can give is to suggest that you look at papers/reports written in
your field and see what the convention seems to be. If there doesn’t seem to be any consistent
pattern, then use whichever method you prefer.

9.7
Running the hypothesis test in practice

At this point some of you might be wondering if this is a “real” hypothesis test, or just a toy
example that I made up. It’s real. In the previous discussion I built the test from first principles,
thinking that it was the simplest possible problem that you might ever encounter in real life.
However, this test already exists. It’s called the binomial test, and it’s implemented by jamovi
as one of the statistical analyses available when you hit the ‘Frequencies’ button. To test the
null hypothesis that the response probability is one-half p = .5,” and using data in which x =
62 of n = 100 people made the correct response, available in the binomialtest.omv data file, we
get the results shown in Figure 9.4.

 YoX ) jamovi
= Data Analyses
Exploration  T-Tests ANOVA  Regression Frequencies Factor Base R jpower  medmod
Proportion Test (2 Outcomes) @ Proportion Test (2 Outcomes)
5 - Binomial Test
- | | & Outcome 95% Confidence Interval
Level  Count  Total  Proportion p Lower Upper
Outcome 0 38 100 038 002098 028 048
1 62 100 062 002098 0.52 072
Note. H,is proportion # 0.5
Values are counts Additional Statistics
Test value ! Confidence intervals
Interval %

Hypothesis
®) # Test value
> Test value

< Test value

Figure 9.4: Binomial test analysis and results in jamovi

Right now, this output looks pretty unfamiliar to you, but you can see that it’s telling you
more or less the right things. Specifically, the p-value of 0.02 is less than the usual choice of
«a = .05, so you can reject the null. We'll talk a lot more about how to read this sort of output
as we go along, and after a while you’ll hopefully find it quite easy to read and understand.

9Note that the p here has nothing to do with a p value. The p argument in the jamovi binomial test corresponds
to the probability of making a correct response, according to the null hypothesis. In other words, it’s the 6 value.
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9.8
Effect size, sample size and power

In previous sections I've emphasised the fact that the major design principle behind statistical
hypothesis testing is that we try to control our Type I error rate. When we fix o = .05 we are
attempting to ensure that only 5% of true null hypotheses are incorrectly rejected. However, this
doesn’t mean that we don’t care about Type II errors. In fact, from the researcher’s perspective,
the error of failing to reject the null when it is actually false is an extremely annoying one. With
that in mind, a secondary goal of hypothesis testing is to try to minimise 3, the Type II error
rate, although we don’t usually talk in terms of minimising Type II errors. Instead, we talk
about maximising the power of the test. Since power is defined as 1 — 3, this is the same thing.

9.8.1 The power function

Sampling Distribution for X if 6=.55

lower critical region upper critical region
(2.5% of the distribution) (2.5% of the distribution)
<« e
....................................... " “|l||l--.............................
[ T T T T 1
0 20 40 60 80 100

Number of Correct Responses (X)

Figure 9.5: Sampling distribution under the alternative hypothesis for a population parameter
value of # = 0.55. A reasonable proportion of the distribution lies in the rejection region.

Let’s take a moment to think about what a Type II error actually is. A Type II error
occurs when the alternative hypothesis is true, but we are nevertheless unable to reject the null
hypothesis. Ideally, we’d be able to calculate a single number 5 that tells us the Type II error
rate, in the same way that we can set o = .05 for the Type I error rate. Unfortunately, this is a
lot trickier to do. To see this, notice that in my ESP study the alternative hypothesis actually
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corresponds to lots of possible values of #. In fact, the alternative hypothesis corresponds to
every value of 6 except 0.5. Let’s suppose that the true probability of someone choosing the
correct response is 55% (i.e., @ = .55). If so, then the true sampling distribution for X is not
the same one that the null hypothesis predicts, as the most likely value for X is now 55 out of
100. Not only that, the whole sampling distribution has now shifted, as shown in Figure 9.5.
The critical regions, of course, do not change. By definition the critical regions are based on
what the null hypothesis predicts. What we’re seeing in this figure is the fact that when the null
hypothesis is wrong, a much larger proportion of the sampling distribution distribution falls in
the critical region. And of course that’s what should happen. The probability of rejecting the
null hypothesis is larger when the null hypothesis is actually false! However 6§ = .55 is not the
only possibility consistent with the alternative hypothesis. Let’s instead suppose that the true
value of 0 is actually 0.7. What happens to the sampling distribution when this occurs? The
answer, shown in Figure 9.6, is that almost the entirety of the sampling distribution has now
moved into the critical region. Therefore, if # = 0.7, the probability of us correctly rejecting the
null hypothesis (i.e., the power of the test) is much larger than if 6 = 0.55. In short, while § = .55
and 6 = .70 are both part of the alternative hypothesis, the Type II error rate is different.

Sampling Distribution for X if 6=.70

lower critical region uppeL[h'tical region
(2.5% of the distribution) (2.5% 9 distribution)
D — i
......................................... || ||II|..
[ T T T T 1
0 20 40 60 80 100

Number of Correct Responses (X)

Figure 9.6: Sampling distribution under the alternative hypothesis for a population parameter
value of # = 0.70. Almost all of the distribution lies in the rejection region.

What all this means is that the power of a test (i.e., 1 — 8) depends on the true value of 6.
To illustrate this, I’ve calculated the expected probability of rejecting the null hypothesis for all
values of 0, and plotted it in Figure 9.7. This plot describes what is usually called the power
function of the test. It’s a nice summary of how good the test is, because it actually tells you
the power (1 — (3) for all possible values of §. As you can see, when the true value of § is very
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Power Function for the Test (N=100)

1.0

0.8

0.4

Probability of Rejecting the Null
0.2

T
0.0 0.2 0.4 0.6 0.8 1.0

True Value of 6

Figure 9.7: The probability that we will reject the null hypothesis, plotted as a function of the
true value of . Obviously, the test is more powerful (greater chance of correct rejection) if the
true value of @ is very different from the value that the null hypothesis specifies (i.e., 6 = .5).
Notice that when 6 actually is equal to .5 (plotted as a black dot), the null hypothesis is in fact
true and rejecting the null hypothesis in this instance would be a Type I error.

close to 0.5, the power of the test drops very sharply, but when it is further away, the power is
large.

9.8.2 Effect size

Since all models are wrong the scientist must be alert to what is importantly wrong.
It is inappropriate to be concerned with mice when there are tigers abroad

— George Box (Box 1976, p. 792)

The plot shown in Figure 9.7 captures a fairly basic point about hypothesis testing. If the
true state of the world is very different from what the null hypothesis predicts then your power
will be very high, but if the true state of the world is similar to the null (but not identical) then
the power of the test is going to be very low. Therefore, it’s useful to be able to have some way
of quantifying how “similar” the true state of the world is to the null hypothesis. A statistic that
does this is called a measure of effect size (e.g., Cohen 1988; Ellis 2010). Effect size is defined
slightly differently in different contexts (and so this section just talks in general terms) but the
qualitative idea that it tries to capture is always the same. How big is the difference between the
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Table 9.2: A crude guide to understanding the relationship between statistical significance and
effect sizes. Basically, if you don’t have a significant result then the effect size is pretty mean-
ingless because you don’t have any evidence that it’s even real. On the other hand, if you do
have a significant effect but your effect size is small then there’s a pretty good chance that your
result (although real) isn’t all that interesting. However, this guide is very crude. It depends
a lot on what exactly you're studying. Small effects can be of massive practical importance in
some situations. So don’t take this table too seriously. It’s a rough guide at best.

big effect size small effect size
significant result difference is real, and difference is real, but
of practical importance might not be interesting

non-significant result | no effect observed no effect observed

true population parameters and the parameter values that are assumed by the null hypothesis?
In our ESP example, if we let 6y = 0.5 denote the value assumed by the null hypothesis and let ¢
denote the true value, then a simple measure of effect size could be something like the difference
between the true value and null (i.e., 8 — 6p), or possibly just the magnitude of this difference,
abs(0 — 6p).

Why calculate effect size? Let’s assume that you’ve run your experiment, collected the data,
and gotten a significant effect when you ran your hypothesis test. Isn’t it enough just to say
that you’ve gotten a significant effect? Surely that’s the point of hypothesis testing? Well, sort
of. Yes, the point of doing a hypothesis test is to try to demonstrate that the null hypothesis is
wrong, but that’s hardly the only thing we’re interested in. If the null hypothesis claimed that
0 = .5 and we show that it’s wrong, we’ve only really told half of the story. Rejecting the null
hypothesis implies that we believe that 6 # .5, but there’s a big difference between ¢ = .51 and
0 = .8. If we find that § = .8, then not only have we found that the null hypothesis is wrong,
it appears to be very wrong. On the other hand, suppose we’ve successfully rejected the null
hypothesis, but it looks like the true value of € is only .51 (this would only be possible with a
very large study). Sure, the null hypothesis is wrong but it’s not at all clear that we actually
care because the effect size is so small. In the context of my ESP study we might still care
since any demonstration of real psychic powers would actually be pretty cool'®, but in other
contexts a 1% difference usually isn’t very interesting, even if it is a real difference. For instance,
suppose we're looking at differences in high school exam scores between males and females and
it turns out that the female scores are 1% higher on average than the males. If I've got data
from thousands of students then this difference will almost certainly be statistically significant,
but regardless of how small the p value is it’s just not very interesting. You’d hardly want to go
around proclaiming a crisis in boys education on the basis of such a tiny difference would you?
It’s for this reason that it is becoming more standard (slowly, but surely) to report some kind of

10 Although in practice a very small effect size is worrying because even very minor methodological flaws might
be responsible for the effect, and in practice no experiment is perfect so there are always methodological issues
to worry about.
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standard measure of effect size along with the the results of the hypothesis test. The hypothesis
test itself tells you whether you should believe that the effect you have observed is real (i.e., not
just due to chance), whereas the effect size tells you whether or not you should care.

9.8.3 Increasing the power of your study

Not surprisingly, scientists are fairly obsessed with maximising the power of their experi-
ments. We want our experiments to work and so we want to maximise the chance of rejecting
the null hypothesis if it is false (and of course we usually want to believe that it is false!). As
we’ve seen, one factor that influences power is the effect size. So the first thing you can do
to increase your power is to increase the effect size. In practice, what this means is that you
want to design your study in such a way that the effect size gets magnified. For instance, in my
ESP study I might believe that psychic powers work best in a quiet, darkened room with fewer
distractions to cloud the mind. Therefore I would try to conduct my experiments in just such
an environment. If I can strengthen people’s ESP abilities somehow then the true value of 8 will
go up'! and therefore my effect size will be larger. In short, clever experimental design is one
way to boost power, because it can alter the effect size.

Unfortunately, it’s often the case that even with the best of experimental designs you may
have only a small effect. Perhaps, for example, ESP really does exist but even under the best of
conditions it’s very very weak. Under those circumstances your best bet for increasing power is
to increase the sample size. In general, the more observations that you have available, the more
likely it is that you can discriminate between two hypotheses. If I ran my ESP experiment with
10 participants and 7 of them correctly guessed the colour of the hidden card you wouldn’t be
terribly impressed. But if I ran it with 10,000 participants, and 7,000 of them got the answer
right, you would be much more likely to think I had discovered something. In other words,
power increases with the sample size. This is illustrated in Figure 9.8, which shows the power of
the test for a true parameter of § = 0.7 for all sample sizes N from 1 to 100, where I'm assuming
that the null hypothesis predicts that 8y = 0.5.

Because power is important, whenever you’re contemplating running an experiment it would
be pretty useful to know how much power you're likely to have. It’s never possible to know
for sure since you can’t possibly know what your real effect size is. However, it’s often (well,
sometimes) possible to guess how big it should be. If so, you can guess what sample size you need!
This idea is called power analysis, and if it’s feasible to do it then it’s very helpful. It can tell
you something about whether you have enough time or money to be able to run the experiment
successfully. It’s increasingly common to see people arguing that power analysis should be a
required part of experimental design, so it’s worth knowing about. I don’t discuss power analysis
in this book, however. This is partly for a boring reason and partly for a substantive one. The
boring reason is that I haven’t had time to write about power analysis yet. The substantive one
is that I'm still a little suspicious of power analysis. Speaking as a researcher, I have very rarely
found myself in a position to be able to do one. It’s either the case that (a) my experiment is

" Notice that the true population parameter § doesn’t necessarily correspond to an immutable fact of nature.
In this context 0 is just the true probability that people would correctly guess the colour of the card in the other
room. As such the population parameter can be influenced by all sorts of things. Of course, this is all on the
assumption that ESP actually exists!
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Figure 9.8: The power of our test plotted as a function of the sample size N. In this case, the
true value of 6 is 0.7 but the null hypothesis is that § = 0.5. Overall, larger N means greater
power. (The small zig-zags in this function occur because of some odd interactions between
0, o and the fact that the binomial distribution is discrete, it doesn’t matter for any serious
purpose).

a bit non-standard and I don’t know how to define effect size properly, or (b) I literally have so
little idea about what the effect size will be that I wouldn’t know how to interpret the answers.
Not only that, after extensive conversations with someone who does stats consulting for a living
(my wife, as it happens), I can’t help but notice that in practice the only time anyone ever asks
her for a power analysis is when she’s helping someone write a grant application. In other words,
the only time any scientist ever seems to want a power analysis in real life is when they’re being
forced to do it by bureaucratic process. It’s not part of anyone’s day to day work. In short,
I've always been of the view that whilst power is an important concept, power analysis is not
as useful as people make it sound, except in the rare cases where (a) someone has figured out
how to calculate power for your actual experimental design and (b) you have a pretty good idea
what the effect size is likely to be.'? Maybe other people have had better experiences than me,
but I've personally never been in a situation where both (a) and (b) were true. Maybe I'll be
convinced otherwise in the future, and probably a future version of this book would include a

20ne possible exception to this is when researchers study the effectiveness of a new medical treatment and
they specify in advance what an important effect size would be to detect, for example over and above any existing
treatment. In this way some information about the potential value of a new treatment can be obtained.
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more detailed discussion of power analysis, but for now this is about as much as I'm comfortable
saying about the topic.

9.9

Some issues to consider

What I've described to you in this chapter is the orthodox framework for null hypothesis signif-
icance testing (NHST). Understanding how NHST works is an absolute necessity because it has
been the dominant approach to inferential statistics ever since it came to prominence in the early
20th century. It’s what the vast majority of working scientists rely on for their data analysis, so
even if you hate it you need to know it. However, the approach is not without problems. There
are a number of quirks in the framework, historical oddities in how it came to be, theoretical
disputes over whether or not the framework is right, and a lot of practical traps for the unwary.
I’'m not going to go into a lot of detail on this topic, but I think it’s worth briefly discussing a
few of these issues.

9.9.1 Neyman versus Fisher

The first thing you should be aware of is that orthodox NHST is actually a mash-up of two
rather different approaches to hypothesis testing, one proposed by Sir Ronald Fisher and the
other proposed by Jerzy Neyman (see Lehmann 2011, for a historical summary). The history is
messy because Fisher and Neyman were real people whose opinions changed over time, and at
no point did either of them offer “the definitive statement” of how we should interpret their work
many decades later. That said, here’s a quick summary of what I take these two approaches to
be.

First, let’s talk about Fisher’s approach. As far as I can tell, Fisher assumed that you
only had the one hypothesis (the null) and that what you want to do is find out if the null
hypothesis is inconsistent with the data. From his perspective, what you should do is check
to see if the data are “sufficiently unlikely” according to the null. In fact, if you remember
back to our earlier discussion, that’s how Fisher defines the p-value. According to Fisher, if the
null hypothesis provided a very poor account of the data then you could safely reject it. But,
since you don’t have any other hypotheses to compare it to, there’s no way of “accepting the
alternative” because you don’t necessarily have an explicitly stated alternative. That’s more or
less all there is to it.

In contrast, Neyman thought that the point of hypothesis testing was as a guide to action
and his approach was somewhat more formal than Fisher’s. His view was that there are multiple
things that you could do (accept the null or accept the alternative) and the point of the test
was to tell you which one the data support. From this perspective, it is critical to specify your
alternative hypothesis properly. If you don’t know what the alternative hypothesis is, then you
don’t know how powerful the test is, or even which action makes sense. His framework genuinely
requires a competition between different hypotheses. For Neyman, the p value didn’t directly
measure the probability of the data (or data more extreme) under the null, it was more of an
abstract description about which “possible tests” were telling you to accept the null, and which
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“possible tests” were telling you to accept the alternative.

As you can see, what we have today is an odd mishmash of the two. We talk about having
both a null hypothesis and an alternative (Neyman), but usually'® define the p value in terms
of exreme data (Fisher), but we still have o values (Neyman). Some of the statistical tests have
explicitly specified alternatives (Neyman) but others are quite vague about it (Fisher). And,
according to some people at least, we're not allowed to talk about accepting the alternative
(Fisher). It’s a mess, but I hope this at least explains why it’s a mess.

9.9.2 Bayesians versus frequentists

Earlier on in this chapter I was quite emphatic about the fact that you cannot interpret the
p value as the probability that the null hypothesis is true. NHST is fundamentally a frequentist
tool (see Chapter 7) and as such it does not allow you to assign probabilities to hypotheses.
The null hypothesis is either true or it is not. The Bayesian approach to statistics interprets
probability as a degree of belief, so it’s totally okay to say that there is a 10% chance that the
null hypothesis is true. That’s just a reflection of the degree of confidence that you have in this
hypothesis. You aren’t allowed to do this within the frequentist approach. Remember, if you're
a frequentist, a probability can only be defined in terms of what happens after a large number of
independent replications (i.e., a long run frequency). If this is your interpretation of probability,
talking about the “probability” that the null hypothesis is true is complete gibberish: a null
hypothesis is either true or it is false. There’s no way you can talk about a long run frequency
for this statement. To talk about “the probability of the null hypothesis” is as meaningless as
“the colour of freedom”. It doesn’t have one!

Most importantly, this isn’t a purely ideological matter. If you decide that you are a Bayesian
and that you’re okay with making probability statements about hypotheses, you have to follow
the Bayesian rules for calculating those probabilities. I'll talk more about this in Chapter 16,
but for now what I want to point out to you is the p value is a terrible approximation to the
probability that Hy is true. If what you want to know is the probability of the null, then the p
value is not what you’re looking for!

9.9.3 Traps

As you can see, the theory behind hypothesis testing is a mess, and even now there are
arguments in statistics about how it “should” work. However, disagreements among statisti-
cians are not our real concern here. Our real concern is practical data analysis. And while
the “orthodox” approach to null hypothesis significance testing has many drawbacks, even an
unrepentant Bayesian like myself would agree that they can be useful if used responsibly. Most
of the time they give sensible answers and you can use them to learn interesting things. Setting
aside the various ideologies and historical confusions that we’ve discussed, the fact remains that
the biggest danger in all of statistics is thoughtlessness. I don’t mean stupidity, I literally mean
thoughtlessness. The rush to interpret a result without spending time thinking through what

13 Although this book describes both Neyman’s and Fisher’s definition of the p value, most don’t. Most intro-
ductory textbooks will only give you the Fisher version.
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each test actually says about the data, and checking whether that’s consistent with how you’ve
interpreted it. That’s where the biggest trap lies.

To give an example of this, consider the following example (see Gelman and Stern 2006).
Suppose I'm running my ESP study and I've decided to analyse the data separately for the male
participants and the female participants. Of the male participants, 33 out of 50 guessed the
colour of the card correctly. This is a significant effect (p = .03). Of the female participants,
29 out of 50 guessed correctly. This is not a significant effect (p = .32). Upon observing this,
it is extremely tempting for people to start wondering why there is a difference between males
and females in terms of their psychic abilities. However, this is wrong. If you think about it,
we haven’t actually run a test that explicitly compares males to females. All we have done
is compare males to chance (binomial test was significant) and compared females to chance
(binomial test was non significant). If we want to argue that there is a real difference between
the males and the females, we should probably run a test of the null hypothesis that there
is no difference! We can do that using a different hypothesis test,'* but when we do that it
turns out that we have no evidence that males and females are significantly different (p = .54).
Now do you think that there’s anything fundamentally different between the two groups? Of
course not. What’s happened here is that the data from both groups (male and female) are
pretty borderline. By pure chance one of them happened to end up on the magic side of the
p = .05 line, and the other one didn’t. That doesn’t actually imply that males and females
are different. This mistake is so common that you should always be wary of it. The difference
between significant and not-significant is not evidence of a real difference. If you want to say
that there’s a difference between two groups, then you have to test for that difference!

The example above is just that, an example. I've singled it out because it’s such a common
one, but the bigger picture is that data analysis can be tricky to get right. Think about what
it is you want to test, why you want to test it, and whether or not the answers that your test
gives could possibly make any sense in the real world.

9.10

Summary

Null hypothesis testing is one of the most ubiquitous elements to statistical theory. The vast ma-
jority of scientific papers report the results of some hypothesis test or another. As a consequence
it is almost impossible to get by in science without having at least a cursory understanding of
what a p-value means, making this one of the most important chapters in the book. As usual,
I’ll end the chapter with a quick recap of the key ideas that we’ve talked about:

e Research hypotheses and statistical hypotheses. Null and alternative hypotheses. (Sec-
tion 9.1).

e Type 1 and Type 2 errors (Section 9.2)
o Test statistics and sampling distributions (Section 9.3)
e Hypothesis testing as a decision making process (Section 9.4)

e p-values as “soft” decisions (Section 9.5)

1411 this case, the Pearson chi-square test of independence (Chapter 10)
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e Writing up the results of a hypothesis test (Section 9.6)
e Running the hypothesis test in practice (Section 9.7)
o Effect size and power (Section 9.8)

e A few issues to consider regarding hypothesis testing (Section 9.9)

Later in the book, in Chapter 16, I'll revisit the theory of null hypothesis tests from a Bayesian
perspective and introduce a number of new tools that you can use if you aren’t particularly fond
of the orthodox approach. But for now, though, we’re done with the abstract statistical theory,
and we can start discussing specific data analysis tools.
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Part V.

Statistical tools
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10. Categorical data analysis

Now that we’ve covered the basic theory behind hypothesis testing it’s time to start looking
at specific tests that are commonly used in psychology. So where should we start? Not ev-
ery textbook agrees on where to start, but I'm going to start with “y? tests” (this chapter,
pronounced “chi-square”!) and “t-tests” (Chapter 11). Both of these tools are very frequently
used in scientific practice, and whilst they’re not as powerful as “regression” (Chapter 12) and
“analysis of variance” (Chapter 13) they’re much easier to understand.

The term “categorical data” is just another name for “nominal scale data”. It’s nothing that
we haven’t already discussed, it’s just that in the context of data analysis people tend to use
the term “categorical data” rather than “nominal scale data”. I don’t know why. In any case,
categorical data analysis refers to a collection of tools that you can use when your data are
nominal scale. However, there are a lot of different tools that can be used for categorical data
analysis, and this chapter covers only a few of the more common ones.

10.1
The x? (chi-square) goodness-of-fit test

The x? goodness-of-fit test is one of the oldest hypothesis tests around. It was invented by
Karl Pearson around the turn of the century (Pearson 1900), with some corrections made later
by Sir Ronald Fisher (Fisher 1922a). It tests whether an observed frequency distribution of a
nominal variable matches an expected frequency distribution. For example, suppose a group
of patients has been undergoing an experimental treatment and have had their health assessed
to see whether their condition has improved, stayed the same or worsened. A goodness-of-fit
test could be used to determine whether the numbers in each category - improved, no change,
worsened - match the numbers that would be expected given the standard treatment option.
Let’s think about this some more, with some psychology.

! Also sometimes referred to as “chi-squared”
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10.1.1 The cards data

Over the years there have been many studies showing that humans find it difficult to simulate
randomness. Try as we might to “act” random, we think in terms of patterns and structure and
so, when asked to “do something at random”, what people actually do is anything but random.
As a consequence, the study of human randomness (or non-randomness, as the case may be)
opens up a lot of deep psychological questions about how we think about the world. With this
in mind, let’s consider a very simple study. Suppose I asked people to imagine a shuffled deck of
cards, and mentally pick one card from this imaginary deck “at random”. After they’ve chosen
one card I ask them to mentally select a second one. For both choices what we’re going to look
at is the suit (hearts, clubs, spades or diamonds) that people chose. After asking, say, N = 200
people to do this, I’d like to look at the data and figure out whether or not the cards that people
pretended to select were really random. The data are contained in the randomness.csv file in
which, when you open it up in jamovi and take a look at the spreadsheet view, you will see three
variables. These are: an id variable that assigns a unique identifier to each participant, and the
two variables choice_1 and choice_2 that indicate the card suits that people chose.

For the moment, let’s just focus on the first choice that people made. We’ll use the Frequency
tables option under ‘Exploration’ - ‘Descriptives’ to count the number of times that we observed
people choosing each suit. This is what we get:

clubs diamonds hearts spades
35 51 64 50

That little frequency table is quite helpful. Looking at it, there’s a bit of a hint that people
might be more likely to select hearts than clubs, but it’s not completely obvious just from looking
at it whether that’s really true, or if this is just due to chance. So we’ll probably have to do
some kind of statistical analysis to find out, which is what I'm going to talk about in the next
section.

Excellent. From this point on, we’ll treat this table as the data that we're looking to analyse.
However, since I'm going to have to talk about this data in mathematical terms (sorry!) it might
be a good idea to be clear about what the notation is. In mathematical notation, we shorten
the human-readable word “observed” to the letter O, and we use subscripts to denote the
position of the observation. So the second observation in our table is written as Os in maths.
The relationship between the English descriptions and the mathematical symbols are illustrated
below:

label index, @ ‘ math. symbol the value
clubs, & 1 01 35
diamonds, ¢ 2 09 51
hearts, © 3 O3 64
spades, # 4 Oy 50

Hopefully that’s pretty clear. It’s also worth noting that mathematicians prefer to talk about
general rather than specific things, so you’ll also see the notation O;, which refers to the number
of observations that fall within the i-th category (where i could be 1, 2, 3 or 4). Finally, if we
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want to refer to the set of all observed frequencies, statisticians group all observed values into a
vector?, which I'll refer to as O.

0= (Ol) 025 037 04)

Again, this is nothing new or interesting. It’s just notation. If I say that O = (35,51, 64, 50)
all I'm doing is describing the table of observed frequencies (i.e., observed), but I'm referring to
it using mathematical notation.

10.1.2  The null hypothesis and the alternative hypothesis

As the last section indicated, our research hypothesis is that “people don’t choose cards
randomly”. What we’re going to want to do now is translate this into some statistical hypotheses
and then construct a statistical test of those hypotheses. The test that I'm going to describe to
you is Pearson’s x? (chi-square) goodness-of-fit test, and as is so often the case we have
to begin by carefully constructing our null hypothesis. In this case, it’s pretty easy. First, let’s
state the null hypothesis in words:

Hy: All four suits are chosen with equal probability

Now, because this is statistics, we have to be able to say the same thing in a mathematical
way. To do this, let’s use the notation P; to refer to the true probability that the j-th suit is
chosen. If the null hypothesis is true, then each of the four suits has a 25% chance of being
selected. In other words, our null hypothesis claims that P, = .25, P, = .25, P3 = .25 and
finally that P, = .25. However, in the same way that we can group our observed frequencies
into a vector O that summarises the entire data set, we can use P to refer to the probabilities
that correspond to our null hypothesis. So if I let the vector P = (P, P2, Ps, Py) refer to the
collection of probabilities that describe our null hypothesis, then we have:

Hy: P = (.25,.25, .25, .25)

In this particular instance, our null hypothesis corresponds to a vector of probabilities P in
which all of the probabilities are equal to one another. But this doesn’t have to be the case.
For instance, if the experimental task was for people to imagine they were drawing from a deck
that had twice as many clubs as any other suit, then the null hypothesis would correspond to
something like P = (.4,.2,.2,.2). As long as the probabilities are all positive numbers, and they
all sum to 1, then it’s a perfectly legitimate choice for the null hypothesis. However, the most
common use of the goodness-of-fit test is to test a null hypothesis that all of the categories are
equally likely, so we’ll stick to that for our example.

What about our alternative hypothesis, H1? All we’re really interested in is demonstrating
that the probabilities involved aren’t all identical (that is, people’s choices weren’t completely
random). As a consequence, the “human friendly” versions of our hypotheses look like this:

Hy: All four suits are chosen with equal probability
Hy: At least one of the suit-choice probabilities isn’t 0.25

2A vector is a sequence of data elements of the same basic type
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and the “mathematician friendly” version is:

Hy: P = (.25,.25, .25, .25)
Hi: P # (.25,.25, .25, .25)

10.1.3 The “goodness-of-fit” test statistic

At this point, we have our observed frequencies O and a collection of probabilities P corre-
sponding to the null hypothesis that we want to test. What we now want to do is construct a
test of the null hypothesis. As always, if we want to test Hy against Hi, we’re going to need
a test statistic. The basic trick that a goodness-of-fit test uses is to construct a test statistic
that measures how “close” the data are to the null hypothesis. If the data don’t resemble what
you'd “expect” to see if the null hypothesis were true, then it probably isn’t true. Okay, if the
null hypothesis were true, what would we expect to see? Or, to use the correct terminology,
what are the expected frequencies. There are N = 200 observations, and (if the null is true)
the probability of any one of them choosing a heart is P3 = .25, so | guess we're expecting
200 x .25 = 50 hearts, right? Or, more specifically, if we let E; refer to “the number of category
1 responses that we’re expecting if the null is true”, then

EZ‘ZNXPi

This is pretty easy to calculate.If there are 200 observations that can fall into four categories,
and we think that all four categories are equally likely, then on average we’d expect to see 50
observations in each category, right?

Now, how do we translate this into a test statistic? Clearly, what we want to do is compare the
expected number of observations in each category (E;) with the observed number of observations
in that category (O;). And on the basis of this comparison we ought to be able to come up with a
good test statistic. To start with, let’s calculate the difference between what the null hypothesis
expected us to find and what we actually did find. That is, we calculate the “observed minus
expected” difference score, O; — F;. This is illustrated in the following table.

(& 0 O A

expected frequency E; 50 50 50 50
observed frequency O; 35 51 64 50
difference score O; — FE; | -15 1 14 0

So, based on our calculations, it’s clear that people chose more hearts and fewer clubs than
the null hypothesis predicted. However, a moment’s thought suggests that these raw differences
aren’t quite what we’re looking for. Intuitively, it feels like it’s just as bad when the null
hypothesis predicts too few observations (which is what happened with hearts) as it is when
it predicts too many (which is what happened with clubs). So it’s a bit weird that we have
a negative number for clubs and a positive number for hearts. One easy way to fix this is to
square everything, so that we now calculate the squared differences, (E; — O;)?. As before, we
can do this by hand:
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(observed - expected) "2
clubs diamonds hearts spades
225 1 196 0

Now we're making progress. What we’ve got now is a collection of numbers that are big
whenever the null hypothesis makes a bad prediction (clubs and hearts), but are small whenever
it makes a good one (diamonds and spades). Next, for some technical reasons that I'll explain
in a moment, let’s also divide all these numbers by the expected frequency F;, so we're actually
calculating %701)2 Since E; = 50 for all categories in our example, it’s not a very interesting
calculation, but let’s do it anyway:

(observed - expected)”2 / expected
clubs diamonds hearts spades
4.50 0.02 3.92 0.00

In effect, what we’ve got here are four different “error” scores, each one telling us how big a
“mistake” the null hypothesis made when we tried to use it to predict our observed frequencies.
So, in order to convert this into a useful test statistic, one thing we could do is just add these
numbers up. The result is called the goodness-of-fit statistic, conventionally referred to either
as x? (chi-square) or GOF. We can calculate it as follows:

sum( (observed - expected) 2 / expected )

This gives us a value of 8.44.

If we let k refer to the total number of categories (i.e., k = 4 for our cards data), then the x?
statistic is given by:

k 2
s o (0i — Ep)
X2 = ZlE

Intuitively, it’s clear that if x? is small, then the observed data O; are very close to what the
null hypothesis predicted E;, so we're going to need a large x? statistic in order to reject the
null.

As we’ve seen from our calculations, in our cards data set we’ve got a value of x? = 8.44. So
now the question becomes is this a big enough value to reject the null?

10.1.4 The sampling distribution of the GOF statistic

To determine whether or not a particular value of x? is large enough to justify rejecting the
null hypothesis, we’re going to need to figure out what the sampling distribution for x? would
be if the null hypothesis were true. So that’s what I'm going to do in this section. I'll show you
in a fair amount of detail how this sampling distribution is constructed, and then, in the next
section, use it to build up a hypothesis test. If you want to cut to the chase and are willing to
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take it on faith that the sampling distribution is a y? (chi-square) distribution with k& — 1
degrees of freedom, you can skip the rest of this section. However, if you want to understand
why the goodness-of-fit test works the way it does, read on.

Okay, let’s suppose that the null hypothesis is actually true. If so, then the true probability
that an observation falls in the i-th category is P;. After all, that’s pretty much the definition
of our null hypothesis. Let’s think about what this actually means. This is kind of like saying
that “nature” makes the decision about whether or not the observation ends up in category i by
flipping a weighted coin (i.e., one where the probability of getting a head is P;). And therefore
we can think of our observed frequency O; by imagining that nature flipped N of these coins
(one for each observation in the data set), and exactly O; of them came up heads. Obviously,
this is a pretty weird way to think about the experiment. But what it does (I hope) is remind
you that we’ve actually seen this scenario before. It’s exactly the same set up that gave rise to
the binomial distribution in Section 7.4. In other words, if the null hypothesis is true, then it
follows that our observed frequencies were generated by sampling from a binomial distribution:

O; ~ Binomial(P;, N)

Now, if you remember from our discussion of the central limit theorem (Section 8.3.3) the
binomial distribution starts to look pretty much identical to the normal distribution, especially
when N is large and when P; isn’t too close to 0 or 1. In other words as long as N x P; is large
enough. Or, to put it another way, when the expected frequency F; is large enough then the
theoretical distribution of O; is approximately normal. Better yet, if O; is normally distributed,
then so is (O;—E;)/+/E;. Since F; is a fixed value, subtracting off E; and dividing by +/F; changes
the mean and standard deviation of the normal distribution but that’s all it does. Okay, so now
let’s have a look at what our goodness-of-fit statistic actually is. What we’re doing is taking
a bunch of things that are normally-distributed, squaring them, and adding them up. Wait.
We’ve seen that before too! As we discussed in Section 7.6, when you take a bunch of things
that have a standard normal distribution (i.e., mean 0 and standard deviation 1), square them
and then add them up, the resulting quantity has a chi-square distribution. So now we know
that the null hypothesis predicts that the sampling distribution of the goodness-of-fit statistic
is a chi-square distribution. Cool.

There’s one last detail to talk about, namely the degrees of freedom. If you remember back
to Section 7.6, I said that if the number of things you're adding up is k, then the degrees of
freedom for the resulting chi-square distribution is k. Yet, what I said at the start of this section
is that the actual degrees of freedom for the chi-square goodness-of-fit test is £ — 1. What’s
up with that? The answer here is that what we’re supposed to be looking at is the number of
genuinely independent things that are getting added together. And, as I'll go on to talk about
in the next section, even though there are k things that we’re adding only k& — 1 of them are
truly independent, and so the degrees of freedom is actually only & — 1. That’s the topic of the
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next section.?

10.1.5 Degrees of freedom

Value

Figure 10.1: x? (chi-square) distributions with different values for the “degrees of freedom”.

When I introduced the chi-square distribution in Section 7.6, I was a bit vague about what
“degrees of freedom” actually means. Obviously, it matters. Looking at Figure 10.1, you can
see that if we change the degrees of freedom then the chi-square distribution changes shape quite
substantially. But what exactly is it? Again, when I introduced the distribution and explained
its relationship to the normal distribution, I did offer an answer: it’s the number of “normally
distributed variables” that I'm squaring and adding together. But, for most people, that’s kind
of abstract and not entirely helpful. What we really need to do is try to understand degrees of
freedom in terms of our data. So here goes.

The basic idea behind degrees of freedom is quite simple. You calculate it by counting up
the number of distinct “quantities” that are used to describe your data and then subtracting

3If you rewrite the equation for the goodness-of-fit statistic as a sum over k — 1 independent things you get
the “proper” sampling distribution, which is chi-square with & — 1 degrees of freedom. It’s beyond the scope of
an introductory book to show the maths in that much detail. All I wanted to do is give you a sense of why the
goodness-of-fit statistic is associated with the chi-square distribution.
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off all of the “constraints” that those data must satisfy.? This is a bit vague, so let’s use our
cards data as a concrete example. We describe our data using four numbers, Oy, O, O3 and
04 corresponding to the observed frequencies of the four different categories (hearts, clubs,
diamonds, spades). These four numbers are the random outcomes of our experiment. But my
experiment actually has a fixed constraint built into it: the sample size N.° That is, if we know
how many people chose hearts, how many chose diamonds and how many chose clubs, then we’d
be able to figure out exactly how many chose spades. In other words, although our data are
described using four numbers, they only actually correspond to 4 — 1 = 3 degrees of freedom.
A slightly different way of thinking about it is to notice that there are four probabilities that
we're interested in (again, corresponding to the four different categories), but these probabilities
must sum to one, which imposes a constraint. Therefore the degrees of freedom is 4 —1 = 3.
Regardless of whether you want to think about it in terms of the observed frequencies or in
terms of the probabilities, the answer is the same. In general, when running the x? (chi-square)
goodness-of-fit test for an experiment involving k groups, then the degrees of freedom will be
k—1.

10.1.6 Testing the null hypothesis

The final step in the process of constructing our hypothesis test is to figure out what the
rejection region is. That is, what values of x? would lead us to reject the null hypothesis. As we
saw earlier, large values of 2 imply that the null hypothesis has done a poor job of predicting
the data from our experiment, whereas small values of x? imply that it’s actually done pretty
well. Therefore, a pretty sensible strategy would be to say there is some critical value such that
if x2 is bigger than the critical value we reject the null, but if x? is smaller than this value we
retain the null. In other words, to use the language we introduced in Chapter 9 the chi-square
goodness-of-fit test is always a one-sided test. Right, so all we have to do is figure out what
this critical value is. And it’s pretty straightforward. If we want our test to have significance
level of & = .05 (that is, we are willing to tolerate a Type I error rate of 5%), then we have to
choose our critical value so that there is only a 5% chance that y? could get to be that big if
the null hypothesis is true. This is illustrated in Figure 10.2.

Ah but, I hear you ask, how do I find the critical value of a chi-square distribution with k£ —1
degrees of freedom? Many many years ago when I first took a psychology statistics class we
used to look up these critical values in a book of critical value tables, like the one in Figure 10.3.
Looking at this Figure, we can see that the critical value for a x? distribution with 3 degrees of

41 feel obliged to point out that this is an over-simplification. It works nicely for quite a few situations, but
every now and then we’ll come across degrees of freedom values that aren’t whole numbers. Don’t let this worry
you too much; when you come across this just remind yourself that “degrees of freedom” is actually a bit of a
messy concept, and that the nice simple story that I'm telling you here isn’t the whole story. For an introductory
class it’s usually best to stick to the simple story, but I figure it’s best to warn you to expect this simple story to
fall apart. If I didn’t give you this warning you might start getting confused when you see df = 3.4 or something,
(incorrectly) thinking that you had misunderstood something that I’ve taught you rather than (correctly) realising
that there’s something that I haven’t told you.

5In practice, the sample size isn’t always fixed. For example, we might run the experiment over a fixed period
of time and the number of people participating depends on how many people show up. That doesn’t matter for
the current purposes.
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The critical value is 7.82

The observed GOF value is 8.44

0 2 4 6 8 10 12 14
Value of the GOF Statistic

Figure 10.2: Illustration of how the hypothesis testing works for the x? (chi-square) goodness-
of-fit test.

freedom, and p=0.05 is 7.815.

So, if our calculated x? statistic is bigger than the critical value of 7.815, then we can reject
the null hypothesis (remember that the null hypothesis, Hp, is that all four suits are chosen
with equal probability). Since we actually already calculated that before (i.e., x? = 8.44) we
can reject the null hypothesis. And that’s it, basically. You now know “Pearson’s x? test for
the goodness-of-fit”. Lucky you.

10.1.7 Doing the test in jamovi

Not surprisingly, jamovi provides an analysis that will do these calculations for you. From the
main ‘Analyses’ toolbar select ‘Frequencies’ - ‘One Sample Proportion Tests’ - ‘N Outcomes’.
Then in the analysis window that appears move the variable you want to analyse (choice_1
across into the ‘Variable’ box. Also, click on the ‘Expected counts’ check box so that these are
shown on the results table. When you have done all this, you should see the analysis results in
jamovi as in Figure 10.4. No surprise then that jamovi provides the same expected counts and
statistics that we calculated by hand above, with a x? value of 8.44 with 3 d.f. and p=0.038.
Note that we don’t need to look up a critical p-value threshold value any more, as jamovi gives
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Degrees
e Probability
Freedom
0.95 0.90 0.70 0.50 0.30 0.10 0.05 0.01 0.001
1 0.004 0.016 0.148 0455 1.074 2.706 3.841 6.635 10.828
2 0.103 0.211 0713 1.386 2408 4605 | 5.991 9.210 13.816
3 0.352 0.584 1424 2.366 3.665  6.251 7.815 11.345 16.266
4 0711 1.064 2195 3.357 4.878 7.779 9.488 13.277 18.467
5 1.145 1.610 3.000 4.351 6.064 9.236 | 11.070 15.086 20.515
6 1635 2204 3828 5348 7.231 10645 | 12.592 16.812 22.458
7 2167 2833 4671 6.346 8.383 12.017 | 14.067 18.475 24.322
8 2733 3490 5527 7.344 9524 13.362 | 15.507 20.090 26.124
9 3.325 4168 6.393 8.343 10.656 14.684 | 16.919 21.666 27.877
10 3.940 4865 7.267 9.342 11.781 15.987 | 18.307 23.209 29.588
Non-significant Significant
Figure 10.3: Table of critical values for the chi-square distribution
= Data Analyses
§ 55 / g {afals]
Exploration T-Tests ANOVA Regression  Freguencies Factor
Proportion Test (N Outcomes) @ Proportion Test (N Outcomes)
-Dé i Variable Proportions
&h chaice_2 = & choice_1 Level Count  Proportion
: 5 clubs Observed 35 017
Counts (optional) Expected 50 0.25
- ‘ diamonds  Observed 51 0.26
Expected 50 0.25
hearts Observed 64 0.32
Expected 80 0.25
spades Observed 50 0.25
Expected 50 0.25

+ Expected counts

> | Expected Proportions

x* Goodness of Fit

%2

df p

8.44

3 0.03774

Figure 10.4: A x? One Sample Proportion Test in jamovi, with table showing both observed
and expected frequencies and proportions.
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us the actual p-value of the calculated x? for 3 d.f.

10.1.8 Specifying a different null hypothesis

At this point you might be wondering what to do if you want to run a goodness-of-fit test but
your null hypothesis is not that all categories are equally likely. For instance, let’s suppose that
someone had made the theoretical prediction that people should choose red cards 60% of the
time, and black cards 40% of the time (I’ve no idea why you'd predict that), but had no other
preferences. If that were the case, the null hypothesis would be to expect 30% of the choices
to be hearts, 30% to be diamonds, 20% to be spades and 20% to be clubs. In other words we
would expect hearts and diamonds to appear 1.5 times more often than spades and clubs (the
ratio 30% : 20% is the same as 1.5 : 1). This seems like a silly theory to me, and it’s pretty
easy to test this explicitly specified null hypothesis with the data in our jamovi analysis. In the
analysis window (labelled ‘Proportion Test (N Outcomes)’ in Figure 10.4 you can expand the
options for ‘Expected Proportions’. When you do this, there are options for entering different
ratio values for the variable you have selected, in our case this is choice_1. Change the ratio to
reflect the new null hypothesis, as in Figure 10.5, and see how the results change.

v | Expected Proportions

clubs 0.200
diamonds 0.300
hearts 0.300
spades 0.200

Figure 10.5: Changing the expected proportions in the x? One Sample Proportion Test in jamovi

The expected counts are now:

expected frequency F; ‘ 40 60 60 40
and the x? statistic is 4.74, 3 d.f., p = 0.182. Now, the results of our updated hypotheses and

the expected frequencies are different from what they were last time. As a consequence our 2
test statistic is different, and our p-value is different too. Annoyingly, the p-value is .182, so we
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can’t reject the null hypothesis (look back at section 9.5 to remind yourself why). Sadly, despite
the fact that the null hypothesis corresponds to a very silly theory, these data don’t provide
enough evidence against it.

10.1.9 How to report the results of the test

So now you know how the test works, and you know how to do the test using a wonderful
jamovi flavoured magic computing box. The next thing you need to know is how to write up the
results. After all, there’s no point in designing and running an experiment and then analysing
the data if you don’t tell anyone about it! So let’s now talk about what you need to do when
reporting your analysis. Let’s stick with our card-suits example. If I wanted to write this
result up for a paper or something, then the conventional way to report this would be to write
something like this:

Of the 200 participants in the experiment, 64 selected hearts for their first choice, 51
selected diamonds, 50 selected spades, and 35 selected clubs. A chi-square goodness-
of-fit test was conducted to test whether the choice probabilities were identical for
all four suits. The results were significant (x?(3) = 8.44,p < .05), suggesting that
people did not select suits purely at random.

This is pretty straightforward and hopefully it seems pretty unremarkable. That said, there’s a
few things that you should note about this description:

e The statistical test is preceded by the descriptive statistics. That is, I told the reader
something about what the data look like before going on to do the test. In general, this is
good practice. Always remember that your reader doesn’t know your data anywhere near
as well as you do. So, unless you describe it to them properly, the statistical tests won’t
make any sense to them and they’ll get frustrated and cry.

o The description tells you what the null hypothesis being tested is. To be honest, writers
don’t always do this but it’s often a good idea in those situations where some ambiguity
exists, or when you can’t rely on your readership being intimately familiar with the sta-
tistical tools that you're using. Quite often the reader might not know (or remember) all
the details of the test that your using, so it’s a kind of politeness to “remind” them! As
far as the goodness-of-fit test goes, you can usually rely on a scientific audience knowing
how it works (since it’s covered in most intro stats classes). However, it’s still a good
idea to be explicit about stating the null hypothesis (briefly!) because the null hypothesis
can be different depending on what you’re using the test for. For instance, in the cards
example my null hypothesis was that all the four suit probabilities were identical (i.e.,
P, = P, = P3 = P, = 0.25), but there’s nothing special about that hypothesis. I could
just as easily have tested the null hypothesis that P, = 0.7 and P» = P; = P, = 0.1
using a goodness-of-fit test. So it’s helpful to the reader if you explain to them what your
null hypothesis was. Also, notice that I described the null hypothesis in words, not in
maths. That’s perfectly acceptable. You can describe it in maths if you like, but since
most readers find words easier to read than symbols, most writers tend to describe the
null using words if they can.
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o A “stat block” is included. When reporting the results of the test itself, I didn’t just say
that the result was significant, I included a “stat block” (i.e., the dense mathematical-
looking part in the parentheses) which reports all the “key” statistical information. For
the chi-square goodness-of-fit test, the information that gets reported is the test statistic
(that the goodness-of-fit statistic was 8.44), the information about the distribution used in
the test (x? with 3 degrees of freedom which is usually shortened to x2(3)), and then the
information about whether the result was significant (in this case p < .05). The particular
information that needs to go into the stat block is different for every test, and so each time
I introduce a new test I'll show you what the stat block should look like.® However the
general principle is that you should always provide enough information so that the reader
could check the test results themselves if they really wanted to.

o The results are interpreted. In addition to indicating that the result was significant, 1
provided an interpretation of the result (i.e., that people didn’t choose randomly). This
is also a kindness to the reader, because it tells them something about what they should
believe about what’s going on in your data. If you don’t include something like this, it’s
really hard for your reader to understand what’s going on.”

As with everything else, your overriding concern should be that you explain things to your
reader. Always remember that the point of reporting your results is to communicate to another
human being. I cannot tell you just how many times I've seen the results section of a report or
a thesis or even a scientific article that is just gibberish, because the writer has focused solely
on making sure they’ve included all the numbers and forgotten to actually communicate with
the human reader.

10.1.10 A comment on statistical notation

Satan delights equally in statistics and in quoting scripture
— H.G. Wells

If you’'ve been reading very closely, and are as much of a mathematical pedant as I am, there is
one thing about the way I wrote up the chi-square test in the last section that might be bugging
you a little bit. There’s something that feels a bit wrong with writing “x?(3) = 8.44”, you might
be thinking. After all, it’s the goodness-of-fit statistic that is equal to 8.44, so shouldn’t I have

SWell, sort of. The conventions for how statistics should be reported tend to differ somewhat from discipline
to discipline. I've tended to stick with how things are done in psychology, since that’s what I do. But the general
principle of providing enough information to the reader to allow them to check your results is pretty universal, I
think.

"To some people, this advice might sound odd, or at least in conflict with the “usual” advice on how to write a
technical report. Very typically, students are told that the “results” section of a report is for describing the data
and reporting statistical analysis, and the “discussion” section is for providing interpretation. That’s true as far
as it goes, but I think people often interpret it way too literally. The way I usually approach it is to provide a
quick and simple interpretation of the data in the results section, so that my reader understands what the data
are telling us. Then, in the discussion, I try to tell a bigger story about how my results fit with the rest of the
scientific literature. In short, don’t let the “interpretation goes in the discussion” advice turn your results section
into incomprehensible garbage. Being understood by your reader is much more important.
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written X? = 8.44 or maybe GOF= 8.44? This seems to be conflating the sampling distribution
(i.e., x? with df = 3) with the test statistic (i.e., X?). Odds are you figured it was a typo,
since x and X look pretty similar. Oddly, it’s not. Writing x?(3) = 8.44 is essentially a highly
condensed way of writing “the sampling distribution of the test statistic is x?(3), and the value
of the test statistic is 8.44”.

In one sense, this is kind of stupid. There are lots of different test statistics out there that
turn out to have a chi-square sampling distribution. The X? statistic that we’ve used for our
goodness-of-fit test is only one of many (albeit one of the most commonly encountered ones). In
a sensible, perfectly organised world we’d always have a separate name for the test statistic and
the sampling distribution. That way, the stat block itself would tell you exactly what it was that
the researcher had calculated. Sometimes this happens. For instance, the test statistic used in
the Pearson goodness-of-fit test is written X2, but there’s a closely related test known as the
G-test® (Sokal and Rohlf 1994), in which the test statistic is written as G. As it happens, the
Pearson goodness-of-fit test and the G-test both test the same null hypothesis, and the sampling
distribution is exactly the same (i.e., chi-square with k — 1 degrees of freedom). If I’d done a
G-test for the cards data rather than a goodness-of-fit test, then I’d have ended up with a test
statistic of G = 8.65, which is slightly different from the X2 = 8.44 value that I got earlier
and which produces a slightly smaller p-value of p = .034. Suppose that the convention was
to report the test statistic, then the sampling distribution, and then the p-value. If that were
true, then these two situations would produce different stat blocks: my original result would be
written X2 = 8.44, x%(3),p = .038, whereas the new version using the G-test would be written
as G = 8.65,x%(3),p = .034. However, using the condensed reporting standard, the original
result is written x?(3) = 8.44,p = .038, and the new one is written x?(3) = 8.65,p = .034, and
so it’s actually unclear which test I actually ran.

So why don’t we live in a world in which the contents of the stat block uniquely specifies
what tests were ran? The deep reason is that life is messy. We (as users of statistical tools)
want it to be nice and neat and organised. We want it to be designed, as if it were a product,
but that’s not how life works. Statistics is an intellectual discipline just as much as any other
one, and as such it’s a massively distributed, partly-collaborative and partly-competitive project
that no-one really understands completely. The things that you and I use as data analysis tools
weren’t created by an Act of the Gods of Statistics. They were invented by lots of different
people, published as papers in academic journals, implemented, corrected and modified by lots
of other people, and then explained to students in textbooks by someone else. As a consequence,
there’s a lot of test statistics that don’t even have names, and as a consequence they’re just given
the same name as the corresponding sampling distribution. As we’ll see later, any test statistic
that follows a x? distribution is commonly called a “chi-square statistic”, anything that follows
a t-distribution is called a “t-statistic”, and so on. But, as the x? versus G example illustrates,
two different things with the same sampling distribution are still, well, different.

As a consequence, it’s sometimes a good idea to be clear about what the actual test was that
you ran, especially if you're doing something unusual. If you just say “chi-square test” it’s not
actually clear what test you’re talking about. Although, since the two most common chi-square
tests are the goodness-of-fit test and the independence test (Section 10.2), most readers with

8 Complicating matters, the G-test is a special case of a whole class of tests that are known as likelihood ratio
tests. I don’t cover LRTs in this book, but they are quite handy things to know about.
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stats training can probably guess. Nevertheless, it’s something to be aware of.

10.2

The x? test of independence (or association)

GUARDBOT 1: Halt!
GUARDBOT 2: Be you robot or human?
LEELA: Robot...we be.
FRY: Uh, yup! Just two robots out roboting it up! Eh?
GUARDBOT 1: Administer the test.
GUARDBOT 2: Which of the following would you most prefer?
A: A puppy, B: A pretty flower from your sweetie,
or C: A large properly-formatted data file?
GUARDBOT 1: Choose!

— Futurama, “Fear of a Bot Planet”

The other day I was watching an animated documentary examining the quaint customs of the
natives of the planet Chapek 9. Apparently, in order to gain access to their capital city a visitor
must prove that they’re a robot, not a human. In order to determine whether or not a visitor is
human, the natives ask whether the visitor prefers puppies, flowers, or large, properly formatted
data files. “Pretty clever,” I thought to myself “but what if humans and robots have the same
preferences? That probably wouldn’t be a very good test then, would it?” As it happens, I got
my hands on the testing data that the civil authorities of Chapek 9 used to check this. It turns
out that what they did was very simple. They found a bunch of robots and a bunch of humans
and asked them what they preferred. I saved their data in a file called chapek9.omv, which we
can now load into jamovi. As well as the ID variable that identifies individual people, there are
two nominal text variables, species and choice. In total there are 180 entries in the data set,
one for each person (counting both robots and humans as “people”) who was asked to make
a choice. Specifically, there are 93 humans and 87 robots, and overwhelmingly the preferred
choice is the data file. You can check this yourself by asking jamovi for Frequency Tables, under
the ‘Exploration’ - ‘Descriptives’ button. However, this summary does not address the question
we’re interested in. To do that, we need a more detailed description of the data. What we want
to do is look at the choices broken down by species. That is, we need to cross-tabulate the
data (see Section 6.1). In jamovi we do this using the ‘Frequencies’ - ‘Contingency Tables’ -
‘Independent Samples’ analysis, and we should get a table something like this:

Robot Human | Total
Puppy 13 15 28
Flower 30 13 43
Data 44 65 109
Total 87 93 180
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From this, it’s quite clear that the vast majority of the humans chose the data file, whereas
the robots tended to be a lot more even in their preferences. Leaving aside the question of why
the humans might be