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Overview

learning statistics with jamovi covers the contents of an introductory statistics class, as typically
taught to undergraduate psychology students. The book discusses how to get started in jamovi
as well as giving an introduction to data manipulation. From a statistical perspective, the book
discusses descriptive statistics and graphing first, followed by chapters on probability theory,
sampling and estimation, and null hypothesis testing. After introducing the theory, the book
covers the analysis of contingency tables, correlation, t-tests, regression, ANOVA and factor
analysis. Bayesian statistics are covered at the end of the book.
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Preface to Version 0.70

This update from version 0.65 introduces some new analyses. In the ANOVA chapters we have
added sections on repeated measures ANOVA and analysis of covariance (ANCOVA). In a new
chapter we have introduced Factor Analysis and related techniques. Hopefully the style of this
new material is consistent with the rest of the book, though eagle-eyed readers might spot a
bit more of an emphasis on conceptual and practical explanations, and a bit less algebra. I’m
not sure this is a good thing, and might add the algebra in a bit later. But it reflects both my
approach to understanding and teaching statistics, and also some feedback I have received from
students on a course I teach. In line with this, I have also been through the rest of the book
and tried to separate out some of the algebra by putting it into a box or frame. It’s not that
this stuff is not important or useful, but for some students they may wish to skip over it and
therefore the boxing of these parts should help some readers.

With this version I am very grateful to comments and feedback received from my students
and colleagues, notably Wakefield Morys-Carter, and also to numerous people all over the world
who have sent in small suggestions and corrections - much appreciated, and keep them coming!
One pretty neat new feature is that the example data files for the book can now be loaded into
jamovi as an add-on module - thanks to Jonathon Love for helping with that.

David Foxcroft
February 1st, 2019

Preface to Version 0.65

In this adaptation of the excellent ‘Learning statistics with R’, by Danielle Navarro, we have
replaced the statistical software used for the analyses and examples with jamovi. Although R
is a powerful statistical programming language, it is not the first choice for every instructor
and student at the beginning of their statistical learning. Some instructors and students tend to
prefer the point-and-click style of software, and that’s where jamovi comes in. jamovi is software
that aims to simplify two aspects of using R. It offers a point-and-click graphical user interface
(GUI), and it also provides functions that combine the capabilities of many others, bringing a
more SPSS- or SAS-like method of programming to R. Importantly, jamovi will always be free
and open - that’s one of its core values - because jamovi is made by the scientific community,
for the scientific community.

With this version I am very grateful for the help of others who have read through drafts and
provided excellent suggestions and corrections, particularly Dr David Emery and Kirsty Walter.

David Foxcroft
July 1st, 2018
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Preface to Version 0.6

The book hasn’t changed much since 2015 when I released Version 0.5 – it’s probably fair to say
that I’ve changed more than it has. I moved from Adelaide to Sydney in 2016 and my teaching
profile at UNSW is different to what it was at Adelaide, and I haven’t really had a chance to
work on it since arriving here! It’s a little strange looking back at this actually. A few quick
comments...

• Weirdly, the book consistently misgenders me, but I suppose I have only myself to blame
for that one :-) There’s now a brief footnote on page 12 that mentions this issue; in real life
I’ve been working through a gender affirmation process for the last two years and mostly
go by she/her pronouns. I am, however, just as lazy as I ever was so I haven’t bothered
updating the text in the book.

• For Version 0.6 I haven’t changed much I’ve made a few minor changes when people have
pointed out typos or other errors. In particular it’s worth noting the issue associated with
the etaSquared function in the lsr package (which isn’t really being maintained any more)
in Section 14.4. The function works fine for the simple examples in the book, but there
are definitely bugs in there that I haven’t found time to check! So please take care with
that one.

• The biggest change really is the licensing! I’ve released it under a Creative Commons
licence (CC BY-SA 4.0, specifically), and placed all the source files to the associated
GitHub repository, if anyone wants to adapt it.

Maybe someone would like to write a version that makes use of the tidyverse... I hear that’s
become rather important to R these days :-)

Best,
Danielle Navarro

Preface to Version 0.5

Another year, another update. This time around, the update has focused almost entirely on the
theory sections of the book. Chapters 9, 10 and 11 have been rewritten, hopefully for the better.
Along the same lines, Chapter 17 is entirely new, and focuses on Bayesian statistics. I think the
changes have improved the book a great deal. I’ve always felt uncomfortable about the fact that
all the inferential statistics in the book are presented from an orthodox perspective, even though
I almost always present Bayesian data analyses in my own work. Now that I’ve managed to
squeeze Bayesian methods into the book somewhere, I’m starting to feel better about the book
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as a whole. I wanted to get a few other things done in this update, but as usual I’m running
into teaching deadlines, so the update has to go out the way it is!

Dan Navarro
February 16, 2015

Preface to Version 0.4

A year has gone by since I wrote the last preface. The book has changed in a few important
ways: Chapters 3 and 4 do a better job of documenting some of the time saving features of
Rstudio, Chapters 12 and 13 now make use of new functions in the lsr package for running
chi-square tests and t tests, and the discussion of correlations has been adapted to refer to the
new functions in the lsr package. The soft copy of 0.4 now has better internal referencing (i.e.,
actual hyperlinks between sections), though that was introduced in 0.3.1. There’s a few tweaks
here and there, and many typo corrections (thank you to everyone who pointed out typos!), but
overall 0.4 isn’t massively different from 0.3.

I wish I’d had more time over the last 12 months to add more content. The absence of any
discussion of repeated measures ANOVA and mixed models more generally really does annoy
me. My excuse for this lack of progress is that my second child was born at the start of 2013,
and so I spent most of last year just trying to keep my head above water. As a consequence,
unpaid side projects like this book got sidelined in favour of things that actually pay my salary!
Things are a little calmer now, so with any luck version 0.5 will be a bigger step forward.

One thing that has surprised me is the number of downloads the book gets. I finally got
some basic tracking information from the website a couple of months ago, and (after excluding
obvious robots) the book has been averaging about 90 downloads per day. That’s encouraging:
there’s at least a few people who find the book useful!

Dan Navarro
February 4, 2014

Preface to Version 0.3

There’s a part of me that really doesn’t want to publish this book. It’s not finished.

And when I say that, I mean it. The referencing is spotty at best, the chapter summaries
are just lists of section titles, there’s no index, there are no exercises for the reader, the organi-
sation is suboptimal, and the coverage of topics is just not comprehensive enough for my liking.
Additionally, there are sections with content that I’m not happy with, figures that really need
to be redrawn, and I’ve had almost no time to hunt down inconsistencies, typos, or errors. In
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other words, this book is not finished. If I didn’t have a looming teaching deadline and a baby
due in a few weeks, I really wouldn’t be making this available at all.

What this means is that if you are an academic looking for teaching materials, a Ph.D.
student looking to learn R, or just a member of the general public interested in statistics, I
would advise you to be cautious. What you’re looking at is a first draft, and it may not serve
your purposes. If we were living in the days when publishing was expensive and the internet
wasn’t around, I would never consider releasing a book in this form. The thought of someone
shelling out $80 for this (which is what a commercial publisher told me it would retail for when
they offered to distribute it) makes me feel more than a little uncomfortable. However, it’s the
21st century, so I can post the pdf on my website for free, and I can distribute hard copies via a
print-on-demand service for less than half what a textbook publisher would charge. And so my
guilt is assuaged, and I’m willing to share! With that in mind, you can obtain free soft copies
and cheap hard copies online, from the following webpages:

Soft copy: http://www.compcogscisydney.com/learning-statistics-with-r.html

Hard copy: www.lulu.com/content/13570633

Even so, the warning still stands: what you are looking at is Version 0.3 of a work in progress.
If and when it hits Version 1.0, I would be willing to stand behind the work and say, yes, this
is a textbook that I would encourage other people to use. At that point, I’ll probably start
shamelessly flogging the thing on the internet and generally acting like a tool. But until that
day comes, I’d like it to be made clear that I’m really ambivalent about the work as it stands.

All of the above being said, there is one group of people that I can enthusiastically endorse
this book to: the psychology students taking our undergraduate research methods classes (DRIP
and DRIP:A) in 2013. For you, this book is ideal, because it was written to accompany your
stats lectures. If a problem arises due to a shortcoming of these notes, I can and will adapt
content on the fly to fix that problem. Effectively, you’ve got a textbook written specifically for
your classes, distributed for free (electronic copy) or at near-cost prices (hard copy). Better yet,
the notes have been tested: Version 0.1 of these notes was used in the 2011 class, Version 0.2
was used in the 2012 class, and now you’re looking at the new and improved Version 0.3. I’[for
a historical summary]m not saying these notes are titanium plated awesomeness on a stick –
though if you wanted to say so on the student evaluation forms, then you’re totally welcome to
– because they’re not. But I am saying that they’ve been tried out in previous years and they
seem to work okay. Besides, there’s a group of us around to troubleshoot if any problems come
up, and you can guarantee that at least one of your lecturers has read the whole thing cover to
cover!

Okay, with all that out of the way, I should say something about what the book aims to be.
At its core, it is an introductory statistics textbook pitched primarily at psychology students.
As such, it covers the standard topics that you’d expect of such a book: study design, descriptive
statistics, the theory of hypothesis testing, t-tests, χ2 tests, ANOVA and regression. However,
there are also several chapters devoted to the R statistical package, including a chapter on data
manipulation and another one on scripts and programming. Moreover, when you look at the
content presented in the book, you’ll notice a lot of topics that are traditionally swept under
the carpet when teaching statistics to psychology students. The Bayesian/frequentist divide is
openly disussed in the probability chapter, and the disagreement between Neyman and Fisher
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about hypothesis testing makes an appearance. The difference between probability and density
is discussed. A detailed treatment of Type I, II and III sums of squares for unbalanced factorial
ANOVA is provided. And if you have a look in the Epilogue, it should be clear that my intention
is to add a lot more advanced content.

My reasons for pursuing this approach are pretty simple: the students can handle it, and
they even seem to enjoy it. Over the last few years I’ve been pleasantly surprised at just how
little difficulty I’ve had in getting undergraduate psych students to learn R. It’s certainly not
easy for them, and I’ve found I need to be a little charitable in setting marking standards, but
they do eventually get there. Similarly, they don’t seem to have a lot of problems tolerating
ambiguity and complexity in presentation of statistical ideas, as long as they are assured that
the assessment standards will be set in a fashion that is appropriate for them. So if the students
can handle it, why not teach it? The potential gains are pretty enticing. If they learn R, the
students get access to CRAN, which is perhaps the largest and most comprehensive library of
statistical tools in existence. And if they learn about probability theory in detail, it’s easier
for them to switch from orthodox null hypothesis testing to Bayesian methods if they want
to. Better yet, they learn data analysis skills that they can take to an employer without being
dependent on expensive and proprietary software.

Sadly, this book isn’t the silver bullet that makes all this possible. It’s a work in progress,
and maybe when it is finished it will be a useful tool. One among many, I would think. There
are a number of other books that try to provide a basic introduction to statistics using R, and
I’m not arrogant enough to believe that mine is better. Still, I rather like the book, and maybe
other people will find it useful, incomplete though it is.

Dan Navarro
January 13, 2013
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1. Why do we learn statistics?

“Thou shalt not answer questionnaires
Or quizzes upon World Affairs,

Nor with compliance
Take any test. Thou shalt not sit
With statisticians nor commit

A social science”

– W.H. Auden1

1.1

On the psychology of statistics

To the surprise of many students, statistics is a fairly significant part of a psychological education.
To the surprise of no-one, statistics is very rarely the favourite part of one’s psychological
education. After all, if you really loved the idea of doing statistics, you’d probably be enrolled
in a statistics class right now, not a psychology class. So, not surprisingly, there’s a pretty large
proportion of the student base that isn’t happy about the fact that psychology has so much
statistics in it. In view of this, I thought that the right place to start might be to answer some
of the more common questions that people have about stats.

A big part of this issue at hand relates to the very idea of statistics. What is it? What’s
it there for? And why are scientists so bloody obsessed with it? These are all good questions,
when you think about it. So let’s start with the last one. As a group, scientists seem to be
bizarrely fixated on running statistical tests on everything. In fact, we use statistics so often
that we sometimes forget to explain to people why we do. It’s a kind of article of faith among
scientists – and especially social scientists – that your findings can’t be trusted until you’ve done
some stats. Undergraduate students might be forgiven for thinking that we’re all completely
mad, because no-one takes the time to answer one very simple question:

1The quote comes from Auden’s 1946 poem Under Which Lyre: A Reactionary Tract for the Times, delivered
as part of a commencement address at Harvard University. The history of the poem is kind of interesting:
http://harvardmagazine.com/2007/11/a-poets-warning.html
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Why do you do statistics? Why don’t scientists just use common sense?

It’s a naive question in some ways, but most good questions are. There’s a lot of good answers
to it,2 but for my money, the best answer is a really simple one: we don’t trust ourselves enough.
We worry that we’re human, and susceptible to all of the biases, temptations and frailties that
humans suffer from. Much of statistics is basically a safeguard. Using “common sense” to
evaluate evidence means trusting gut instincts, relying on verbal arguments and on using the
raw power of human reason to come up with the right answer. Most scientists don’t think this
approach is likely to work.

In fact, come to think of it, this sounds a lot like a psychological question to me, and since I do
work in a psychology department, it seems like a good idea to dig a little deeper here. Is it really
plausible to think that this “common sense” approach is very trustworthy? Verbal arguments
have to be constructed in language, and all languages have biases – some things are harder to
say than others, and not necessarily because they’re false (e.g., quantum electrodynamics is a
good theory, but hard to explain in words). The instincts of our “gut” aren’t designed to solve
scientific problems, they’re designed to handle day to day inferences – and given that biological
evolution is slower than cultural change, we should say that they’re designed to solve the day
to day problems for a different world than the one we live in. Most fundamentally, reasoning
sensibly requires people to engage in “induction”, making wise guesses and going beyond the
immediate evidence of the senses to make generalisations about the world. If you think that
you can do that without being influenced by various distractors, well, I have a bridge in London
I’d like to sell you. Heck, as the next section shows, we can’t even solve “deductive” problems
(ones where no guessing is required) without being influenced by our pre-existing biases.

1.1.1 The curse of belief bias

People are mostly pretty smart. We’re certainly smarter than the other species that we
share the planet with (though many people might disagree). Our minds are quite amazing
things, and we seem to be capable of the most incredible feats of thought and reason. That
doesn’t make us perfect though. And among the many things that psychologists have shown
over the years is that we really do find it hard to be neutral, to evaluate evidence impartially
and without being swayed by pre-existing biases. A good example of this is the belief bias
effect in logical reasoning: if you ask people to decide whether a particular argument is logically
valid (i.e., conclusion would be true if the premises were true), we tend to be influenced by the
believability of the conclusion, even when we shouldn’t. For instance, here’s a valid argument
where the conclusion is believable:

All cigarettes are expensive (Premise 1)
Some addictive things are inexpensive (Premise 2)
Therefore, some addictive things are not cigarettes (Conclusion)

And here’s a valid argument where the conclusion is not believable:

2Including the suggestion that common sense is in short supply among scientists.
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All addictive things are expensive (Premise 1)
Some cigarettes are inexpensive (Premise 2)
Therefore, some cigarettes are not addictive (Conclusion)

The logical structure of argument #2 is identical to the structure of argument #1, and they’re
both valid. However, in the second argument, there are good reasons to think that premise 1 is
incorrect, and as a result it’s probably the case that the conclusion is also incorrect. But that’s
entirely irrelevant to the topic at hand; an argument is deductively valid if the conclusion is
a logical consequence of the premises. That is, a valid argument doesn’t have to involve true
statements.

On the other hand, here’s an invalid argument that has a believable conclusion:

All addictive things are expensive (Premise 1)
Some cigarettes are inexpensive (Premise 2)
Therefore, some addictive things are not cigarettes (Conclusion)

And finally, an invalid argument with an unbelievable conclusion:

All cigarettes are expensive (Premise 1)
Some addictive things are inexpensive (Premise 2)
Therefore, some cigarettes are not addictive (Conclusion)

Now, suppose that people really are perfectly able to set aside their pre-existing biases about
what is true and what isn’t, and purely evaluate an argument on its logical merits. We’d expect
100% of people to say that the valid arguments are valid, and 0% of people to say that the
invalid arguments are valid. So if you ran an experiment looking at this, you’d expect to see
data like this:

conclusion feels true conclusion feels false

argument is valid 100% say “valid” 100% say “valid”

argument is invalid 0% say “valid” 0% say “valid”

If the psychological data looked like this (or even a good approximation to this), we might feel
safe in just trusting our gut instincts. That is, it’d be perfectly okay just to let scientists evaluate
data based on their common sense, and not bother with all this murky statistics stuff. However,
you guys have taken psych classes, and by now you probably know where this is going.

In a classic study, Evans, Barston, and Pollard (1983) ran an experiment looking at exactly
this. What they found is that when pre-existing biases (i.e., beliefs) were in agreement with the
structure of the data, everything went the way you’d hope:

conclusion feels true conclusion feels false

argument is valid 92% say “valid”

argument is invalid 8% say “valid”
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Not perfect, but that’s pretty good. But look what happens when our intuitive feelings about
the truth of the conclusion run against the logical structure of the argument:

conclusion feels true conclusion feels false

argument is valid 92% say “valid” 46% say “valid”

argument is invalid 92% say “valid” 8% say “valid”

Oh dear, that’s not as good. Apparently, when people are presented with a strong argument
that contradicts our pre-existing beliefs, we find it pretty hard to even perceive it to be a strong
argument (people only did so 46% of the time). Even worse, when people are presented with a
weak argument that agrees with our pre-existing biases, almost no-one can see that the argument
is weak (people got that one wrong 92% of the time!).3

If you think about it, it’s not as if these data are horribly damning. Overall, people did do
better than chance at compensating for their prior biases, since about 60% of people’s judgements
were correct (you’d expect 50% by chance). Even so, if you were a professional “evaluator of
evidence”, and someone came along and offered you a magic tool that improves your chances of
making the right decision from 60% to (say) 95%, you’d probably jump at it, right? Of course
you would. Thankfully, we actually do have a tool that can do this. But it’s not magic, it’s
statistics. So that’s reason #1 why scientists love statistics. It’s just too easy for us to “believe
what we want to believe”. So instead, if we want to “believe in the data”, we’re going to need a
bit of help to keep our personal biases under control. That’s what statistics does, it helps keep
us honest.

1.2

The cautionary tale of Simpson’s paradox

The following is a true story (I think!). In 1973, the University of California, Berkeley had some
worries about the admissions of students into their postgraduate courses. Specifically, the thing
that caused the problem was that the gender breakdown of their admissions, which looked like
this:

Number of applicants Percent admitted
Males 8442 44%
Females 4321 35%

Given this, they were worried about being sued!4 Given that there were nearly 13,000 applicants,
a difference of 9% in admission rates between males and females is just way too big to be a
coincidence. Pretty compelling data, right? And if I were to say to you that these data actually

3In my more cynical moments I feel like this fact alone explains 95% of what I read on the internet.
4Earlier versions of these notes incorrectly suggested that they actually were sued. But that’s not true. There’s

a nice commentary on this here: https://www.refsmmat.com/posts/2016-05-08-simpsons-paradox-berkeley.
html. A big thank you to Wilfried Van Hirtum for pointing this out to me.
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reflect a weak bias in favour of women (sort of!), you’d probably think that I was either crazy
or sexist.

Oddly, it’s actually sort of true. When people started looking more carefully at the admis-
sions data they told a rather different story (Bickel, Hammel, and O’Connell 1975). Specifically,
when they looked at it on a department by department basis, it turned out that most of the
departments actually had a slightly higher success rate for female applicants than for male ap-
plicants. The table below shows the admission figures for the six largest departments (with the
names of the departments removed for privacy reasons):

Males Females
Department Applicants Percent admitted Applicants Percent admitted

A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 272 6% 341 7%

Remarkably, most departments had a higher rate of admissions for females than for males! Yet
the overall rate of admission across the university for females was lower than for males. How
can this be? How can both of these statements be true at the same time?

Here’s what’s going on. Firstly, notice that the departments are not equal to one another
in terms of their admission percentages: some departments (e.g., A, B) tended to admit a
high percentage of the qualified applicants, whereas others (e.g., F) tended to reject most of
the candidates, even if they were high quality. So, among the six departments shown above,
notice that department A is the most generous, followed by B, C, D, E and F in that order.
Next, notice that males and females tended to apply to different departments. If we rank the
departments in terms of the total number of male applicants, we get AąBąDąCąFąE (the
“easy” departments are in bold). On the whole, males tended to apply to the departments that
had high admission rates. Now compare this to how the female applicants distributed themselves.
Ranking the departments in terms of the total number of female applicants produces a quite
different ordering CąEąDąFąAąB. In other words, what these data seem to be suggesting
is that the female applicants tended to apply to “harder” departments. And in fact, if we look
at Figure 1.1 we see that this trend is systematic, and quite striking. This effect is known as
Simpson’s paradox. It’s not common, but it does happen in real life, and most people are
very surprised by it when they first encounter it, and many people refuse to even believe that
it’s real. It is very real. And while there are lots of very subtle statistical lessons buried in
there, I want to use it to make a much more important point: doing research is hard, and there
are lots of subtle, counter-intuitive traps lying in wait for the unwary. That’s reason #2 why
scientists love statistics, and why we teach research methods. Because science is hard, and the
truth is sometimes cunningly hidden in the nooks and crannies of complicated data.

Before leaving this topic entirely, I want to point out something else really critical that is often
overlooked in a research methods class. Statistics only solves part of the problem. Remember
that we started all this with the concern that Berkeley’s admissions processes might be unfairly
biased against female applicants. When we looked at the “aggregated” data, it did seem like
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Figure 1.1: The Berkeley 1973 college admissions data. This figure plots the admission rate
for the 85 departments that had at least one female applicant, as a function of the percentage
of applicants that were female. The plot is a redrawing of Figure 1 from Bickel, Hammel, and
O’Connell (1975). Circles plot departments with more than 40 applicants; the area of the circle
is proportional to the total number of applicants. The crosses plot departments with fewer than
40 applicants.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the university was discriminating against women, but when we “disaggregate” and looked at the
individual behaviour of all the departments, it turned out that the actual departments were, if
anything, slightly biased in favour of women. The gender bias in total admissions was caused
by the fact that women tended to self-select for harder departments. From a legal perspective,
that would probably put the university in the clear. Postgraduate admissions are determined
at the level of the individual department, and there are good reasons to do that. At the level
of individual departments the decisions are more or less unbiased (the weak bias in favour of
females at that level is small, and not consistent across departments). Since the university can’t
dictate which departments people choose to apply to, and the decision making takes place at
the level of the department it can hardly be held accountable for any biases that those choices
produce.
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That was the basis for my somewhat glib remarks earlier, but that’s not exactly the whole
story, is it? After all, if we’re interested in this from a more sociological and psychological
perspective, we might want to ask why there are such strong gender differences in applications.
Why do males tend to apply to engineering more often than females, and why is this reversed
for the English department? And why is it the case that the departments that tend to have
a female-application bias tend to have lower overall admission rates than those departments
that have a male-application bias? Might this not still reflect a gender bias, even though every
single department is itself unbiased? It might. Suppose, hypothetically, that males preferred
to apply to “hard sciences” and females prefer “humanities”. And suppose further that the
reason for why the humanities departments have low admission rates is because the government
doesn’t want to fund the humanities (Ph.D. places, for instance, are often tied to government
funded research projects). Does that constitute a gender bias? Or just an unenlightened view
of the value of the humanities? What if someone at a high level in the government cut the
humanities funds because they felt that the humanities are “useless chick stuff”. That seems
pretty blatantly gender biased. None of this falls within the purview of statistics, but it matters
to the research project. If you’re interested in the overall structural effects of subtle gender
biases, then you probably want to look at both the aggregated and disaggregated data. If you’re
interested in the decision making process at Berkeley itself then you’re probably only interested
in the disaggregated data.

In short there are a lot of critical questions that you can’t answer with statistics, but the
answers to those questions will have a huge impact on how you analyse and interpret data. And
this is the reason why you should always think of statistics as a tool to help you learn about
your data. No more and no less. It’s a powerful tool to that end, but there’s no substitute for
careful thought.

1.3

Statistics in psychology

I hope that the discussion above helped explain why science in general is so focused on statis-
tics. But I’m guessing that you have a lot more questions about what role statistics plays in
psychology, and specifically why psychology classes always devote so many lectures to stats. So
here’s my attempt to answer a few of them...

• Why does psychology have so much statistics?

To be perfectly honest, there’s a few different reasons, some of which are better than others.
The most important reason is that psychology is a statistical science. What I mean by
that is that the “things” that we study are people. Real, complicated, gloriously messy,
infuriatingly perverse people. The “things” of physics include objects like electrons, and
while there are all sorts of complexities that arise in physics, electrons don’t have minds
of their own. They don’t have opinions, they don’t differ from each other in weird and
arbitrary ways, they don’t get bored in the middle of an experiment, and they don’t get
angry at the experimenter and then deliberately try to sabotage the data set (not that
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I’ve ever done that!). At a fundamental level psychology is harder than physics.5

Basically, we teach statistics to you as psychologists because you need to be better at stats
than physicists. There’s actually a saying used sometimes in physics, to the effect that
“if your experiment needs statistics, you should have done a better experiment”. They
have the luxury of being able to say that because their objects of study are pathetically
simple in comparison to the vast mess that confronts social scientists. And it’s not just
psychology. Most social sciences are desperately reliant on statistics. Not because we’re
bad experimenters, but because we’ve picked a harder problem to solve. We teach you
stats because you really, really need it.

• Can’t someone else do the statistics?

To some extent, but not completely. It’s true that you don’t need to become a fully trained
statistician just to do psychology, but you do need to reach a certain level of statistical
competence. In my view, there’s three reasons that every psychological researcher ought
to be able to do basic statistics:

– Firstly, there’s the fundamental reason: statistics is deeply intertwined with research
design. If you want to be good at designing psychological studies, you need to at the
very least understand the basics of stats.

– Secondly, if you want to be good at the psychological side of the research, then you
need to be able to understand the psychological literature, right? But almost every
paper in the psychological literature reports the results of statistical analyses. So if
you really want to understand the psychology, you need to be able to understand
what other people did with their data. And that means understanding a certain
amount of statistics.

– Thirdly, there’s a big practical problem with being dependent on other people to do
all your statistics: statistical analysis is expensive. If you ever get bored and want to
look up how much the Australian government charges for university fees, you’ll notice
something interesting: statistics is designated as a “national priority” category, and
so the fees are much, much lower than for any other area of study. This is because
there’s a massive shortage of statisticians out there. So, from your perspective as a
psychological researcher, the laws of supply and demand aren’t exactly on your side
here! As a result, in almost any real life situation where you want to do psycho-
logical research, the cruel facts will be that you don’t have enough money to afford
a statistician. So the economics of the situation mean that you have to be pretty
self-sufficient.

Note that a lot of these reasons generalise beyond researchers. If you want to be a practicing
psychologist and stay on top of the field, it helps to be able to read the scientific literature,
which relies pretty heavily on statistics.

• I don’t care about jobs, research, or clinical work. Do I need statistics?

Okay, now you’re just messing with me. Still, I think it should matter to you too. Statistics
should matter to you in the same way that statistics should matter to everyone. We live

5Which might explain why physics is just a teensy bit further advanced as a science than we are.
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in the 21st century, and data are everywhere. Frankly, given the world in which we live
these days, a basic knowledge of statistics is pretty damn close to a survival tool! Which
is the topic of the next section.

1.4

Statistics in everyday life

“We are drowning in information,
but we are starved for knowledge”

– Various authors, original probably John Naisbitt

When I started writing up my lecture notes I took the 20 most recent news articles posted to
the ABC news website. Of those 20 articles, it turned out that 8 of them involved a discussion
of something that I would call a statistical topic and 6 of those made a mistake. The most
common error, if you’re curious, was failing to report baseline data (e.g., the article mentions
that 5% of people in situation X have some characteristic Y, but doesn’t say how common the
characteristic is for everyone else!). The point I’m trying to make here isn’t that journalists are
bad at statistics (though they almost always are), it’s that a basic knowledge of statistics is very
helpful for trying to figure out when someone else is either making a mistake or even lying to
you. In fact, one of the biggest things that a knowledge of statistics does to you is cause you to
get angry at the newspaper or the internet on a far more frequent basis. You can find a good
example of this in Section 4.1.5. In later versions of this book I’ll try to include more anecdotes
along those lines.

1.5

There’s more to research methods than statistics

So far, most of what I’ve talked about is statistics, and so you’d be forgiven for thinking that
statistics is all I care about in life. To be fair, you wouldn’t be far wrong, but research method-
ology is a broader concept than statistics. So most research methods courses will cover a lot of
topics that relate much more to the pragmatics of research design, and in particular the issues
that you encounter when trying to do research with humans. However, about 99% of student
fears relate to the statistics part of the course, so I’ve focused on the stats in this discussion,
and hopefully I’ve convinced you that statistics matters, and more importantly, that it’s not to
be feared. That being said, it’s pretty typical for introductory research methods classes to be
very stats-heavy. This is not (usually) because the lecturers are evil people. Quite the contrary,
in fact. Introductory classes focus a lot on the statistics because you almost always find yourself
needing statistics before you need the other research methods training. Why? Because almost
all of your assignments in other classes will rely on statistical training, to a much greater extent
than they rely on other methodological tools. It’s not common for undergraduate assignments
to require you to design your own study from the ground up (in which case you would need
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to know a lot about research design), but it is common for assignments to ask you to analyse
and interpret data that were collected in a study that someone else designed (in which case you
need statistics). In that sense, from the perspective of allowing you to do well in all your other
classes, the statistics is more urgent.

But note that “urgent” is different from “important” – they both matter. I really do want
to stress that research design is just as important as data analysis, and this book does spend a
fair amount of time on it. However, while statistics has a kind of universality, and provides a set
of core tools that are useful for most types of psychological research, the research methods side
isn’t quite so universal. There are some general principles that everyone should think about,
but a lot of research design is very idiosyncratic, and is specific to the area of research that you
want to engage in. To the extent that it’s the details that matter, those details don’t usually
show up in an introductory stats and research methods class.
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2. A brief introduction to research design

To consult the statistician after an experiment is finished is often merely to ask him
to conduct a post mortem examination. He can perhaps say what the experiment died
of.

– Sir Ronald Fisher1

In this chapter, we’re going to start thinking about the basic ideas that go into designing a
study, collecting data, checking whether your data collection works, and so on. It won’t give you
enough information to allow you to design studies of your own, but it will give you a lot of the
basic tools that you need to assess the studies done by other people. However, since the focus
of this book is much more on data analysis than on data collection, I’m only giving a very brief
overview. Note that this chapter is “special” in two ways. Firstly, it’s much more psychology-
specific than the later chapters. Secondly, it focuses much more heavily on the scientific problem
of research methodology, and much less on the statistical problem of data analysis. Nevertheless,
the two problems are related to one another, so it’s traditional for stats textbooks to discuss the
problem in a little detail. This chapter relies heavily on Campbell and Stanley (1963) for the
discussion of study design, and Stevens (1946) for the discussion of scales of measurement.

2.1

Introduction to psychological measurement

The first thing to understand is data collection can be thought of as a kind of measurement.
That is, what we’re trying to do here is measure something about human behaviour or the
human mind. What do I mean by “measurement”?

2.1.1 Some thoughts about psychological measurement

Measurement itself is a subtle concept, but basically it comes down to finding some way of
assigning numbers, or labels, or some other kind of well-defined descriptions, to “stuff”. So, any
of the following would count as a psychological measurement:

1Presidential Address to the First Indian Statistical Congress, 1938. Source: http://en.wikiquote.org/wik

i/Ronald Fisher
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• My age is 33 years.

• I do not like anchovies.

• My chromosomal gender is male.

• My self-identified gender is male.2

In the short list above, the bolded part is “the thing to be measured”, and the italicised
part is “the measurement itself”. In fact, we can expand on this a little bit, by thinking about
the set of possible measurements that could have arisen in each case:

• My age (in years) could have been 0, 1, 2, 3 . . . , etc. The upper bound on what my age
could possibly be is a bit fuzzy, but in practice you’d be safe in saying that the largest
possible age is 150, since no human has ever lived that long.

• When asked if I like anchovies, I might have said that I do, or I do not, or I have no
opinion, or I sometimes do.

• My chromosomal gender is almost certainly going to be male (XY) or female (XX), but
there are a few other possibilities. I could also have Klinfelter’s syndrome (XXY), which
is more similar to male than to female. And I imagine there are other possibilities too.

• My self-identified gender is also very likely to be male or female, but it doesn’t have
to agree with my chromosomal gender. I may also choose to identify with neither, or to
explicitly call myself transgender.

As you can see, for some things (like age) it seems fairly obvious what the set of possible
measurements should be, whereas for other things it gets a bit tricky. But I want to point out
that even in the case of someone’s age it’s much more subtle than this. For instance, in the
example above I assumed that it was okay to measure age in years. But if you’re a developmental
psychologist, that’s way too crude, and so you often measure age in years and months (if a child
is 2 years and 11 months this is usually written as “2;11”). If you’re interested in newborns you
might want to measure age in days since birth, maybe even hours since birth. In other words,
the way in which you specify the allowable measurement values is important.

Looking at this a bit more closely, you might also realise that the concept of “age” isn’t
actually all that precise. In general, when we say “age” we implicitly mean “the length of time

2Well... now this is awkward, isn’t it? This section is one of the oldest parts of the book, and it’s outdated in a
rather embarrassing way. I wrote this in 2010, at which point all of those facts were true. Revisiting this in 2018,
well I’m not 33 any more, but that’s not surprising I suppose. I can’t imagine my chromosomes have changed, so
I’m going to guess my karyotype was then and is now XY. The self-identified gender, on the other hand...ah. I
suppose the fact that the title page now refers to me as Danielle rather than Daniel might possibly be a giveaway,
but I don’t typically identify as “male” on a gender questionnaire these days, and I prefer “she/her” pronouns as
a default (it’s a long story)! I did think a little about how I was going to handle this in the book, actually. The
book has a somewhat distinct authorial voice to it, and I feel like it would be a rather different work if I went
back and wrote everything as Danielle and updated all the pronouns in the work. Besides, it would be a lot of
work, so I’ve left my name as “Dan” throughout the book, and in any case “Dan” is a perfectly good nickname
for “Danielle”, don’t you think? In any case, it’s not a big deal. I only wanted to mention it to make life a little
easier for readers who aren’t sure how to refer to me. I still don’t like anchovies though :-)
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since birth”. But that’s not always the right way to do it. Suppose you’re interested in how
newborn babies control their eye movements. If you’re interested in kids that young, you might
also start to worry that “birth” is not the only meaningful point in time to care about. If Baby
Alice is born 3 weeks premature and Baby Bianca is born 1 week late, would it really make sense
to say that they are the “same age” if we encountered them “2 hours after birth”? In one sense,
yes. By social convention we use birth as our reference point for talking about age in everyday
life, since it defines the amount of time the person has been operating as an independent entity
in the world. But from a scientific perspective that’s not the only thing we care about. When
we think about the biology of human beings, it’s often useful to think of ourselves as organisms
that have been growing and maturing since conception, and from that perspective Alice and
Bianca aren’t the same age at all. So you might want to define the concept of “age” in two
different ways: the length of time since conception and the length of time since birth. When
dealing with adults it won’t make much difference, but when dealing with newborns it might.

Moving beyond these issues, there’s the question of methodology. What specific “measure-
ment method” are you going to use to find out someone’s age? As before, there are lots of
different possibilities:

• You could just ask people “how old are you?” The method of self-report is fast, cheap
and easy. But it only works with people old enough to understand the question, and some
people lie about their age.

• You could ask an authority (e.g., a parent) “how old is your child?” This method is
fast, and when dealing with kids it’s not all that hard since the parent is almost always
around. It doesn’t work as well if you want to know “age since conception”, since a lot of
parents can’t say for sure when conception took place. For that, you might need a different
authority (e.g., an obstetrician).

• You could look up official records, for example birth or death certificates. This is a time
consuming and frustrating endeavour, but it has its uses (e.g., if the person is now dead).

2.1.2 Operationalisation: defining your measurement

All of the ideas discussed in the previous section relate to the concept of operationalisation.
To be a bit more precise about the idea, operationalisation is the process by which we take a
meaningful but somewhat vague concept and turn it into a precise measurement. The process
of operationalisation can involve several different things:

• Being precise about what you are trying to measure. For instance, does “age” mean “time
since birth” or “time since conception” in the context of your research?

• Determining what method you will use to measure it. Will you use self-report to measure
age, ask a parent, or look up an official record? If you’re using self-report, how will you
phrase the question?

• Defining the set of allowable values that the measurement can take. Note that these values
don’t always have to be numerical, though they often are. When measuring age the values
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are numerical, but we still need to think carefully about what numbers are allowed. Do
we want age in years, years and months, days, or hours? For other types of measurements
(e.g., gender) the values aren’t numerical. But, just as before, we need to think about
what values are allowed. If we’re asking people to self-report their gender, what options
to we allow them to choose between? Is it enough to allow only “male” or “female”? Do
you need an “other” option? Or should we not give people specific options and instead let
them answer in their own words? And if you open up the set of possible values to include
all verbal response, how will you interpret their answers?

Operationalisation is a tricky business, and there’s no “one, true way” to do it. The way
in which you choose to operationalise the informal concept of “age” or “gender” into a formal
measurement depends on what you need to use the measurement for. Often you’ll find that the
community of scientists who work in your area have some fairly well-established ideas for how
to go about it. In other words, operationalisation needs to be thought through on a case by
case basis. Nevertheless, while there a lot of issues that are specific to each individual research
project, there are some aspects to it that are pretty general.

Before moving on I want to take a moment to clear up our terminology, and in the process
introduce one more term. Here are four different things that are closely related to each other:

• A theoretical construct. This is the thing that you’re trying to take a measurement of,
like “age”, “gender” or an “opinion”. A theoretical construct can’t be directly observed,
and often they’re actually a bit vague.

• A measure. The measure refers to the method or the tool that you use to make your
observations. A question in a survey, a behavioural observation or a brain scan could all
count as a measure.

• An operationalisation. The term “operationalisation” refers to the logical connection
between the measure and the theoretical construct, or to the process by which we try to
derive a measure from a theoretical construct.

• A variable. Finally, a new term. A variable is what we end up with when we apply our
measure to something in the world. That is, variables are the actual “data” that we end
up with in our data sets.

In practice, even scientists tend to blur the distinction between these things, but it’s very helpful
to try to understand the differences.

2.2

Scales of measurement

As the previous section indicates, the outcome of a psychological measurement is called a vari-
able. But not all variables are of the same qualitative type and so it’s useful to understand what
types there are. A very useful concept for distinguishing between different types of variables is
what’s known as scales of measurement.
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2.2.1 Nominal scale

A nominal scale variable (also referred to as a categorical variable) is one in which there
is no particular relationship between the different possibilities. For these kinds of variables it
doesn’t make any sense to say that one of them is “bigger’ or “better” than any other one,
and it absolutely doesn’t make any sense to average them. The classic example for this is “eye
colour”. Eyes can be blue, green or brown, amongst other possibilities, but none of them is any
“bigger” than any other one. As a result, it would feel really weird to talk about an “average
eye colour”. Similarly, gender is nominal too: male isn’t better or worse than female. Neither
does it make sense to try to talk about an “average gender”. In short, nominal scale variables
are those for which the only thing you can say about the different possibilities is that they are
different. That’s it.

Let’s take a slightly closer look at this. Suppose I was doing research on how people commute
to and from work. One variable I would have to measure would be what kind of transportation
people use to get to work. This “transport type” variable could have quite a few possible values,
including: “train”, “bus”, “car”, “bicycle”. For now, let’s suppose that these four are the only
possibilities. Then imagine that I ask 100 people how they got to work today, with this result:

Transportation Number of people

(1) Train 12
(2) Bus 30
(3) Car 48
(4) Bicycle 10

So, what’s the average transportation type? Obviously, the answer here is that there isn’t
one. It’s a silly question to ask. You can say that travel by car is the most popular method,
and travel by train is the least popular method, but that’s about all. Similarly, notice that the
order in which I list the options isn’t very interesting. I could have chosen to display the data
like this. . .

Transportation Number of people

(3) Car 48
(1) Train 12
(4) Bicycle 10
(2) Bus 30

. . . and nothing really changes.

2.2.2 Ordinal scale

Ordinal scale variables have a bit more structure than nominal scale variables, but not by
a lot. An ordinal scale variable is one in which there is a natural, meaningful way to order the
different possibilities, but you can’t do anything else. The usual example given of an ordinal
variable is “finishing position in a race”. You can say that the person who finished first was faster
than the person who finished second, but you don’t know how much faster. As a consequence
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we know that 1st ą 2nd, and we know that 2nd ą 3rd, but the difference between 1st and 2nd
might be much larger than the difference between 2nd and 3rd.

Here’s a more psychologically interesting example. Suppose I’m interested in people’s atti-
tudes to climate change. I then go and ask some people to pick the statement (from four listed
statements) that most closely matches their beliefs:

(1) Temperatures are rising because of human activity
(2) Temperatures are rising but we don’t know why
(3) Temperatures are rising but not because of humans
(4) Temperatures are not rising

Notice that these four statements actually do have a natural ordering, in terms of “the extent
to which they agree with the current science”. Statement 1 is a close match, statement 2 is a
reasonable match, statement 3 isn’t a very good match, and statement 4 is in strong opposition
to current science. So, in terms of the thing I’m interested in (the extent to which people endorse
the science), I can order the items as 1 ą 2 ą 3 ą 4. Since this ordering exists, it would be very
weird to list the options like this. . .

(3) Temperatures are rising but not because of humans
(1) Temperatures are rising because of human activity
(4) Temperatures are not rising
(2) Temperatures are rising but we don’t know why

. . . because it seems to violate the natural “structure” to the question.

So, let’s suppose I asked 100 people these questions, and got the following answers:

Response Number

(1) Temperatures are rising because of human activity 51
(2) Temperatures are rising but we don’t know why 20
(3) Temperatures are rising but not because of humans 10
(4) Temperatures are not rising 19

When analysing these data it seems quite reasonable to try to group (1), (2) and (3) together,
and say that 81 out of 100 people were willing to at least partially endorse the science. And
it’s also quite reasonable to group (2), (3) and (4) together and say that 49 out of 100 people
registered at least some disagreement with the dominant scientific view. However, it would be
entirely bizarre to try to group (1), (2) and (4) together and say that 90 out of 100 people
said. . . what? There’s nothing sensible that allows you to group those responses together at all.

That said, notice that while we can use the natural ordering of these items to construct
sensible groupings, what we can’t do is average them. For instance, in my simple example here,
the “average” response to the question is 1.97. If you can tell me what that means I’d love to
know, because it seems like gibberish to me!
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2.2.3 Interval scale

In contrast to nominal and ordinal scale variables, interval scale and ratio scale variables
are variables for which the numerical value is genuinely meaningful. In the case of interval scale
variables the differences between the numbers are interpretable, but the variable doesn’t have
a “natural” zero value. A good example of an interval scale variable is measuring temperature
in degrees celsius. For instance, if it was 15˝ yesterday and 18˝ today, then the 3˝ difference
between the two is genuinely meaningful. Moreover, that 3˝ difference is exactly the same as the
3˝ difference between 7˝ and 10˝. In short, addition and subtraction are meaningful for interval
scale variables.3

However, notice that the 0˝ does not mean “no temperature at all”. It actually means “the
temperature at which water freezes”, which is pretty arbitrary. As a consequence it becomes
pointless to try to multiply and divide temperatures. It is wrong to say that 20˝ is twice as hot
as 10˝, just as it is weird and meaningless to try to claim that 20˝ is negative two times as hot
as ´10˝.

Again, lets look at a more psychological example. Suppose I’m interested in looking at how
the attitudes of first-year university students have changed over time. Obviously, I’m going to
want to record the year in which each student started. This is an interval scale variable. A
student who started in 2003 did arrive 5 years before a student who started in 2008. However, it
would be completely daft for me to divide 2008 by 2003 and say that the second student started
“1.0024 times later” than the first one. That doesn’t make any sense at all.

2.2.4 Ratio scale

The fourth and final type of variable to consider is a ratio scale variable, in which zero
really means zero, and it’s okay to multiply and divide. A good psychological example of a ratio
scale variable is response time (RT). In a lot of tasks it’s very common to record the amount
of time somebody takes to solve a problem or answer a question, because it’s an indicator of
how difficult the task is. Suppose that Alan takes 2.3 seconds to respond to a question, whereas
Ben takes 3.1 seconds. As with an interval scale variable, addition and subtraction are both
meaningful here. Ben really did take 3.1 ´ 2.3 “ 0.8 seconds longer than Alan did. However,
notice that multiplication and division also make sense here too: Ben took 3.1{2.3 “ 1.35 times
as long as Alan did to answer the question. And the reason why you can do this is that for a
ratio scale variable such as RT “zero seconds” really does mean “no time at all”.

2.2.5 Continuous versus discrete variables

There’s a second kind of distinction that you need to be aware of, regarding what types of
variables you can run into. This is the distinction between continuous variables and discrete
variables. The difference between these is as follows:

3Actually, I’ve been informed by readers with greater physics knowledge than I that temperature isn’t strictly
an interval scale, in the sense that the amount of energy required to heat something up by 3˝ depends on it’s
current temperature. So in the sense that physicists care about, temperature isn’t actually an interval scale. But
it still makes a cute example so I’m going to ignore this little inconvenient truth.
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Table 2.1: The relationship between the scales of measurement and the discrete/continuity
distinction. Cells with a tick mark correspond to things that are possible.

continuous discrete

nominal X
ordinal X
interval X X
ratio X X

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• A continuous variable is one in which, for any two values that you can think of, it’s
always logically possible to have another value in between.

• A discrete variable is, in effect, a variable that isn’t continuous. For a discrete variable
it’s sometimes the case that there’s nothing in the middle.

These definitions probably seem a bit abstract, but they’re pretty simple once you see some
examples. For instance, response time is continuous. If Alan takes 3.1 seconds and Ben takes
2.3 seconds to respond to a question, then Cameron’s response time will lie in between if he took
3.0 seconds. And of course it would also be possible for David to take 3.031 seconds to respond,
meaning that his RT would lie in between Cameron’s and Alan’s. And while in practice it might
be impossible to measure RT that precisely, it’s certainly possible in principle. Because we can
always find a new value for RT in between any two other ones we regard RT as a continuous
measure.

Discrete variables occur when this rule is violated. For example, nominal scale variables
are always discrete. There isn’t a type of transportation that falls “in between” trains and
bicycles, not in the strict mathematical way that 2.3 falls in between 2 and 3. So transportation
type is discrete. Similarly, ordinal scale variables are always discrete. Although “2nd place”
does fall between “1st place” and “3rd place”, there’s nothing that can logically fall in between
“1st place” and “2nd place”. Interval scale and ratio scale variables can go either way. As
we saw above, response time (a ratio scale variable) is continuous. Temperature in degrees
celsius (an interval scale variable) is also continuous. However, the year you went to school (an
interval scale variable) is discrete. There’s no year in between 2002 and 2003. The number of
questions you get right on a true-or-false test (a ratio scale variable) is also discrete. Since a
true-or-false question doesn’t allow you to be “partially correct”, there’s nothing in between 5/10
and 6/10. Table 2.1 summarises the relationship between the scales of measurement and the
discrete/continuity distinction. Cells with a tick mark correspond to things that are possible.
I’m trying to hammer this point home, because (a) some textbooks get this wrong, and (b)
people very often say things like “discrete variable” when they mean “nominal scale variable”.
It’s very unfortunate.
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2.2.6 Some complexities

Okay, I know you’re going to be shocked to hear this, but the real world is much messier than
this little classification scheme suggests. Very few variables in real life actually fall into these
nice neat categories, so you need to be kind of careful not to treat the scales of measurement as
if they were hard and fast rules. It doesn’t work like that. They’re guidelines, intended to help
you think about the situations in which you should treat different variables differently. Nothing
more.

So let’s take a classic example, maybe the classic example, of a psychological measurement
tool: the Likert scale. The humble Likert scale is the bread and butter tool of all survey
design. You yourself have filled out hundreds, maybe thousands, of them and odds are you’ve
even used one yourself. Suppose we have a survey question that looks like this:

Which of the following best describes your opinion of the statement that “all pirates
are freaking awesome”?

and then the options presented to the participant are these:

(1) Strongly disagree
(2) Disagree
(3) Neither agree nor disagree
(4) Agree
(5) Strongly agree

This set of items is an example of a 5-point Likert scale, in which people are asked to choose
among one of several (in this case 5) clearly ordered possibilities, generally with a verbal de-
scriptor given in each case. However, it’s not necessary that all items are explicitly described.
This is a perfectly good example of a 5-point Likert scale too:

(1) Strongly disagree
(2)
(3)
(4)
(5) Strongly agree

Likert scales are very handy, if somewhat limited, tools. The question is what kind of variable
are they? They’re obviously discrete, since you can’t give a response of 2.5. They’re obviously
not nominal scale, since the items are ordered; and they’re not ratio scale either, since there’s
no natural zero.

But are they ordinal scale or interval scale? One argument says that we can’t really prove
that the difference between “strongly agree” and “agree” is of the same size as the difference
between “agree” and “neither agree nor disagree”. In fact, in everyday life it’s pretty obvious
that they’re not the same at all. So this suggests that we ought to treat Likert scales as ordinal
variables. On the other hand, in practice most participants do seem to take the whole “on a
scale from 1 to 5” part fairly seriously, and they tend to act as if the differences between the
five response options were fairly similar to one another. As a consequence, a lot of researchers
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treat Likert scale data as interval scale.4 It’s not interval scale, but in practice it’s close enough
that we usually think of it as being quasi-interval scale.

2.3

Assessing the reliability of a measurement

At this point we’ve thought a little bit about how to operationalise a theoretical construct and
thereby create a psychological measure. And we’ve seen that by applying psychological measures
we end up with variables, which can come in many different types. At this point, we should
start discussing the obvious question: is the measurement any good? We’ll do this in terms of
two related ideas: reliability and validity. Put simply, the reliability of a measure tells you how
precisely you are measuring something, whereas the validity of a measure tells you how accurate
the measure is. In this section I’ll talk about reliability; we’ll talk about validity in section 2.6.

Reliability is actually a very simple concept. It refers to the repeatability or consistency of
your measurement. The measurement of my weight by means of a “bathroom scale” is very
reliable. If I step on and off the scales over and over again, it’ll keep giving me the same answer.
Measuring my intelligence by means of “asking my mum” is very unreliable. Some days she
tells me I’m a bit thick, and other days she tells me I’m a complete idiot. Notice that this
concept of reliability is different to the question of whether the measurements are correct (the
correctness of a measurement relates to it’s validity). If I’m holding a sack of potatos when I
step on and off the bathroom scales the measurement will still be reliable: it will always give me
the same answer. However, this highly reliable answer doesn’t match up to my true weight at
all, therefore it’s wrong. In technical terms, this is a reliable but invalid measurement. Similarly,
whilst my mum’s estimate of my intelligence is a bit unreliable, she might be right. Maybe I’m
just not too bright, and so while her estimate of my intelligence fluctuates pretty wildly from
day to day, it’s basically right. That would be an unreliable but valid measure. Of course, if
my mum’s estimates are too unreliable it’s going to be very hard to figure out which one of
her many claims about my intelligence is actually the right one. To some extent, then, a very
unreliable measure tends to end up being invalid for practical purposes; so much so that many
people would say that reliability is necessary (but not sufficient) to ensure validity.

Okay, now that we’re clear on the distinction between reliability and validity, let’s have a
think about the different ways in which we might measure reliability:

• Test-retest reliability. This relates to consistency over time. If we repeat the measure-
ment at a later date do we get a the same answer?

• Inter-rater reliability. This relates to consistency across people. If someone else repeats
the measurement (e.g., someone else rates my intelligence) will they produce the same
answer?

• Parallel forms reliability. This relates to consistency across theoretically-equivalent
measurements. If I use a different set of bathroom scales to measure my weight does it

4Ah, psychology . . . never an easy answer to anything!
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give the same answer?

• Internal consistency reliability. If a measurement is constructed from lots of different
parts that perform similar functions (e.g., a personality questionnaire result is added up
across several questions) do the individual parts tend to give similar answers. We’ll look
at this particular form of reliability later in the book, in Section 15.5.

Not all measurements need to possess all forms of reliability. For instance, educational
assessment can be thought of as a form of measurement. One of the subjects that I teach, Com-
putational Cognitive Science, has an assessment structure that has a research component and an
exam component (plus other things). The exam component is intended to measure something
different from the research component, so the assessment as a whole has low internal consistency.
However, within the exam there are several questions that are intended to (approximately) mea-
sure the same things, and those tend to produce similar outcomes. So the exam on its own has
a fairly high internal consistency. Which is as it should be. You should only demand reliability
in those situations where you want to be measuring the same thing!

2.4

The “role” of variables: predictors and outcomes

I’ve got one last piece of terminology that I need to explain to you before moving away from
variables. Normally, when we do some research we end up with lots of different variables. Then,
when we analyse our data, we usually try to explain some of the variables in terms of some of
the other variables. It’s important to keep the two roles “thing doing the explaining” and “thing
being explained” distinct. So let’s be clear about this now. First, we might as well get used to
the idea of using mathematical symbols to describe variables, since it’s going to happen over
and over again. Let’s denote the “to be explained” variable Y , and denote the variables “doing
the explaining” as X1, X2, etc.

When we are doing an analysis we have different names for X and Y , since they play different
roles in the analysis. The classical names for these roles are independent variable (IV) and
dependent variable (DV). The IV is the variable that you use to do the explaining (i.e., X)
and the DV is the variable being explained (i.e., Y ). The logic behind these names goes like this:
if there really is a relationship between X and Y then we can say that Y depends on X, and
if we have designed our study “properly” then X isn’t dependent on anything else. However, I
personally find those names horrible. They’re hard to remember and they’re highly misleading
because (a) the IV is never actually “independent of everything else”, and (b) if there’s no
relationship then the DV doesn’t actually depend on the IV. And in fact, because I’m not the
only person who thinks that IV and DV are just awful names, there are a number of alternatives
that I find more appealing. The terms that I’ll use in this book are predictors and outcomes.
The idea here is that what you’re trying to do is use X (the predictors) to make guesses about
Y (the outcomes).5 This is summarised in Table 2.2.

5Annoyingly though, there’s a lot of different names used out there. I won’t list all of them – there would be no
point in doing that – other than to note that “response variable” is sometimes used where I’ve used “outcome”.
Sigh. This sort of terminological confusion is very common, I’m afraid.
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Table 2.2: The terminology used to distinguish between different roles that a variable can play
when analysing a data set. Note that this book will tend to avoid the classical terminology in
favour of the newer names.

role of the variable classical name modern name

“to be explained” dependent variable (DV) outcome
“to do the explaining” independent variable (IV) predictor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5

Experimental and non-experimental research

One of the big distinctions that you should be aware of is the distinction between “experimental
research” and “non-experimental research”. When we make this distinction, what we’re really
talking about is the degree of control that the researcher exercises over the people and events in
the study.

2.5.1 Experimental research

The key feature of experimental research is that the researcher controls all aspects of the
study, especially what participants experience during the study. In particular, the researcher
manipulates or varies the predictor variables (IVs) but allows the outcome variable (DV) to vary
naturally. The idea here is to deliberately vary the predictors (IVs) to see if they have any causal
effects on the outcomes. Moreover, in order to ensure that there’s no possibility that something
other than the predictor variables is causing the outcomes, everything else is kept constant or
is in some other way “balanced”, to ensure that they have no effect on the results. In practice,
it’s almost impossible to think of everything else that might have an influence on the outcome
of an experiment, much less keep it constant. The standard solution to this is randomisation.
That is, we randomly assign people to different groups, and then give each group a different
treatment (i.e., assign them different values of the predictor variables). We’ll talk more about
randomisation later, but for now it’s enough to say that what randomisation does is minimise
(but not eliminate) the possibility that there are any systematic difference between groups.

Let’s consider a very simple, completely unrealistic and grossly unethical example. Suppose
you wanted to find out if smoking causes lung cancer. One way to do this would be to find
people who smoke and people who don’t smoke and look to see if smokers have a higher rate of
lung cancer. This is not a proper experiment, since the researcher doesn’t have a lot of control
over who is and isn’t a smoker. And this really matters. For instance, it might be that people
who choose to smoke cigarettes also tend to have poor diets, or maybe they tend to work in
asbestos mines, or whatever. The point here is that the groups (smokers and non-smokers)
actually differ on lots of things, not just smoking. So it might be that the higher incidence of
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lung cancer among smokers is caused by something else, and not by smoking per se. In technical
terms these other things (e.g. diet) are called “confounders”, and we’ll talk about those in just
a moment.

In the meantime, let’s consider what a proper experiment might look like. Recall that our
concern was that smokers and non-smokers might differ in lots of ways. The solution, as long as
you have no ethics, is to control who smokes and who doesn’t. Specifically, if we randomly divide
young non-smokers into two groups and force half of them to become smokers, then it’s very
unlikely that the groups will differ in any respect other than the fact that half of them smoke.
That way, if our smoking group gets cancer at a higher rate than the non-smoking group, we
can feel pretty confident that (a) smoking does cause cancer and (b) we’re murderers.

2.5.2 Non-experimental research

Non-experimental research is a broad term that covers “any study in which the researcher
doesn’t have as much control as they do in an experiment”. Obviously, control is something
that scientists like to have, but as the previous example illustrates there are lots of situations in
which you can’t or shouldn’t try to obtain that control. Since it’s grossly unethical (and almost
certainly criminal) to force people to smoke in order to find out if they get cancer, this is a good
example of a situation in which you really shouldn’t try to obtain experimental control. But
there are other reasons too. Even leaving aside the ethical issues, our “smoking experiment”
does have a few other issues. For instance, when I suggested that we “force” half of the people
to become smokers, I was talking about starting with a sample of non-smokers, and then forcing
them to become smokers. While this sounds like the kind of solid, evil experimental design that
a mad scientist would love, it might not be a very sound way of investigating the effect in the
real world. For instance, suppose that smoking only causes lung cancer when people have poor
diets, and suppose also that people who normally smoke do tend to have poor diets. However,
since the “smokers” in our experiment aren’t “natural” smokers (i.e., we forced non-smokers to
become smokers, but they didn’t take on all of the other normal, real life characteristics that
smokers might tend to possess) they probably have better diets. As such, in this silly example
they wouldn’t get lung cancer and our experiment will fail, because it violates the structure of
the “natural” world (the technical name for this is an “artefactual” result).

One distinction worth making between two types of non-experimental research is the dif-
ference between quasi-experimental research and case studies. The example I discussed
earlier, in which we wanted to examine incidence of lung cancer among smokers and non-smokers
without trying to control who smokes and who doesn’t, is a quasi-experimental design. That
is, it’s the same as an experiment but we don’t control the predictors (IVs). We can still use
statistics to analyse the results, but we have to be a lot more careful and circumspect.

The alternative approach, case studies, aims to provide a very detailed description of one or
a few instances. In general, you can’t use statistics to analyse the results of case studies and it’s
usually very hard to draw any general conclusions about “people in general” from a few isolated
examples. However, case studies are very useful in some situations. Firstly, there are situations
where you don’t have any alternative. Neuropsychology has this issue a lot. Sometimes, you just
can’t find a lot of people with brain damage in a specific brain area, so the only thing you can
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do is describe those cases that you do have in as much detail and with as much care as you can.
However, there’s also some genuine advantages to case studies. Because you don’t have as many
people to study you have the ability to invest lots of time and effort trying to understand the
specific factors at play in each case. This is a very valuable thing to do. As a consequence, case
studies can complement the more statistically-oriented approaches that you see in experimental
and quasi-experimental designs. We won’t talk much about case studies in this book, but they
are nevertheless very valuable tools!

2.6

Assessing the validity of a study

More than any other thing, a scientist wants their research to be “valid”. The conceptual idea
behind validity is very simple. Can you trust the results of your study? If not, the study is
invalid. However, whilst it’s easy to state, in practice it’s much harder to check validity than it
is to check reliability. And in all honesty, there’s no precise, clearly agreed upon notion of what
validity actually is. In fact, there are lots of different kinds of validity, each of which raises it’s
own issues. And not all forms of validity are relevant to all studies. I’m going to talk about five
different types of validity:

• Internal validity

• External validity

• Construct validity

• Face validity

• Ecological validity

First, a quick guide as to what matters here. (1) Internal and external validity are the most
important, since they tie directly to the fundamental question of whether your study really
works. (2) Construct validity asks whether you’re measuring what you think you are. (3) Face
validity isn’t terribly important except insofar as you care about “appearances”. (4) Ecological
validity is a special case of face validity that corresponds to a kind of appearance that you might
care about a lot.

2.6.1 Internal validity

Internal validity refers to the extent to which you are able draw the correct conclusions
about the causal relationships between variables. It’s called “internal” because it refers to
the relationships between things “inside” the study. Let’s illustrate the concept with a simple
example. Suppose you’re interested in finding out whether a university education makes you
write better. To do so, you get a group of first year students, ask them to write a 1000 word
essay, and count the number of spelling and grammatical errors they make. Then you find some
third-year students, who obviously have had more of a university education than the first-years,
and repeat the exercise. And let’s suppose it turns out that the third-year students produce
fewer errors. And so you conclude that a university education improves writing skills. Right?
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Except that the big problem with this experiment is that the third-year students are older and
they’ve had more experience with writing things. So it’s hard to know for sure what the causal
relationship is. Do older people write better? Or people who have had more writing experience?
Or people who have had more education? Which of the above is the true cause of the superior
performance of the third-years? Age? Experience? Education? You can’t tell. This is an
example of a failure of internal validity, because your study doesn’t properly tease apart the
causal relationships between the different variables.

2.6.2 External validity

External validity relates to the generalisability or applicability of your findings. That
is, to what extent do you expect to see the same pattern of results in “real life” as you saw in your
study. To put it a bit more precisely, any study that you do in psychology will involve a fairly
specific set of questions or tasks, will occur in a specific environment, and will involve participants
that are drawn from a particular subgroup (disappointingly often it is college students!). So, if
it turns out that the results don’t actually generalise or apply to people and situations beyond
the ones that you studied, then what you’ve got is a lack of external validity.

The classic example of this issue is the fact that a very large proportion of studies in psy-
chology will use undergraduate psychology students as the participants. Obviously, however,
the researchers don’t care only about psychology students. They care about people in general.
Given that, a study that uses only psychology students as participants always carries a risk of
lacking external validity. That is, if there’s something “special” about psychology students that
makes them different to the general population in some relevant respect, then we may start
worrying about a lack of external validity.

That said, it is absolutely critical to realise that a study that uses only psychology students
does not necessarily have a problem with external validity. I’ll talk about this again later, but
it’s such a common mistake that I’m going to mention it here. The external validity of a study
is threatened by the choice of population if (a) the population from which you sample your
participants is very narrow (e.g., psychology students), and (b) the narrow population that you
sampled from is systematically different from the general population in some respect that is
relevant to the psychological phenomenon that you intend to study. The italicised part is the
bit that lots of people forget. It is true that psychology undergraduates differ from the general
population in lots of ways, and so a study that uses only psychology students may have problems
with external validity. However, if those differences aren’t very relevant to the phenomenon that
you’re studying, then there’s nothing to worry about. To make this a bit more concrete here
are two extreme examples:

• You want to measure “attitudes of the general public towards psychotherapy”, but all
of your participants are psychology students. This study would almost certainly have a
problem with external validity.

• You want to measure the effectiveness of a visual illusion, and your participants are all
psychology students. This study is unlikely to have a problem with external validity

Having just spent the last couple of paragraphs focusing on the choice of participants, since
that’s a big issue that everyone tends to worry most about, it’s worth remembering that external
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validity is a broader concept. The following are also examples of things that might pose a threat
to external validity, depending on what kind of study you’re doing:

• People might answer a “psychology questionnaire” in a manner that doesn’t reflect what
they would do in real life.

• Your lab experiment on (say) “human learning” has a different structure to the learning
problems people face in real life.

2.6.3 Construct validity

Construct validity is basically a question of whether you’re measuring what you want
to be measuring. A measurement has good construct validity if it is actually measuring the
correct theoretical construct, and bad construct validity if it doesn’t. To give a very simple (if
ridiculous) example, suppose I’m trying to investigate the rates with which university students
cheat on their exams. And the way I attempt to measure it is by asking the cheating students
to stand up in the lecture theatre so that I can count them. When I do this with a class of 300
students 0 people claim to be cheaters. So I therefore conclude that the proportion of cheaters
in my class is 0%. Clearly this is a bit ridiculous. But the point here is not that this is a very
deep methodological example, but rather to explain what construct validity is. The problem
with my measure is that while I’m trying to measure “the proportion of people who cheat” what
I’m actually measuring is “the proportion of people stupid enough to own up to cheating, or
bloody minded enough to pretend that they do”. Obviously, these aren’t the same thing! So
my study has gone wrong, because my measurement has very poor construct validity.

2.6.4 Face validity

Face validity simply refers to whether or not a measure “looks like” it’s doing what it’s
supposed to, nothing more. If I design a test of intelligence, and people look at it and they say
“no, that test doesn’t measure intelligence”, then the measure lacks face validity. It’s as simple
as that. Obviously, face validity isn’t very important from a pure scientific perspective. After
all, what we care about is whether or not the measure actually does what it’s supposed to do,
not whether it looks like it does what it’s supposed to do. As a consequence, we generally don’t
care very much about face validity. That said, the concept of face validity serves three useful
pragmatic purposes:

• Sometimes, an experienced scientist will have a “hunch” that a particular measure won’t
work. While these sorts of hunches have no strict evidentiary value, it’s often worth
paying attention to them. Because often times people have knowledge that they can’t
quite verbalise, so there might be something to worry about even if you can’t quite say
why. In other words, when someone you trust criticises the face validity of your study, it’s
worth taking the time to think more carefully about your design to see if you can think
of reasons why it might go awry. Mind you, if you don’t find any reason for concern, then
you should probably not worry. After all, face validity really doesn’t matter very much.
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• Often (very often), completely uninformed people will also have a “hunch” that your
research is crap. And they’ll criticise it on the internet or something. On close inspection
you may notice that these criticisms are actually focused entirely on how the study “looks”,
but not on anything deeper. The concept of face validity is useful for gently explaining to
people that they need to substantiate their arguments further.

• Expanding on the last point, if the beliefs of untrained people are critical (e.g., this is
often the case for applied research where you actually want to convince policy makers of
something or other) then you have to care about face validity. Simply because, whether you
like it or not, a lot of people will use face validity as a proxy for real validity. If you want
the government to change a law on scientific psychological grounds, then it won’t matter
how good your studies “really” are. If they lack face validity you’ll find that politicians
ignore you. Of course, it’s somewhat unfair that policy often depends more on appearance
than fact, but that’s how things go.

2.6.5 Ecological validity

Ecological validity is a different notion of validity, which is similar to external validity,
but less important. The idea is that, in order to be ecologically valid, the entire set up of the
study should closely approximate the real world scenario that is being investigated. In a sense,
ecological validity is a kind of face validity. It relates mostly to whether the study “looks” right,
but with a bit more rigour to it. To be ecologically valid the study has to look right in a fairly
specific way. The idea behind it is the intuition that a study that is ecologically valid is more
likely to be externally valid. It’s no guarantee, of course. But the nice thing about ecological
validity is that it’s much easier to check whether a study is ecologically valid than it is to check
whether a study is externally valid. A simple example would be eyewitness identification studies.
Most of these studies tend to be done in a university setting, often with a fairly simple array of
faces to look at, rather than a line up. The length of time between seeing the “criminal” and
being asked to identify the suspect in the “line up” is usually shorter. The “crime” isn’t real so
there’s no chance of the witness being scared, and there are no police officers present so there’s
not as much chance of feeling pressured. These things all mean that the study definitely lacks
ecological validity. They might (but might not) mean that it also lacks external validity.

2.7

Confounds, artefacts and other threats to validity

If we look at the issue of validity in the most general fashion the two biggest worries that we
have are confounders and artefacts. These two terms are defined in the following way:

- 29 -



• Confounder: A confounder is an additional, often unmeasured variable6 that turns out to
be related to both the predictors and the outcome. The existence of confounders threatens
the internal validity of the study because you can’t tell whether the predictor causes the
outcome, or if the confounding variable causes it.

• Artefact: A result is said to be “artefactual” if it only holds in the special situation that
you happened to test in your study. The possibility that your result is an artefact describes
a threat to your external validity, because it raises the possibility that you can’t generalise
or apply your results to the actual population that you care about.

As a general rule confounders are a bigger concern for non-experimental studies, precisely
because they’re not proper experiments. By definition, you’re leaving lots of things uncontrolled,
so there’s a lot of scope for confounders being present in your study. Experimental research tends
to be much less vulnerable to confounders. The more control you have over what happens during
the study, the more you can prevent confounders from affecting the results. With random
allocation, for example, confounders are distributed randomly, and evenly, between different
groups.

However, there are always swings and roundabouts and when we start thinking about arte-
facts rather than confounders the shoe is very firmly on the other foot. For the most part,
artefactual results tend to be a concern for experimental studies than for non-experimental
studies. To see this, it helps to realise that the reason that a lot of studies are non-experimental
is precisely because what the researcher is trying to do is examine human behaviour in a more
naturalistic context. By working in a more real-world context you lose experimental control
(making yourself vulnerable to confounders), but because you tend to be studying human psy-
chology “in the wild” you reduce the chances of getting an artefactual result. Or, to put it
another way, when you take psychology out of the wild and bring it into the lab (which we
usually have to do to gain our experimental control), you always run the risk of accidentally
studying something different to what you wanted to study.

Be warned though. The above is a rough guide only. It’s absolutely possible to have con-
founders in an experiment, and to get artefactual results with non-experimental studies. This
can happen for all sorts of reasons, not least of which is experimenter or researcher error. In prac-
tice, it’s really hard to think everything through ahead of time and even very good researchers
make mistakes.

Although there’s a sense in which almost any threat to validity can be characterised as a
confounder or an artefact, they’re pretty vague concepts. So let’s have a look at some of the
most common examples.

6The reason why I say that it’s unmeasured is that if you have measured it, then you can use some fancy
statistical tricks to deal with the confounder. Because of the existence of these statistical solutions to the problem
of confounders, we often refer to a confounder that we have measured and dealt with as a covariate. Dealing with
covariates is a more advanced topic, but I thought I’d mention it in passing since it’s kind of comforting to at
least know that this stuff exists.
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2.7.1 History effects

History effects refer to the possibility that specific events may occur during the study that
might influence the outcome measure. For instance, something might happen in between a pre-
test and a post-test. Or in-between testing participant 23 and participant 24. Alternatively, it
might be that you’re looking at a paper from an older study that was perfectly valid for its time,
but the world has changed enough since then that the conclusions are no longer trustworthy.
Examples of things that would count as history effects are:

• You’re interested in how people think about risk and uncertainty. You started your data
collection in December 2010. But finding participants and collecting data takes time,
so you’re still finding new people in February 2011. Unfortunately for you (and even
more unfortunately for others), the Queensland floods occurred in January 2011 causing
billions of dollars of damage and killing many people. Not surprisingly, the people tested
in February 2011 express quite different beliefs about handling risk than the people tested
in December 2010. Which (if any) of these reflects the “true” beliefs of participants? I
think the answer is probably both. The Queensland floods genuinely changed the beliefs
of the Australian public, though possibly only temporarily. The key thing here is that the
“history” of the people tested in February is quite different to people tested in December.

• You’re testing the psychological effects of a new anti-anxiety drug. So what you do is mea-
sure anxiety before administering the drug (e.g., by self-report, and taking physiological
measures). Then you administer the drug, and afterwards you take the same measures.
In the middle however, because your lab is in Los Angeles, there’s an earthquake which
increases the anxiety of the participants.

2.7.2 Maturation effects

As with history effects, maturational effects are fundamentally about change over time.
However, maturation effects aren’t in response to specific events. Rather, they relate to how
people change on their own over time. We get older, we get tired, we get bored, etc. Some
examples of maturation effects are:

• When doing developmental psychology research you need to be aware that children grow
up quite rapidly. So, suppose that you want to find out whether some educational trick
helps with vocabulary size among 3 year olds. One thing that you need to be aware of
is that the vocabulary size of children that age is growing at an incredible rate (multiple
words per day) all on its own. If you design your study without taking this maturational
effect into account, then you won’t be able to tell if your educational trick works.

• When running a very long experiment in the lab (say, something that goes for 3 hours) it’s
very likely that people will begin to get bored and tired, and that this maturational effect
will cause performance to decline regardless of anything else going on in the experiment

- 31 -



2.7.3 Repeated testing effects

An important type of history effect is the effect of repeated testing. Suppose I want to
take two measurements of some psychological construct (e.g., anxiety). One thing I might be
worried about is if the first measurement has an effect on the second measurement. In other
words, this is a history effect in which the “event” that influences the second measurement is
the first measurement itself! This is not at all uncommon. Examples of this include:

• Learning and practice: e.g., “intelligence” at time 2 might appear to go up relative to time
1 because participants learned the general rules of how to solve “intelligence-test-style”
questions during the first testing session.

• Familiarity with the testing situation: e.g., if people are nervous at time 1, this might make
performance go down. But after sitting through the first testing situation they might calm
down a lot precisely because they’ve seen what the testing looks like.

• Auxiliary changes caused by testing: e.g., if a questionnaire assessing mood is boring then
mood rating at measurement time 2 is more likely to be “bored” precisely because of the
boring measurement made at time 1.

2.7.4 Selection bias

Selection bias is a pretty broad term. Suppose that you’re running an experiment with
two groups of participants where each group gets a different “treatment”, and you want to see
if the different treatments lead to different outcomes. However, suppose that, despite your best
efforts, you’ve ended up with a gender imbalance across groups (say, group A has 80% females
and group B has 50% females). It might sound like this could never happen but, trust me, it
can. This is an example of a selection bias, in which the people “selected into” the two groups
have different characteristics. If any of those characteristics turns out to be relevant (say, your
treatment works better on females than males) then you’re in a lot of trouble.

2.7.5 Differential attrition

When thinking about the effects of attrition, it is sometimes helpful to distinguish between
two different types. The first is homogeneous attrition, in which the attrition effect is the
same for all groups, treatments or conditions. In the example I gave above, the attrition would
be homogeneous if (and only if) the easily bored participants are dropping out of all of the
conditions in my experiment at about the same rate. In general, the main effect of homogeneous
attrition is likely to be that it makes your sample unrepresentative. As such, the biggest worry
that you’ll have is that the generalisability of the results decreases. In other words, you lose
external validity.

The second type of attrition is heterogeneous attrition, in which the attrition effect is
different for different groups. More often called differential attrition, this is a kind of selection
bias that is caused by the study itself. Suppose that, for the first time ever in the history of
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psychology, I manage to find the perfectly balanced and representative sample of people. I
start running “Dani’s incredibly long and tedious experiment” on my perfect sample but then,
because my study is incredibly long and tedious, lots of people start dropping out. I can’t
stop this. Participants absolutely have the right to stop doing any experiment, any time, for
whatever reason they feel like, and as researchers we are morally (and professionally) obliged to
remind people that they do have this right. So, suppose that “Dani’s incredibly long and tedious
experiment” has a very high drop out rate. What do you suppose the odds are that this drop
out is random? Answer: zero. Almost certainly the people who remain are more conscientious,
more tolerant of boredom, etc., than those that leave. To the extent that (say) conscientiousness
is relevant to the psychological phenomenon that I care about, this attrition can decrease the
validity of my results.

Here’s another example. Suppose I design my experiment with two conditions. In the “treat-
ment” condition, the experimenter insults the participant and then gives them a questionnaire
designed to measure obedience. In the “control” condition, the experimenter engages in a bit of
pointless chitchat and then gives them the questionnaire. Leaving aside the questionable scien-
tific merits and dubious ethics of such a study, let’s have a think about what might go wrong
here. As a general rule, when someone insults me to my face I tend to get much less co-operative.
So, there’s a pretty good chance that a lot more people are going to drop out of the treatment
condition than the control condition. And this drop out isn’t going to be random. The people
most likely to drop out would probably be the people who don’t care all that much about the
importance of obediently sitting through the experiment. Since the most bloody minded and
disobedient people all left the treatment group but not the control group, we’ve introduced a
confound: the people who actually took the questionnaire in the treatment group were already
more likely to be dutiful and obedient than the people in the control group. In short, in this
study insulting people doesn’t make them more obedient. It makes the more disobedient people
leave the experiment! The internal validity of this experiment is completely shot.

2.7.6 Non-response bias

Non-response bias is closely related to selection bias and to differential attrition. The
simplest version of the problem goes like this. You mail out a survey to 1000 people but only
300 of them reply. The 300 people who replied are almost certainly not a random subsample.
People who respond to surveys are systematically different to people who don’t. This introduces
a problem when trying to generalise from those 300 people who replied to the population at
large, since you now have a very non-random sample. The issue of non-response bias is more
general than this, though. Among the (say) 300 people that did respond to the survey, you
might find that not everyone answers every question. If (say) 80 people chose not to answer
one of your questions, does this introduce problems? As always, the answer is maybe. If the
question that wasn’t answered was on the last page of the questionnaire, and those 80 surveys
were returned with the last page missing, there’s a good chance that the missing data isn’t a
big deal; probably the pages just fell off. However, if the question that 80 people didn’t answer
was the most confrontational or invasive personal question in the questionnaire, then almost
certainly you’ve got a problem. In essence, what you’re dealing with here is what’s called the
problem of missing data. If the data that is missing was “lost” randomly, then it’s not a big
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problem. If it’s missing systematically, then it can be a big problem.

2.7.7 Regression to the mean

Regression to the mean refers to any situation where you select data based on an extreme
value on some measure. Because the variable has natural variation it almost certainly means
that when you take a subsequent measurement the later measurement will be less extreme than
the first one, purely by chance.

Here’s an example. Suppose I’m interested in whether a psychology education has an adverse
effect on very smart kids. To do this, I find the 20 psychology I students with the best high
school grades and look at how well they’re doing at university. It turns out that they’re doing a
lot better than average, but they’re not topping the class at university even though they did top
their classes at high school. What’s going on? The natural first thought is that this must mean
that the psychology classes must be having an adverse effect on those students. However, while
that might very well be the explanation, it’s more likely that what you’re seeing is an example
of “regression to the mean”. To see how it works, let’s take a moment to think about what is
required to get the best mark in a class, regardless of whether that class be at high school or at
university. When you’ve got a big class there are going to be lots of very smart people enrolled.
To get the best mark you have to be very smart, work very hard, and be a bit lucky. The exam
has to ask just the right questions for your idiosyncratic skills, and you have to avoid making
any dumb mistakes (we all do that sometimes) when answering them. And that’s the thing,
whilst intelligence and hard work are transferable from one class to the next, luck isn’t. The
people who got lucky in high school won’t be the same as the people who get lucky at university.
That’s the very definition of “luck”. The consequence of this is that when you select people
at the very extreme values of one measurement (the top 20 students), you’re selecting for hard
work, skill and luck. But because the luck doesn’t transfer to the second measurement (only the
skill and work), these people will all be expected to drop a little bit when you measure them
a second time (at university). So their scores fall back a little bit, back towards everyone else.
This is regression to the mean.

Regression to the mean is surprisingly common. For instance, if two very tall people have
kids their children will tend to be taller than average but not as tall as the parents. The reverse
happens with very short parents. Two very short parents will tend to have short children, but
nevertheless those kids will tend to be taller than the parents. It can also be extremely subtle.
For instance, there have been studies done that suggested that people learn better from negative
feedback than from positive feedback. However, the way that people tried to show this was to
give people positive reinforcement whenever they did good, and negative reinforcement when
they did bad. And what you see is that after the positive reinforcement people tended to do
worse, but after the negative reinforcement they tended to do better. But notice that there’s
a selection bias here! When people do very well, you’re selecting for “high” values, and so you
should expect, because of regression to the mean, that performance on the next trial should be
worse regardless of whether reinforcement is given. Similarly, after a bad trial, people will tend
to improve all on their own. The apparent superiority of negative feedback is an artefact caused
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by regression to the mean (see Kahneman and Tversky 1973, for discussion).

2.7.8 Experimenter bias

Experimenter bias can come in multiple forms. The basic idea is that the experimenter,
despite the best of intentions, can accidentally end up influencing the results of the experiment
by subtly communicating the “right answer” or the “desired behaviour” to the participants.
Typically, this occurs because the experimenter has special knowledge that the participant does
not, for example the right answer to the questions being asked or knowledge of the expected
pattern of performance for the condition that the participant is in. The classic example of
this happening is the case study of “Clever Hans”, which dates back to 1907 (Pfungst 1911;
Hothersall 2004). Clever Hans was a horse that apparently was able to read and count and
perform other human like feats of intelligence. After Clever Hans became famous, psychologists
started examining his behaviour more closely. It turned out that, not surprisingly, Hans didn’t
know how to do maths. Rather, Hans was responding to the human observers around him,
because the humans did know how to count and the horse had learned to change its behaviour
when people changed theirs.

The general solution to the problem of experimenter bias is to engage in double blind studies,
where neither the experimenter nor the participant knows which condition the participant is in
or knows what the desired behaviour is. This provides a very good solution to the problem, but
it’s important to recognise that it’s not quite ideal, and hard to pull off perfectly. For instance,
the obvious way that I could try to construct a double blind study is to have one of my Ph.D.
students (one who doesn’t know anything about the experiment) run the study. That feels like it
should be enough. The only person (me) who knows all the details (e.g., correct answers to the
questions, assignments of participants to conditions) has no interaction with the participants,
and the person who does all the talking to people (the Ph.D. student) doesn’t know anything.
Except for the reality that the last part is very unlikely to be true. In order for the Ph.D.
student to run the study effectively they need to have been briefed by me, the researcher. And,
as it happens, the Ph.D. student also knows me and knows a bit about my general beliefs about
people and psychology (e.g., I tend to think humans are much smarter than psychologists give
them credit for). As a result of all this, it’s almost impossible for the experimenter to avoid
knowing a little bit about what expectations I have. And even a little bit of knowledge can
have an effect. Suppose the experimenter accidentally conveys the fact that the participants are
expected to do well in this task. Well, there’s a thing called the “Pygmalion effect”, where if
you expect great things of people they’ll tend to rise to the occasion. But if you expect them to
fail then they’ll do that too. In other words, the expectations become a self-fulfilling prophesy.

2.7.9 Demand effects and reactivity

When talking about experimenter bias, the worry is that the experimenter’s knowledge or
desires for the experiment are communicated to the participants, and that these can change
people’s behaviour (Rosenthal 1966). However, even if you manage to stop this from happening,
it’s almost impossible to stop people from knowing that they’re part of a psychological study.
And the mere fact of knowing that someone is watching or studying you can have a pretty
big effect on behaviour. This is generally referred to as reactivity or demand effects. The
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basic idea is captured by the Hawthorne effect: people alter their performance because of the
attention that the study focuses on them. The effect takes its name from a study that took
place in the “Hawthorne Works” factory outside of Chicago (see Adair 1984). This study, from
the 1920s, looked at the effects of factory lighting on worker productivity. But, importantly,
change in worker behaviour occurred because the workers knew they were being studied, rather
than any effect of factory lighting.

To get a bit more specific about some of the ways in which the mere fact of being in a study
can change how people behave, it helps to think like a social psychologist and look at some of
the roles that people might adopt during an experiment but might not adopt if the corresponding
events were occurring in the real world:

• The good participant tries to be too helpful to the researcher. He or she seeks to figure out
the experimenter’s hypotheses and confirm them.

• The negative participant does the exact opposite of the good participant. He or she seeks
to break or destroy the study or the hypothesis in some way.

• The faithful participant is unnaturally obedient. He or she seeks to follow instructions
perfectly, regardless of what might have happened in a more realistic setting.

• The apprehensive participant gets nervous about being tested or studied, so much so that
his or her behaviour becomes highly unnatural, or overly socially desirable.

2.7.10 Placebo effects

The placebo effect is a specific type of demand effect that we worry a lot about. It refers
to the situation where the mere fact of being treated causes an improvement in outcomes. The
classic example comes from clinical trials. If you give people a completely chemically inert drug
and tell them that it’s a cure for a disease, they will tend to get better faster than people who
aren’t treated at all. In other words, it is people’s belief that they are being treated that causes
the improved outcomes, not the drug.

However, the current consensus in medicine is that true placebo effects are quite rare and
most of what was previously considered placebo effect is in fact some combination of natural
healing (some people just get better on their own), regression to the mean and other quirks of
study design. Of interest to psychology is that the strongest evidence for at least some placebo
effect is in self-reported outcomes, most notably in treatment of pain (Hróbjartsson and Gøtzsche
2010).

2.7.11 Situation, measurement and sub-population effects

In some respects, these terms are a catch-all term for “all other threats to external validity”.
They refer to the fact that the choice of sub-population from which you draw your participants,
the location, timing and manner in which you run your study (including who collects the data)
and the tools that you use to make your measurements might all be influencing the results.
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Specifically, the worry is that these things might be influencing the results in such a way that
the results won’t generalise to a wider array of people, places and measures.

2.7.12 Fraud, deception and self-deception

It is difficult to get a man to understand something, when his salary depends on his
not understanding it.

– Upton Sinclair

There’s one final thing I feel I should mention. While reading what the textbooks often
have to say about assessing the validity of a study I couldn’t help but notice that they seem
to make the assumption that the researcher is honest. I find this hilarious. While the vast
majority of scientists are honest, in my experience at least, some are not.7 Not only that, as I
mentioned earlier, scientists are not immune to belief bias. It’s easy for a researcher to end up
deceiving themselves into believing the wrong thing, and this can lead them to conduct subtly
flawed research and then hide those flaws when they write it up. So you need to consider not
only the (probably unlikely) possibility of outright fraud, but also the (probably quite common)
possibility that the research is unintentionally “slanted”. I opened a few standard textbooks
and didn’t find much of a discussion of this problem, so here’s my own attempt to list a few
ways in which these issues can arise:

• Data fabrication. Sometimes, people just make up the data. This is occasionally done
with “good” intentions. For instance, the researcher believes that the fabricated data do
reflect the truth, and may actually reflect “slightly cleaned up” versions of actual data.
On other occasions, the fraud is deliberate and malicious. Some high-profile examples
where data fabrication has been alleged or shown include Cyril Burt (a psychologist who
is thought to have fabricated some of his data), Andrew Wakefield (who has been accused
of fabricating his data connecting the MMR vaccine to autism) and Hwang Woo-suk (who
falsified a lot of his data on stem cell research).

• Hoaxes. Hoaxes share a lot of similarities with data fabrication, but they differ in the
intended purpose. A hoax is often a joke, and many of them are intended to be (eventually)
discovered. Often, the point of a hoax is to discredit someone or some field. There’s quite
a few well known scientific hoaxes that have occurred over the years (e.g., Piltdown man)
and some were deliberate attempts to discredit particular fields of research (e.g., the Sokal
affair).

• Data misrepresentation. While fraud gets most of the headlines, it’s much more com-
mon in my experience to see data being misrepresented. When I say this I’m not referring
to newspapers getting it wrong (which they do, almost always). I’m referring to the fact
that often the data don’t actually say what the researchers think they say. My guess is

7Some people might argue that if you’re not honest then you’re not a real scientist. Which does have some
truth to it I guess, but that’s disingenuous (look up the “No true Scotsman” fallacy). The fact is that there are
lots of people who are employed ostensibly as scientists, and whose work has all of the trappings of science, but
who are outright fraudulent. Pretending that they don’t exist by saying that they’re not scientists is just muddled
thinking.
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that, almost always, this isn’t the result of deliberate dishonesty but instead is due to a
lack of sophistication in the data analyses. For instance, think back to the example of
Simpson’s paradox that I discussed in the beginning of this book. It’s very common to see
people present “aggregated” data of some kind and sometimes, when you dig deeper and
find the raw data yourself you find that the aggregated data tell a different story to the
disaggregated data. Alternatively, you might find that some aspect of the data is being
hidden, because it tells an inconvenient story (e.g., the researcher might choose not to
refer to a particular variable). There’s a lot of variants on this, many of which are very
hard to detect.

• Study “misdesign”. Okay, this one is subtle. Basically, the issue here is that a researcher
designs a study that has built-in flaws and those flaws are never reported in the paper.
The data that are reported are completely real and are correctly analysed, but they are
produced by a study that is actually quite wrongly put together. The researcher really
wants to find a particular effect and so the study is set up in such a way as to make it “easy”
to (artefactually) observe that effect. One sneaky way to do this, in case you’re feeling like
dabbling in a bit of fraud yourself, is to design an experiment in which it’s obvious to the
participants what they’re “supposed” to be doing, and then let reactivity work its magic for
you. If you want you can add all the trappings of double blind experimentation but it won’t
make a difference since the study materials themselves are subtly telling people what you
want them to do. When you write up the results the fraud won’t be obvious to the reader.
What’s obvious to the participant when they’re in the experimental context isn’t always
obvious to the person reading the paper. Of course, the way I’ve described this makes it
sound like it’s always fraud. Probably there are cases where this is done deliberately, but in
my experience the bigger concern has been with unintentional misdesign. The researcher
believes and so the study just happens to end up with a built in flaw, and that flaw then
magically erases itself when the study is written up for publication.

• Data mining & post hoc hypothesising. Another way in which the authors of a study
can more or less misrepresent the data is by engaging in what’s referred to as “data mining”
(see Gelman and Loken 2014, for a broader discussion of this as part of the “garden of
forking paths” in statistical analysis). As we’ll discuss later, if you keep trying to analyse
your data in lots of different ways, you’ll eventually find something that “looks” like a real
effect but isn’t. This is referred to as “data mining”. It used to be quite rare because data
analysis used to take weeks, but now that everyone has very powerful statistical software
on their computers it’s becoming very common. Data mining per se isn’t “wrong”, but
the more that you do it the bigger the risk you’re taking. The thing that is wrong, and
I suspect is very common, is unacknowledged data mining. That is, the researcher runs
every possible analysis known to humanity, finds the one that works, and then pretends
that this was the only analysis that they ever conducted. Worse yet, they often “invent”
a hypothesis after looking at the data to cover up the data mining. To be clear. It’s not
wrong to change your beliefs after looking at the data, and to reanalyse your data using
your new “post hoc” hypotheses. What is wrong (and I suspect common) is failing to
acknowledge that you’ve done. If you acknowledge that you did it then other researchers
are able to take your behaviour into account. If you don’t, then they can’t. And that
makes your behaviour deceptive. Bad!
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• Publication bias & self-censoring. Finally, a pervasive bias is “non-reporting” of
negative results. This is almost impossible to prevent. Journals don’t publish every article
that is submitted to them. They prefer to publish articles that find “something”. So, if
20 people run an experiment looking at whether reading Finnegans Wake causes insanity
in humans, and 19 of them find that it doesn’t, which one do you think is going to
get published? Obviously, it’s the one study that did find that Finnegans Wake causes
insanity.8 This is an example of a publication bias. Since no-one ever published the
19 studies that didn’t find an effect, a naive reader would never know that they existed.
Worse yet, most researchers “internalise” this bias and end up self-censoring their research.
Knowing that negative results aren’t going to be accepted for publication, they never even
try to report them. As a friend of mine says “for every experiment that you get published,
you also have 10 failures”. And she’s right. The catch is, while some (maybe most) of
those studies are failures for boring reasons (e.g. you stuffed something up) others might
be genuine “null” results that you ought to acknowledge when you write up the “good”
experiment. And telling which is which is often hard to do. A good place to start is a
paper by Ioannidis (2005) with the depressing title “Why most published research findings
are false”. I’d also suggest taking a look at work by Kühberger, Fritz, and Scherndl (2014)
presenting statistical evidence that this actually happens in psychology.

There’s probably a lot more issues like this to think about, but that’ll do to start with. What
I really want to point out is the blindingly obvious truth that real world science is conducted
by actual humans, and only the most gullible of people automatically assumes that everyone
else is honest and impartial. Actual scientists aren’t usually that naive, but for some reason the
world likes to pretend that we are, and the textbooks we usually write seem to reinforce that
stereotype.

2.8

Summary

This chapter isn’t really meant to provide a comprehensive discussion of psychological research
methods. It would require another volume just as long as this one to do justice to the topic.
However, in real life statistics and study design are so tightly intertwined that it’s very handy
to discuss some of the key topics. In this chapter, I’ve briefly discussed the following topics:

• Introduction to psychological measurement (Section 2.1). What does it mean to opera-
tionalise a theoretical construct? What does it mean to have variables and take measure-
ments?

• Scales of measurement and types of variables (Section 2.2). Remember that there are two
different distinctions here. There’s the difference between discrete and continuous data,
and there’s the difference between the four different scale types (nominal, ordinal, interval
and ratio).

8Clearly, the real effect is that only insane people would even try to read Finnegans Wake.
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• Reliability of a measurement (Section 2.3). If I measure the “same” thing twice, should I
expect to see the same result? Only if my measure is reliable. But what does it mean to
talk about doing the “same” thing? Well, that’s why we have different types of reliability.
Make sure you remember what they are.

• Terminology: predictors and outcomes (Section 2.4). What roles do variables play in an
analysis? Can you remember the difference between predictors and outcomes? Dependent
and independent variables? Etc.

• Experimental and non-experimental research designs (Section 2.5). What makes an exper-
iment an experiment? Is it a nice white lab coat, or does it have something to do with
researcher control over variables?

• Validity and its threats (Section 2.6). Does your study measure what you want it to? How
might things go wrong? And is it my imagination, or was that a very long list of possible
ways in which things can go wrong?

All this should make clear to you that study design is a critical part of research methodology.
I built this chapter from the classic little book by Campbell et al. (1963), but there are of course
a large number of textbooks out there on research design. Spend a few minutes with your
favourite search engine and you’ll find dozens.
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Part II.

An introduction to jamovi
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3. Getting started with jamovi

Robots are nice to work with.
–Roger Zelazny1

In this chapter I’ll discuss how to get started in jamovi. I’ll briefly talk about how to download
and install jamovi, but most of the chapter will be focused on getting you started with finding
your way around the jamovi GUI. Our goal in this chapter is not to learn any statistical concepts:
we’re just trying to learn the basics of how jamovi works and get comfortable interacting with
the system. To do this we’ll spend a bit of time looking at datasets and variables. In doing so,
you’ll get a bit of a feel for what it’s like to work in jamovi.

However, before going into any of the specifics, it’s worth talking a little about why you
might want to use jamovi at all. Given that you’re reading this you’ve probably got your own
reasons. However, if those reasons are “because that’s what my stats class uses”, it might be
worth explaining a little why your lecturer has chosen to use jamovi for the class. Of course, I
don’t really know why other people choose jamovi so I’m really talking about why I use it.

• It’s sort of obvious but worth saying anyway: doing your statistics on a computer is faster,
easier and more powerful than doing statistics by hand. Computers excel at mindless
repetitive tasks, and a lot of statistical calculations are both mindless and repetitive. For
most people the only reason to ever do statistical calculations with pencil and paper is for
learning purposes. In my class I do occasionally suggest doing some calculations that way,
but the only real value to it is pedagogical. It does help you to get a “feel” for statistics
to do some calculations yourself, so it’s worth doing it once. But only once!

• Doing statistics in a conventional spreadsheet (e.g., Microsoft Excel) is generally a bad idea
in the long run. Although many people likely feel more familiar with them, spreadsheets
are very limited in terms of what analyses they allow you do. If you get into the habit of
trying to do your real life data analysis using spreadsheets then you’ve dug yourself into a
very deep hole.

• Avoiding proprietary software is a very good idea. There are a lot of commercial packages
out there that you can buy, some of which I like and some of which I don’t. They’re
usually very glossy in their appearance and generally very powerful (much more powerful
than spreadsheets). However, they’re also very expensive. Usually, the company sells

1Source: Dismal Light (1968).
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“student versions” (crippled versions of the real thing) very cheaply, and then they they
sell full powered “educational versions” at a price that makes me wince. They will also
sell commercial licences with a staggeringly high price tag. The business model here is to
suck you in during your student days and then leave you dependent on their tools when
you go out into the real world. It’s hard to blame them for trying, but personally I’m not
in favour of shelling out thousands of dollars if I can avoid it. And you can avoid it. If
you make use of packages like jamovi that are open source and free you never get trapped
having to pay exorbitant licensing fees.

• Something that you might not appreciate now, but will love later on if you do anything
involving data analysis, is the fact that jamovi is basically a sophisticated front end for
the free R statistical programming language. When you download and install R you get
all the basic “packages” and those are very powerful on their own. However, because R
is so open and so widely used, it’s become something of a standard tool in statistics and
so lots of people write their own packages that extend the system. And these are freely
available too. One of the consequences of this, I’ve noticed, is that if you look at recent
advanced data analysis textbooks then a lot of them use R.

Those are the main reasons I use jamovi. It’s not without its flaws, though. It’s relatively
new2 so there is not a huge set of textbooks and other resources to support it, and it has a few
annoying quirks that we’re all pretty much stuck with, but on the whole I think the strengths
outweigh the weakness; more so than any other option I’ve encountered so far.

3.1

Installing jamovi

Okay, enough with the sales pitch. Let’s get started. Just as with any piece of software, jamovi
needs to be installed on a “computer”, which is a magical box that does cool things and delivers
free ponies. Or something along those lines; I may be confusing computers with the iPad
marketing campaigns. Anyway, jamovi is freely distributed online and you can download it from
the jamovi homepage, which is:

https://www.jamovi.org/

At the top of the page, under the heading “Download”, you’ll see separate links for Windows
users, Mac users, and Linux users. If you follow the relevant link you’ll see that the online
instructions are pretty self-explanatory. As of this writing, the current version of jamovi is 0.9,
but they usually issue updates every few months, so you’ll probably have a newer version.3

2As of writing this in August 2018.
3Although jamovi is updated frequently it doesn’t usually make much of a difference for the sort of work

we’ll do in this book. In fact, during the writing of the book I upgraded several times and it didn’t make much
difference at all to what is in this book.
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3.1.1 Starting up jamovi

One way or another, regardless of what operating system you’re using, it’s time to open
jamovi and get started. When first starting jamovi you will be presented with a user interface
which looks something like Figure 3.1.

Figure 3.1: jamovi looks like this when you start it.

To the left is the spreadsheet view, and to the right is where the results of statistical tests
appear. Down the middle is a bar separating these two regions and this can be dragged to the
left or the right to change their sizes.

It is possible to simply begin typing values into the jamovi spreadsheet as you would in any
other spreadsheet software. Alternatively, existing data sets in the CSV (.csv) file format can be
opened in jamovi. Additionally, you can easily import SPSS, SAS, Stata and JASP files directly
into jamovi. To open a file select the File tab (three horizontal lines signify this tab) at the top
left hand corner, select ‘Open’ and then choose from the files listed on ’Browse’ depending on
whether you want to open an example or a file stored on your computer.

3.2

Analyses

Analyses can be selected from the analysis ribbon or menu along the top. Selecting an analysis
will present an ‘options panel’ for that particular analysis, allowing you to assign different
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variables to different parts of the analysis, and select different options. At the same time, the
results for the analysis will appear in the right ‘Results panel’ and will update in real-time as
you make changes to the options.

When you have the analysis set up correctly you can dismiss the analysis options by clicking
the arrow to the top right of the optional panel. If you wish to return to these options, you can
click on the results that were produced. In this way, you can return to any analysis that you
(or say, a colleague) created earlier.

If you decide you no longer need a particular analysis, you can remove it with the results
context menu. Right-clicking on the analysis results will bring up a menu and by selecting
‘Analysis’ and then ‘Remove’ the analysis can be removed. But more on this later. First, let’s
take a more detailed look at the spreadsheet view.

3.3

The spreadsheet

In jamovi data is represented in a spreadsheet with each column representing a ‘variable’ and
each row representing a ‘case’ or ‘participant’.

3.3.1 Variables

The most commonly used variables in jamovi are ‘Data Variables’, these variables simply contain
data either loaded from a data file, or ‘typed in’ by the user. Data variables can be one of three
measurement levels:

These levels are designated by the symbol in the header of the variable’s column.

The ID variable type is unique to jamovi. It’s intended for variables that contain identifiers
that you would almost never want to analyse. For example, a persons name, or a participant
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ID. Specifying an ID variable type can improve performance when interacting with very large
data sets.

Nominal variables are for categorical variables which are text labels, for example a column
called Gender with the values Male and Female would be nominal. So would a person’s name.
Nominal variable values can also have a numeric value. These variables are used most often
when importing data which codes values with numbers rather than text. For example, a column
in a dataset may contain the values 1 for males, and 2 for females. It is possible to add nice
‘human-readable’ labels to these values with the variable editor (more on this later).

Ordinal variables are like Nominal variables, except the values have a specific order. An
example is a Likert scale with 3 being ‘strongly agree’ and -3 being ‘strongly disagree’.

Continuous variables are variables which exist on a continuous scale. Examples might be
height or weight. This is also referred to as ‘Interval’ or ‘Ratio scale’.

In addition, you can also specify different data types: variables have a data type of either
‘Text’, ‘Integer’ or ‘Decimal’.

When starting with a blank spreadsheet and typing values in the variable type will change
automatically depending on the data you enter. This is a good way to get a feel for which
variable types go with which sorts of data. Similarly, when opening a data file jamovi will
try and guess the variable type from the data in each column. In both cases this automatic
approach may not be correct, and it may be necessary to manually specify the variable type
with the variable editor.

The variable editor can be opened by selecting ‘Setup’ from the data tab or by double-clicking
on the variable column header. The variable editor allows you to change the name of the variable
and, for data variables, the variable type, the order of the levels, and the label displayed for
each level. Changes can be applied by clicking the ‘tick’ to the top right. The variable editor
can be dismissed by clicking the ‘Hide’ arrow.

New variables can be inserted or appended to the data set using the ‘add’ button from the
data ribbon. The ‘add’ button also allows the addition of computed variables.

3.3.2 Computed variables

Computed Variables are those which take their value by performing a computation on other
variables. Computed Variables can be used for a range of purposes, including log transforms,
z-scores, sum-scores, negative scoring and means.

Computed variables can be added to the data set with the ‘add’ button available on the data
tab. This will produce a formula box where you can specify the formula. The usual arithmetic
operators are available. Some examples of formulas are:

A + B

LOG10(len)

MEAN(A, B)

(dose - VMEAN(dose)) / VSTDEV(dose)
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In order, these are the sum of A and B, a log (base 10) transform of len, the mean of A and
B, and the z-score of the variable dose. Figure 3.2 below shows the jamovi screen for the new
variable computed as the z-score of dose (from the ‘Tooth Growth’ example data set).

Figure 3.2: A newly computed variable, the z-score of ‘dose’.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V-functions

Several functions are already available in jamovi and available from the drop down box
labelled fx. A number of functions appear in pairs, one prefixed with a V and the other not. V
functions perform their calculation on a variable as a whole, where as non-V functions perform
their calculation row by row. For example, MEAN(A, B) will produce the mean of A and B for
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each row. Where as VMEAN(A) gives the mean of all the values in A.

3.3.3 Copy and Paste

jamovi produces nice American Psychological Association (APA) formatted tables and at-
tractive plots. It is often useful to be able to copy and paste these, perhaps into a Word
document, or into an email to a colleague. To copy results right click on the object of interest
and from the menu select exactly what you want to copy. The menu allows you to choose to
copy only the image or the entire analysis. Selecting “copy” copies the content to the clipboard
and this can be pasted into other programs in the usual way. You can practice this later on
when we do some analyses.

3.3.4 Syntax mode

jamovi also provides an “R Syntax Mode”. In this mode jamovi produces equivalent R code
for each analysis. To change to syntax mode, select the Application menu to the top right of
jamovi (a button with three vertical dots) and click the “Syntax mode” checkbox there. You
can turn off syntax mode by clicking this a second time.

In syntax mode analyses continue to operate as before but now they produce R syntax,
and ‘ascii output’ like an R session. Like all results objects in jamovi, you can right click on
these items (including the R syntax) and copy and paste them, for example into an R session.
At present, the provided R syntax does not include the data import step and so this must be
performed manually in R. There are many resources explaining how to import data into R and
if you are interested we recommend you take a look at these; just search on the interweb.

3.4

Loading data in jamovi

There are several different types of files that are likely to be relevant to us when doing data
analysis. There are two in particular that are especially important from the perspective of this
book:

• jamovi files are those with a .omv file extension. This is the standard kind of file that
jamovi uses to store data, and variables and analyses.

• Comma separated value (csv) files are those with a .csv file extension. These are just
regular old text files and they can be opened with many different software programs. It’s
quite typical for people to store data in csv files, precisely because they’re so simple.

There are also several other kinds of data file that you might want to import into jamovi. For
instance, you might want to open Microsoft Excel spreadsheets (.xls files), or data files that
have been saved in the native file formats for other statistics software, such as SPSS or SAS.
Whichever file formats you are using, it’s a good idea to create a folder or folders especially for
your jamovi data sets and analyses and to make sure you keep these backed up regularly.
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Figure 3.3: The booksales.csv data file. On the left I’ve opened the file using a spreadsheet
program (OpenOffice), which shows that the file is basically a table. On the right the same file
is open in a standard text editor (the TextEdit program on a Mac), which shows how the file is
formatted. The entries in the table are wrapped in quote marks and separated by commas.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4.1 Importing data from csv files

One quite commonly used data format is the humble “comma separated value” file, also
called a csv file, and usually bearing the file extension .csv. csv files are just plain old-fashioned
text files and what they store is basically just a table of data. This is illustrated in Figure 3.3,
which shows a file called booksales.csv that I’ve created. As you can see, each row represents
the book sales data for one month. The first row doesn’t contain actual data though, it has the
names of the variables.

It’s easy to open csv files in jamovi. From the top left menu (the button with three parallel
lines) choose ‘Open’ and browse to where you have stored the csv file on your computer. If you’re
on a Mac, it’ll look like the usual Finder window that you use to choose a file; on Windows
it looks like an Explorer window. An example of what it looks like on a Mac is shown in
Figure 3.4. I’m assuming that you’re familiar with your own computer, so you should have no
problem finding the csv file that you want to import! Find the one you want, then click on the
“Open” button.

There are a few things that you can check to make sure that the data gets imported correctly:

• Heading. Does the first row of the file contain the names for each variable - a ‘header’
row? The booksales.csv file has a header, so that’s a yes.

• Separator. What character is used to separate different entries? In most csv files this will
be a comma (it is “comma separated” after all).
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Figure 3.4: A dialog box on a Mac asking you to select the csv file jamovi should try to import.
Mac users will recognise this immediately, it’s the usual way in which a Mac asks you to find a
file. Windows users won’t see this, instead they’ll see the usual explorer window that Windows
always gives you when it wants you to select a file.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Decimal. What character is used to specify the decimal point? In English speaking
countries this is almost always a period (i.e., .). That’s not universally true though, many
European countries use a comma.

• Quote. What character is used to denote a block of text? That’s usually going to be a
double quote mark ("). It is for the booksales.csv file.

3.5

Importing unusual data files

Throughout this book I’ve assumed that your data are stored as a jamovi .omv file or as a
“properly” formatted csv file. However, in real life that’s not a terribly plausible assumption to
make so I’d better talk about some of the other possibilities that you might run into.

3.5.1 Loading data from text files

The first thing I should point out is that if your data are saved as a text file but aren’t quite in
the proper csv format then there’s still a pretty good chance that jamovi will be able to open
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it. You just need to try it and see if it works. Sometimes though you will need to change some
of the formatting. The ones that I’ve often found myself needing to change are:

• header. A lot of the time when you’re storing data as a csv file the first row actually
contains the column names and not data. If that’s not true then it’s a good idea to open
up the csv file in a spreadsheet programme such as Open Office and add the header row
manually.

• sep. As the name “comma separated value” indicates, the values in a row of a csv file are
usually separated by commas. This isn’t universal, however. In Europe the decimal point
is typically written as , instead of . and as a consequence it would be somewhat awkward
to use , as the separator. Therefore it is not unusual to use ; instead of , as the separator.
At other times, I’ve seen a TAB character used.

• quote. It’s conventional in csv files to include a quoting character for textual data. As you
can see by looking at the booksales.csv file, this is usually a double quote character, ".
But sometimes there is no quoting character at all, or you might see a single quote mark
’ used instead.

• skip. It’s actually very common to receive CSV files in which the first few rows have
nothing to do with the actual data. Instead, they provide a human readable summary of
where the data came from, or maybe they include some technical info that doesn’t relate
to the data.

• missing values. Often you’ll get given data with missing values. For one reason or another,
some entries in the table are missing. The data file needs to include a “special” value to
indicate that the entry is missing. By default jamovi assumes that this value is 994, for
both numeric and text data, so you should make sure that, where necessary, all missing
values in the csv file are replaced with 99 (or -9999; whichever you choose) before opening
/ importing the file into jamovi. Once you have opened / imported the file into jamovi all
the missing values are converted to blank cells in the jamovi spreadsheet view.

3.5.2 Loading data from SPSS (and other statistics packages)

The commands listed above are the main ones we’ll need for data files in this book. But
in real life we have many more possibilities. For example, you might want to read data files in
from other statistics programs. Since SPSS is probably the most widely used statistics package
in psychology, it’s worth mentioning that jamovi can also import SPSS data files (file extension
.sav). Just follow the instructions above for how to open a csv file, but this time navigate to
the .sav file you want to import. For SPSS files, jamovi will regard all values as missing if they
are regarded as “system missing” files in SPSS. The ‘Default missings’ value does not seem to

4You can change the default value for missing values in jamovi from the top right menu (three vertical dots),
but this only works at the time of importing data files into jamovi. The default missing value in the dataset
should not be a valid number associated with any of the variables, e.g. you could use -9999 as this is unlikely to
be a valid value.
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work as expected when importing SPSS files, so be aware of this - you might need another step:
import the SPSS file into jamovi, then export as a csv file before re-opening in jamovi.5.

And that’s pretty much it, at least as far as SPSS goes. As far as other statistical software
goes, jamovi can also directly open / import SAS and STATA files.

3.5.3 Loading Excel files

A different problem is posed by Excel files. Despite years of yelling at people for sending
data to me encoded in a proprietary data format, I get sent a lot of Excel files. The way to
handle Excel files is to open them up first in Excel or another spreadsheet programme that can
handle Excel files, and then export the data as a csv file before opening / importing the csv file
into jamovi.

3.6

Changing data from one level to another

Sometimes you want to change the variable level. This can happen for all sorts of reasons.
Sometimes when you import data from files, it can come to you in the wrong format. Numbers
sometimes get imported as nominal, text values. Dates may get imported as text. ParticipantID
values can sometimes be read as continuous: nominal values can sometimes be read as ordinal
or even continuous. There’s a good chance that sometimes you’ll want to convert a variable
from one measurement level into another one. Or, to use the correct term, you want to coerce
the variable from one class into another.

In 3.3 we saw how to specify different variable levels, and if you want to change a variable’s
measurement level then you can do this in the jamovi data view for that variable. Just click the
check box for the measurement level you want - continuous, ordinal, or nominal.

3.7

Installing add-on modules into jamovi

A really great feature of jamovi is the ability to install add-on modules from the jamovi library.
These add-on modules have been developed by the jamovi community, i.e., jamovi users and
developers who have created special software add-ons that do other, usually more advanced,
analyses that go beyond the capabilities of the base jamovi program.

To install add-on modules, just click on the large “+” in the top right of the jamovi
window, select “jamovi-library” and then browse through the various add-on modules that
are available. Choose the one(s) you want, and then install them, as in Figure 3.5. It’s
that easy. The newly installed modules can then be accessed from the “Analyses” button
bar. Try it...useful add-on modules to install include ”scatr” (added under “Descriptives”)
and “R j”.

5I know this is a bot of a fudge, but it does work and hopefully this will be fixed in a later version of jamovi.
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Figure 3.5: Installing add-on modules in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.8

Quitting jamovi

There’s one last thing I should cover in this chapter: how to quit jamovi. It’s not hard,
just close the program the same way you would any other program. However, what you
might want to do before you quit is save your work! There are two parts to this: saving
any changes to the data set, and saving the analyses that you ran.

It is good practice to save any changes to the data set as a new data set. That
way you can always go back to the original data. To save any changes in jamovi, select
‘Export’...‘Data’ from the main jamovi menu (button with three horizontal bars in the
top left) and create a new file name for the changed data set.

Alternatively, you can save both the changed data and any analyses you have under-
taken by saving as a jamovi file. To do this, from the main jamovi menu select ‘Save
as’ and type in a file name for this ‘jamovi file (.omv)’. Remember to save the file in a
location where you can find it again later. I usually create a new folder for specific data
sets and analyses.
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3.9

Summary

Every book that tries to teach a new statistical software program to novices has to cover
roughly the same topics, and in roughly the same order. Ours is no exception, and so in
the grand tradition of doing it just the same way everyone else did it, this chapter covered
the following topics:

• Section 3.1. We downloaded and installed jamovi, and started it up.

• Section 3.2. We very briefly oriented to the part of jamovi where analyses are done
and results appear, but then deferred this until later in the book.

• Section 3.3. We spent more time looking at the spreadsheet part of jamovi, and
considered different variable types, and how to compute new variables.

• Section 3.4. We also saw how to load data files in jamovi.

• Section 3.5. Then we figured out how to open other data files, from different file
types.

• Section 3.6. And saw that sometimes we need to coerce data from one type to
another.

• Section 3.7. Installing add-on modules from the jamovi community really extends
jamovi capabilities.

• Section 3.8. Finally, we looked at good practice in terms of saving your data set and
analyses when you have finished and are about to quit jamovi.

We still haven’t arrived at anything that resembles data analysis. Maybe the next Chapter
will get us a bit closer!
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Part III.

Working with data
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4. Descriptive statistics

Any time that you get a new data set to look at one of the first tasks that you have to
do is find ways of summarising the data in a compact, easily understood fashion. This
is what descriptive statistics (as opposed to inferential statistics) is all about. In fact,
to many people the term “statistics” is synonymous with descriptive statistics. It is this
topic that we’ll consider in this chapter, but before going into any details, let’s take a
moment to get a sense of why we need descriptive statistics. To do this, let’s open the
aflsmall margins file and see what variables are stored in the file.

Figure 4.1: A screenshot of jamovi showing the variables stored in the aflsmall margins.csv

file

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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In fact, there is just one variable here, afl.margins. We’ll focus a bit on this variable
in this chapter, so I’d better tell you what it is. Unlike most of the data sets in this
book, this is actually real data, relating to the Australian Football League (AFL).1 The
afl.margins variable contains the winning margin (number of points) for all 176 home and
away games played during the 2010 season.

This output doesn’t make it easy to get a sense of what the data are actually saying.
Just “looking at the data” isn’t a terribly effective way of understanding data. In order
to get some idea about what the data are actually saying we need to calculate some
descriptive statistics (this chapter) and draw some nice pictures (Chapter 5). Since the
descriptive statistics are the easier of the two topics I’ll start with those, but nevertheless
I’ll show you a histogram of the afl.margins data since it should help you get a sense of
what the data we’re trying to describe actually look like, see Figure 4.2. We’ll talk a lot
more about how to draw histograms in Section 5.1. For now, it’s enough to look at the
histogram and note that it provides a fairly interpretable representation of the afl.margins

data.
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Figure 4.2: A histogram of the AFL 2010 winning margin data (the afl.margins variable). As
you might expect, the larger the winning margin the less frequently you tend to see it.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1Note for non-Australians: the AFL is an Australian rules football competition. You don’t need to know
anything about Australian rules in order to follow this section.
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4.1

Measures of central tendency

Drawing pictures of the data, as I did in Figure 4.2, is an excellent way to convey the
“gist” of what the data is trying to tell you. It’s often extremely useful to try to condense
the data into a few simple “summary” statistics. In most situations, the first thing that
you’ll want to calculate is a measure of central tendency. That is, you’d like to know
something about where the “average” or “middle” of your data lies. The three most
commonly used measures are the mean, median and mode. I’ll explain each of these in
turn, and then discuss when each of them is useful.

4.1.1 The mean

The mean of a set of observations is just a normal, old-fashioned average. Add all of
the values up, and then divide by the total number of values. The first five AFL winning
margins were 56, 31, 56, 8 and 32, so the mean of these observations is just:

56 ` 31 ` 56 ` 8 ` 32

5
“

183

5
“ 36.60

Of course, this definition of the mean isn’t news to anyone. Averages (i.e., means) are
used so often in everyday life that this is pretty familiar stuff. However, since the concept
of a mean is something that everyone already understands, I’ll use this as an excuse to
start introducing some of the mathematical notation that statisticians use to describe this
calculation, and talk about how the calculations would be done in jamovi.

The first piece of notation to introduce is N , which we’ll use to refer to the number of
observations that we’re averaging (in this case N “ 5). Next, we need to attach a label
to the observations themselves. It’s traditional to use X for this, and to use subscripts to
indicate which observation we’re actually talking about. That is, we’ll use X1 to refer to
the first observation, X2 to refer to the second observation, and so on all the way up to XN

for the last one. Or, to say the same thing in a slightly more abstract way, we use Xi to
refer to the i-th observation. Just to make sure we’re clear on the notation, the following
table lists the 5 observations in the afl.margins variable, along with the mathematical
symbol used to refer to it and the actual value that the observation corresponds to:

the observation its symbol the observed value
winning margin, game 1 X1 56 points
winning margin, game 2 X2 31 points
winning margin, game 3 X3 56 points
winning margin, game 4 X4 8 points
winning margin, game 5 X5 32 points

- 61 -



Okay, now let’s try to write a formula for the mean. By tradition, we use X̄ as the
notation for the mean. So the calculation for the mean could be expressed using the
following formula:

X̄ “
X1 ` X2 ` . . . ` XN´1 ` XN

N

This formula is entirely correct but it’s terribly long, so we make use of the summation
symbol ř to shorten it.a If I want to add up the first five observations I could write out
the sum the long way, X1 ` X2 ` X3 ` X4 ` X5 or I could use the summation symbol
to shorten it to this:

5
ÿ

i“1

Xi

Taken literally, this could be read as “the sum, taken over all i values from 1 to 5, of
the value Xi”. But basically what it means is “add up the first five observations”. In
any case, we can use this notation to write out the formula for the mean, which looks
like this:

X̄ “
1

N

N
ÿ

i“1

Xi

In all honesty, I can’t imagine that all this mathematical notation helps clarify the
concept of the mean at all. In fact, it’s really just a fancy way of writing out the same
thing I said in words: add all the values up and then divide by the total number of
items. However, that’s not really the reason I went into all that detail. My goal was to
try to make sure that everyone reading this book is clear on the notation that we’ll be
using throughout the book: X̄ for the mean, ř for the idea of summation, Xi for the
ith observation, and N for the total number of observations. We’re going to be re-using
these symbols a fair bit so it’s important that you understand them well enough to be
able to “read” the equations, and to be able to see that it’s just saying “add up lots of
things and then divide by another thing”.

aThe choice to use Σ to denote summation isn’t arbitrary. It’s the Greek upper case letter sigma, which
is the analogue of the letter S in that alphabet. Similarly, there’s an equivalent symbol used to denote the
multiplication of lots of numbers, because multiplications are also called “products” we use the Π symbol for
this (the Greek upper case pi, which is the analogue of the letter P).

4.1.2 Calculating the mean in jamovi

Okay, that’s the maths. So how do we get the magic computing box to do the work
for us? When the number of observations starts to become large it’s much easier to do
these sorts of calculations using a computer. To calculate the mean using all the data
we can use jamovi. The first step is to click on the ‘Exploration’ button and then click
‘Descriptives’. Then you can highlight the afl.margins variable and click the ‘right arrow’
to move it across into the ‘Variables box’. As soon as you do that a Table appears on the
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right hand side of the screen containing default ‘Descriptives’ information; see Figure 4.3.

Figure 4.3: Default descriptives for the AFL 2010 winning margin data (the afl.margins vari-
able).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As you can see in Figure 4.3, the mean value for the afl.margins variable is 35.30. Other
information presented includes the total number of observations (N=176), the number of
missing values (none), and the Median, Minimum and Maximum values for the variable.

4.1.3 The median

The second measure of central tendency that people use a lot is the median, and it’s
even easier to describe than the mean. The median of a set of observations is just the
middle value. As before let’s imagine we were interested only in the first 5 AFL winning
margins: 56, 31, 56, 8 and 32. To figure out the median we sort these numbers into
ascending order:

8, 31,32, 56, 56

From inspection, it’s obvious that the median value of these 5 observations is 32 since
that’s the middle one in the sorted list (I’ve put it in bold to make it even more obvious).
Easy stuff. But what should we do if we are interested in the first 6 games rather than
the first 5? Since the sixth game in the season had a winning margin of 14 points, our
sorted list is now

8, 14,31,32, 56, 56

and there are two middle numbers, 31 and 32. The median is defined as the average of
those two numbers, which is of course 31.5. As before, it’s very tedious to do this by hand
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when you’ve got lots of numbers. In real life, of course, no-one actually calculates the
median by sorting the data and then looking for the middle value. In real life we use a
computer to do the heavy lifting for us, and jamovi has provided us with a Median value
of 30.50 for the afl.margins variable (Figure 4.3).

4.1.4 Mean or median? What’s the difference?

Knowing how to calculate means and medians is only a part of the story. You also
need to understand what each one is saying about the data, and what that implies for
when you should use each one. This is illustrated in Figure 4.4. The mean is kind of like
the “centre of gravity” of the data set, whereas the median is the “middle value” in the
data. What this implies, as far as which one you should use, depends a little on what
type of data you’ve got and what you’re trying to achieve. As a rough guide:

• If your data are nominal scale you probably shouldn’t be using either the mean or
the median. Both the mean and the median rely on the idea that the numbers
assigned to values are meaningful. If the numbering scheme is arbitrary then it’s
probably best to use the mode (Section 4.1.6) instead.

• If your data are ordinal scale you’re more likely to want to use the median than the
mean. The median only makes use of the order information in your data (i.e., which
numbers are bigger) but doesn’t depend on the precise numbers involved. That’s
exactly the situation that applies when your data are ordinal scale. The mean, on
the other hand, makes use of the precise numeric values assigned to the observations,
so it’s not really appropriate for ordinal data.

• For interval and ratio scale data either one is generally acceptable. Which one you
pick depends a bit on what you’re trying to achieve. The mean has the advantage
that it uses all the information in the data (which is useful when you don’t have a
lot of data). But it’s very sensitive to extreme, outlying values.

Let’s expand on that last part a little. One consequence is that there are systematic
differences between the mean and the median when the histogram is asymmetric (skewed;
see Section 4.3). This is illustrated in Figure 4.4. Notice that the median (right hand side)
is located closer to the “body” of the histogram, whereas the mean (left hand side) gets
dragged towards the “tail” (where the extreme values are). To give a concrete example,
suppose Bob (income $50,000), Kate (income $60,000) and Jane (income $65,000) are
sitting at a table. The average income at the table is $58,333 and the median income is
$60,000. Then Bill sits down with them (income $100,000,000). The average income has
now jumped to $25,043,750 but the median rises only to $62,500. If you’re interested in
looking at the overall income at the table the mean might be the right answer. But if
you’re interested in what counts as a typical income at the table the median would be a
better choice here.
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Figure 4.4: An illustration of the difference between how the mean and the median should be
interpreted. The mean is basically the “centre of gravity” of the data set. If you imagine that
the histogram of the data is a solid object, then the point on which you could balance it (as if
on a see-saw) is the mean. In contrast, the median is the middle observation, with half of the
observations smaller and half of the observations larger.
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4.1.5 A real life example

To try to get a sense of why you need to pay attention to the differences between the
mean and the median let’s consider a real life example. Since I tend to mock journalists
for their poor scientific and statistical knowledge, I should give credit where credit is due.
This is an excellent article on the ABC news website2 from 24 September, 2010:

Senior Commonwealth Bank executives have travelled the world in the past couple of weeks
with a presentation showing how Australian house prices, and the key price to income ratios,
compare favourably with similar countries. “Housing affordability has actually been going
sideways for the last five to six years,” said Craig James, the chief economist of the bank’s
trading arm, CommSec.

This probably comes as a huge surprise to anyone with a mortgage, or who wants a mortgage,
or pays rent, or isn’t completely oblivious to what’s been going on in the Australian housing
market over the last several years. Back to the article:

CBA has waged its war against what it believes are housing doomsayers with graphs, num-
bers and international comparisons. In its presentation, the bank rejects arguments that
Australia’s housing is relatively expensive compared to incomes. It says Australia’s house
price to household income ratio of 5.6 in the major cities, and 4.3 nationwide, is comparable
to many other developed nations. It says San Francisco and New York have ratios of 7,
Auckland’s is 6.7, and Vancouver comes in at 9.3.

More excellent news! Except, the article goes on to make the observation that:

Many analysts say that has led the bank to use misleading figures and comparisons. If you
go to page four of CBA’s presentation and read the source information at the bottom of the

2www.abc.net.au/news/stories/2010/09/24/3021480.htm
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graph and table, you would notice there is an additional source on the international com-
parison – Demographia. However, if the Commonwealth Bank had also used Demographia’s
analysis of Australia’s house price to income ratio, it would have come up with a figure closer
to 9 rather than 5.6 or 4.3

That’s, um, a rather serious discrepancy. One group of people say 9, another says 4-5. Should
we just split the difference and say the truth lies somewhere in between? Absolutely not! This
is a situation where there is a right answer and a wrong answer. Demographia is correct, and
the Commonwealth Bank is wrong. As the article points out:

[An] obvious problem with the Commonwealth Bank’s domestic price to income figures is
they compare average incomes with median house prices (unlike the Demographia figures
that compare median incomes to median prices). The median is the mid-point, effectively
cutting out the highs and lows, and that means the average is generally higher when it comes
to incomes and asset prices, because it includes the earnings of Australia’s wealthiest people.
To put it another way: the Commonwealth Bank’s figures count Ralph Norris’ multi-million
dollar pay packet on the income side, but not his (no doubt) very expensive house in the
property price figures, thus understating the house price to income ratio for middle-income
Australians.

Couldn’t have put it better myself. The way that Demographia calculated the ratio is the right
thing to do. The way that the Bank did it is incorrect. As for why an extremely quantitatively
sophisticated organisation such as a major bank made such an elementary mistake, well... I
can’t say for sure since I have no special insight into their thinking. But the article itself does
happen to mention the following facts, which may or may not be relevant:

[As] Australia’s largest home lender, the Commonwealth Bank has one of the biggest vested
interests in house prices rising. It effectively owns a massive swathe of Australian housing
as security for its home loans as well as many small business loans.

My, my.

4.1.6 Mode

The mode of a sample is very simple. It is the value that occurs most frequently. We can
illustrate the mode using a different AFL variable: who has played in the most finals? Open the
aflsmall finalists file and take a look at the afl.finalists variable, see Figure 4.5. This
variable contains the names of all 400 teams that played in all 200 finals matches played during
the period 1987 to 2010.

What we could do is read through all 400 entries and count the number of occasions on
which each team name appears in our list of finalists, thereby producing a frequency table.
However, that would be mindless and boring: exactly the sort of task that computers are great
at. So let’s use jamovi to do this for us. Under ‘Exploration’ - ‘Descriptives’ click the small
check box labelled ‘Frequency tables’ and you should get something like Figure 4.6.

Now that we have our frequency table we can just look at it and see that, over the 24 years
for which we have data, Geelong has played in more finals than any other team. Thus, the
mode of the afl.finalists data is "Geelong". We can see that Geelong (39 finals) played in
more finals than any other team during the 1987-2010 period. It’s also worth noting that in the
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Figure 4.5: A screenshot of jamovi showing the variables stored in the aflsmall finalists.csv

file
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Figure 4.6: A screenshot of jamovi showing the frequency table for the afl.finalists variable
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‘Descriptives’ Table no results are calculated for Mean, Median, Minimum or Maximum. This is
because the afl.finalists variable is a nominal text variable so it makes no sense to calculate
these values.

One last point to make regarding the mode. Whilst the mode is most often calculated when
you have nominal data, because means and medians are useless for those sorts of variables, there
are some situations in which you really do want to know the mode of an ordinal, interval or ratio
scale variable. For instance, let’s go back to our afl.margins variable. This variable is clearly
ratio scale (if it’s not clear to you, it may help to re-read Section 2.2), and so in most situations
the mean or the median is the measure of central tendency that you want. But consider this
scenario: a friend of yours is offering a bet and they pick a football game at random. Without
knowing who is playing you have to guess the exact winning margin. If you guess correctly
you win $50. If you don’t you lose $1. There are no consolation prizes for “almost” getting
the right answer. You have to guess exactly the right margin. For this bet, the mean and the
median are completely useless to you. It is the mode that you should bet on. To calculate the
mode for the afl.margins variable in jamovi, go back to that data set and on the ‘Exploration’
- ‘Descriptives’ screen you will see you can expand the section marked ‘Statistics’. Click on the
checkbox marked ‘Mode’ and you will see the modal value presented in the ‘Descriptives’ Table,
as in Figure 4.7. So the 2010 data suggest you should bet on a 3 point margin.

Figure 4.7: A screenshot of jamovi showing the modal value for the afl.margins variable
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4.2

Measures of variability

The statistics that we’ve discussed so far all relate to central tendency. That is, they all talk
about which values are “in the middle” or “popular” in the data. However, central tendency
is not the only type of summary statistic that we want to calculate. The second thing that we
really want is a measure of the variability of the data. That is, how “spread out” are the data?
How “far” away from the mean or median do the observed values tend to be? For now, let’s
assume that the data are interval or ratio scale, and we’ll continue to use the afl.margins data.
We’ll use this data to discuss several different measures of spread, each with different strengths
and weaknesses.

4.2.1 Range

The range of a variable is very simple. It’s the biggest value minus the smallest value. For the
AFL winning margins data the maximum value is 116 and the minimum value is 0. Although
the range is the simplest way to quantify the notion of “variability”, it’s one of the worst. Recall
from our discussion of the mean that we want our summary measure to be robust. If the data
set has one or two extremely bad values in it we’d like our statistics to not be unduly influenced
by these cases. For example, in a variable containing very extreme outliers

´100, 2, 3, 4, 5, 6, 7, 8, 9, 10

it is clear that the range is not robust. This variable has a range of 110 but if the outlier were
removed we would have a range of only 8.

4.2.2 Interquartile range

The interquartile range (IQR) is like the range, but instead of the difference between the
biggest and smallest value the difference between the 25th percentile and the 75th percentile
is taken. If you don’t already know what a percentile is, the 10th percentile of a data set is
the smallest number x such that 10% of the data is less than x. In fact, we’ve already come
across the idea. The median of a data set is its 50th percentile! In jamovi you can easily specify
the 25th, 50th and 75th percentiles by clicking the checkbox ‘Quartiles’ in the ‘Exploration’ -
‘Descriptives’ - ‘Statistics’ screen.

And not surprisingly, in Figure 4.8 the 50th percentile is the same as the median value.
And, by noting that 50.50 ´ 12.75 “ 37.75, we can see that the interquartile range for the
2010 AFL winning margins data is 37.75. While it’s obvious how to interpret the range it’s
a little less obvious how to interpret the IQR. The simplest way to think about it is like this:
the interquartile range is the range spanned by the “middle half” of the data. That is, one
quarter of the data falls below the 25th percentile and one quarter of the data is above the 75th
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Figure 4.8: A screenshot of jamovi showing the Quartiles for the afl.margins variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

percentile, leaving the “middle half” of the data lying in between the two. And the IQR is the
range covered by that middle half.

4.2.3 Mean absolute deviation

The two measures we’ve looked at so far, the range and the interquartile range, both rely on
the idea that we can measure the spread of the data by looking at the percentiles of the data.
However, this isn’t the only way to think about the problem. A different approach is to select
a meaningful reference point (usually the mean or the median) and then report the “typical”
deviations from that reference point. What do we mean by “typical” deviation? Usually, this is
the mean or median value of these deviations. In practice, this leads to two different measures:
the “mean absolute deviation” (from the mean) and the “median absolute deviation” (from the
median). From what I’ve read, the measure based on the median seems to be used in statistics
and does seem to be the better of the two. But to be honest I don’t think I’ve seen it used
much in psychology. The measure based on the mean does occasionally show up in psychology
though. In this section I’ll talk about the first one, and I’ll come back to talk about the second
one later.

Since the previous paragraph might sound a little abstract, let’s go through the mean
absolute deviation from the mean a little more slowly. One useful thing about this measure is
that the name actually tells you exactly how to calculate it. Let’s think about our AFL winning
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margins data, and once again we’ll start by pretending that there are only 5 games in total,
with winning margins of 56, 31, 56, 8 and 32. Since our calculations rely on an examination
of the deviation from some reference point (in this case the mean), the first thing we need to
calculate is the mean, X̄. For these five observations, our mean is X̄ “ 36.6. The next step
is to convert each of our observations Xi into a deviation score. We do this by calculating the
difference between the observation Xi and the mean X̄. That is, the deviation score is defined
to be Xi ´ X̄. For the first observation in our sample, this is equal to 56 ´ 36.6 “ 19.4. Okay,
that’s simple enough. The next step in the process is to convert these deviations to absolute
deviations, and we do this by converting any negative values to positive ones. Mathematically,
we would denote the absolute value of ´3 as | ´ 3|, and so we say that | ´ 3| “ 3. We use the
absolute value here because we don’t really care whether the value is higher than the mean or
lower than the mean, we’re just interested in how close it is to the mean. To help make this
process as obvious as possible, the table below shows these calculations for all five observations:

English: which game value deviation from mean absolute deviation
notation: i Xi Xi ´ X̄ |Xi ´ X̄|

1 56 19.4 19.4
2 31 -5.6 5.6
3 56 19.4 19.4
4 8 -28.6 28.6
5 32 -4.6 4.6

Now that we have calculated the absolute deviation score for every observation in the data set,
all that we have to do to calculate the mean of these scores. Let’s do that:

19.4` 5.6` 19.4` 28.6` 4.6

5
“ 15.52

And we’re done. The mean absolute deviation for these five scores is 15.52.

However, whilst our calculations for this little example are at an end, we do have a couple of
things left to talk about. First, we should really try to write down a proper mathematical
formula. But in order do to this I need some mathematical notation to refer to the mean
absolute deviation. Irritatingly, “mean absolute deviation” and “median absolute deviation”
have the same acronym (MAD), which leads to a certain amount of ambiguity so I’d better
come up with something different for the mean absolute deviation. Sigh. What I’ll do is use
AAD instead, short for average absolute deviation. Now that we have some unambiguous
notation, here’s the formula that describes what we just calculated:

aadpXq “
1

N

N
ÿ

i“1

|Xi ´ X̄|
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4.2.4 Variance

Although the average absolute deviation measure has its uses, it’s not the best measure of
variability to use. From a purely mathematical perspective there are some solid reasons to prefer
squared deviations rather than absolute deviations. If we do that we obtain a measure called the
variance, which has a lot of really nice statistical properties that I’m going to ignore,3 and one
massive psychological flaw that I’m going to make a big deal out of in a moment. The variance
of a data set X is sometimes written as VarpXq, but it’s more commonly denoted s2 (the reason
for this will become clearer shortly).

The formula that we use to calculate the variance of a set of observations is as follows:

VarpXq “
1

N

N
ÿ

i“1

`

Xi ´ X̄
˘2

As you can see, it’s basically the same formula that we used to calculate the average absolute
deviation, except that instead of using “absolute deviations” we use “squared deviations”. It
is for this reason that the variance is sometimes referred to as the “mean square deviation”.

Now that we’ve got the basic idea, let’s have a look at a concrete example. Once again, let’s
use the first five AFL games as our data. If we follow the same approach that we took last time,
we end up with the following table:

English: which game value deviation from mean squared deviation
maths: i Xi Xi ´ X̄ pXi ´ X̄q

2

1 56 19.4 376.36
2 31 -5.6 31.36
3 56 19.4 376.36
4 8 -28.6 817.96
5 32 -4.6 21.16

That last column contains all of our squared deviations, so all we have to do is average them.
If we do that by hand, i.e. using a calculator, we end up with a variance of 324.64. Exciting,
isn’t it? For the moment, let’s ignore the burning question that you’re all probably thinking
(i.e., what the heck does a variance of 324.64 actually mean?) and instead talk a bit more about
how to do the calculations in jamovi, because this will reveal something very weird. Start a new
jamovi session by clicking on the main menu button (three horizontal lines in the top left corner
and selecting ‘New’. Now type in the first five values from the afl.margins data set in column A
(56, 31, 56, 8, 32). Change the variable type to ‘Continuous’ and under ‘Descriptives’ click

3Well, I will very briefly mention the one that I think is coolest, for a very particular definition of “cool”, that
is. Variances are additive. Here’s what that means. Suppose I have two variables X and Y , whose variances are
VarpXq and VarpY q respectively. Now imagine I want to define a new variable Z that is the sum of the two,
Z “ X ` Y . As it turns out, the variance of Z is equal to VarpXq ` VarpY q. This is a very useful property, but
it’s not true of the other measures that I talk about in this section.
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the ‘Variance’ check box, and you get the same values for variance as the one we calculated by
hand (324.64). No, wait, you get a completely different answer (405.80) - see Figure 4.9. That’s
just weird. Is jamovi broken? Is this a typo? Am I an idiot?

Figure 4.9: A screenshot of jamovi showing the Variance for the first 5 values of the afl.margins

variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As it happens, the answer is no.4 It’s not a typo, and jamovi is not making a mistake. In
fact, it’s very simple to explain what jamovi is doing here, but slightly trickier to explain why
jamovi is doing it. So let’s start with the “what”. What jamovi is doing is evaluating a slightly
different formula to the one I showed you above. Instead of averaging the squared deviations,
which requires you to divide by the number of data points N , jamovi has chosen to divide by
N ´ 1.

In other words, the formula that jamovi is using is this one:

1

N ´ 1

N
ÿ

i“1

`

Xi ´ X̄
˘2

4With the possible exception of the third question.
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So that’s the what. The real question is why jamovi is dividing by N ´ 1 and not by N .
After all, the variance is supposed to be the mean squared deviation, right? So shouldn’t we be
dividing by N , the actual number of observations in the sample? Well, yes, we should. However,
as we’ll discuss in Chapter 8, there’s a subtle distinction between “describing a sample” and
“making guesses about the population from which the sample came”. Up to this point, it’s been
a distinction without a difference. Regardless of whether you’re describing a sample or drawing
inferences about the population, the mean is calculated exactly the same way. Not so for the
variance, or the standard deviation, or for many other measures besides. What I outlined to you
initially (i.e., take the actual average, and thus divide by N) assumes that you literally intend
to calculate the variance of the sample. Most of the time, however, you’re not terribly interested
in the sample in and of itself. Rather, the sample exists to tell you something about the world.
If so, you’re actually starting to move away from calculating a “sample statistic” and towards
the idea of estimating a “population parameter”. However, I’m getting ahead of myself. For
now, let’s just take it on faith that jamovi knows what it’s doing, and we’ll revisit the question
later on when we talk about estimation in Chapter 8.

Okay, one last thing. This section so far has read a bit like a mystery novel. I’ve shown
you how to calculate the variance, described the weird “N ´ 1” thing that jamovi does and
hinted at the reason why it’s there, but I haven’t mentioned the single most important thing.
How do you interpret the variance? Descriptive statistics are supposed to describe things, after
all, and right now the variance is really just a gibberish number. Unfortunately, the reason
why I haven’t given you the human-friendly interpretation of the variance is that there really
isn’t one. This is the most serious problem with the variance. Although it has some elegant
mathematical properties that suggest that it really is a fundamental quantity for expressing
variation, it’s completely useless if you want to communicate with an actual human. Variances
are completely uninterpretable in terms of the original variable! All the numbers have been
squared and they don’t mean anything anymore. This is a huge issue. For instance, according
to the table I presented earlier, the margin in game 1 was “376.36 points-squared higher than
the average margin”. This is exactly as stupid as it sounds, and so when we calculate a variance
of 324.64 we’re in the same situation. I’ve watched a lot of footy games, and at no time has
anyone ever referred to “points squared”. It’s not a real unit of measurement, and since the
variance is expressed in terms of this gibberish unit, it is totally meaningless to a human.

4.2.5 Standard deviation

Okay, suppose that you like the idea of using the variance because of those nice mathematical
properties that I haven’t talked about, but since you’re a human and not a robot you’d like to
have a measure that is expressed in the same units as the data itself (i.e., points, not points-
squared). What should you do? The solution to the problem is obvious! Take the square root of
the variance, known as the standard deviation, also called the “root mean squared deviation”,
or RMSD. This solves our problem fairly neatly. Whilst nobody has a clue what “a variance
of 324.68 points-squared” really means, it’s much easier to understand “a standard deviation of
18.01 points” since it’s expressed in the original units. It is traditional to refer to the standard
deviation of a sample of data as s, though “sd” and “std dev.” are also used at times.
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Because the standard deviation is equal to the square root of the variance, you probably won’t
be surprised to see that the formula is:

s “

g

f

f

e

1

N

N
ÿ

i“1

`

Xi ´ X̄
˘2

and in jamovi there is a check box for ‘Std. deviation’ right above the check box for ‘Variance’.
Selecting this gives a value of 26.07 for the standard deviation.

However, as you might have guessed from our discussion of the variance, what jamovi actually
calculates is slightly different to the formula given above. Just like the we saw with the variance,
what jamovi calculates is a version that divides by N ´ 1 rather than N .

For reasons that will make sense when we return to this topic in Chapter 8 I’ll refer to this
new quantity as σ̂ (read as: “sigma hat”), and the formula for this is:

σ̂ “

g

f

f

e

1

N ´ 1

N
ÿ

i“1

`

Xi ´ X̄
˘2

Interpreting standard deviations is slightly more complex. Because the standard deviation
is derived from the variance, and the variance is a quantity that has little to no meaning that
makes sense to us humans, the standard deviation doesn’t have a simple interpretation. As a
consequence, most of us just rely on a simple rule of thumb. In general, you should expect 68%
of the data to fall within 1 standard deviation of the mean, 95% of the data to fall within 2
standard deviation of the mean, and 99.7% of the data to fall within 3 standard deviations of
the mean. This rule tends to work pretty well most of the time, but it’s not exact. It’s actually
calculated based on an assumption that the histogram is symmetric and “bell shaped”.5 As you
can tell from looking at the AFL winning margins histogram in Figure 4.2, this isn’t exactly
true of our data! Even so, the rule is approximately correct. As it turns out, 65.3% of the
AFL margins data fall within one standard deviation of the mean. This is shown visually in
Figure 4.10.

4.2.6 Which measure to use?

We’ve discussed quite a few measures of spread: range, IQR, mean absolute deviation,
variance and standard deviation; and hinted at their strengths and weaknesses. Here’s a quick
summary:

• Range. Gives you the full spread of the data. It’s very vulnerable to outliers and as a
consequence it isn’t often used unless you have good reasons to care about the extremes
in the data.

5Strictly, the assumption is that the data are normally distributed, which is an important concept that we’ll
discuss more in Chapter 7 and will turn up over and over again later in the book.
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Mean − SD Mean Mean + SD

Figure 4.10: An illustration of the standard deviation from the AFL winning margins data. The
shaded bars in the histogram show how much of the data fall within one standard deviation of
the mean. In this case, 65.3% of the data set lies within this range, which is pretty consistent
with the “approximately 68% rule” discussed in the main text.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Interquartile range. Tells you where the “middle half” of the data sits. It’s pretty robust
and complements the median nicely. This is used a lot.

• Mean absolute deviation. Tells you how far “on average” the observations are from the
mean. It’s very interpretable but has a few minor issues (not discussed here) that make
it less attractive to statisticians than the standard deviation. Used sometimes, but not
often.

• Variance. Tells you the average squared deviation from the mean. It’s mathematically
elegant and is probably the “right” way to describe variation around the mean, but it’s
completely uninterpretable because it doesn’t use the same units as the data. Almost
never used except as a mathematical tool, but it’s buried “under the hood” of a very large
number of statistical tools.

• Standard deviation. This is the square root of the variance. It’s fairly elegant mathemati-
cally and it’s expressed in the same units as the data so it can be interpreted pretty well.
In situations where the mean is the measure of central tendency, this is the default. This
is by far the most popular measure of variation.

In short, the IQR and the standard deviation are easily the two most common measures used
to report the variability of the data. But there are situations in which the others are used. I’ve
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described all of them in this book because there’s a fair chance you’ll run into most of these
somewhere.

4.3

Skew and kurtosis

There are two more descriptive statistics that you will sometimes see reported in the psychologi-
cal literature: skew and kurtosis. In practice, neither one is used anywhere near as frequently as
the measures of central tendency and variability that we’ve been talking about. Skew is pretty
important, so you do see it mentioned a fair bit, but I’ve actually never seen kurtosis reported
in a scientific article to date.

Negative Skew No Skew Positive Skew

Figure 4.11: An illustration of skewness. On the left we have a negatively skewed data set
(skewness “ ´.93), in the middle we have a data set with no skew (well, hardly any: skewness
“ ´.006), and on the right we have a positively skewed data set (skewness “ .93).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since it’s the more interesting of the two, let’s start by talking about the skewness. Skewness
is basically a measure of asymmetry and the easiest way to explain it is by drawing some pictures.
As Figure 4.11 illustrates, if the data tend to have a lot of extreme small values (i.e., the lower tail
is “longer” than the upper tail) and not so many extremely large values (left panel) then we say
that the data are negatively skewed. On the other hand, if there are more extremely large values
than extremely small ones (right panel) we say that the data are positively skewed. That’s the
qualitative idea behind skewness. If there are relatively more values that are far greater than
the mean, the distribution is positively skewed or right skewed, with a tail stretching to the
right. Negative or left skew is the opposite. A symmetric distribution has a skewness of 0.
The skewness value for a positively skewed distribution is positive, and a negative value for a
negatively skewed distribution.
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One formula for the skewness of a data set is as follows

skewnesspXq “
1

Nσ̂3

N
ÿ

i“1

pXi ´ X̄q
3

where N is the number of observations, X̄ is the sample mean, and σ̂ is the standard deviation
(the “divide by N ´ 1” version, that is).

Perhaps more helpfully, you can use jamovi to calculate skewness: it’s a check box in the
‘Statistics’ options under ‘Exploration’ - ‘Descriptives’. For the afl.margins variable, the skew-
ness figure is 0.780. If you divide the skewness estimate by the Std. error for skewness you have
an indication of how skewed the data is. Especially in small samples (N¡50), one rule of thumb
suggests that a value of 2 or less can mean that the data is not very skewed, and a value of over
2 that there is sufficient skew in the data to possibly limit its use in some statistical analyses.
Though there is no clear agreement on this interpretation. That said, this does indicate that
the AFL winning margins data is somewhat skewed (0.780 / 0.183 = 4.262).

The final measure that is sometimes referred to, though very rarely in practice, is the kur-
tosis of a data set. Put simply, kurtosis is a measure of the “pointiness” of a data set, as
illustrated in Figure 4.12. By convention, we say that the “normal curve” (black lines) has zero
kurtosis, so the pointiness of a data set is assessed relative to this curve.

Platykurtic
("too flat")

Mesokurtic
Leptokurtic

("too pointy")

Figure 4.12: An illustration of kurtosis. On the left, we have a “platykurtic” data set (kurtosis
= ´.95) meaning that the data set is “too flat”. In the middle we have a “mesokurtic” data set
(kurtosis is almost exactly 0) which means that the pointiness of the data is just about right.
Finally, on the right, we have a “leptokurtic” data set (kurtosis “ 2.12) indicating that the data
set is “too pointy”. Note that kurtosis is measured with respect to a normal curve (black line).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this Figure, the data on the left are not pointy enough, so the kurtosis is negative and we
call the data platykurtic. The data on the right are too pointy, so the kurtosis is positive and
we say that the data is leptokurtic. But the data in the middle are just pointy enough, so we
say that it is mesokurtic and has kurtosis zero. This is summarised in the table below:
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informal term technical name kurtosis value

“too flat” platykurtic negative
“just pointy enough” mesokurtic zero
“too pointy” leptokurtic positive

The equation for kurtosis is pretty similar in spirit to the formulas we’ve seen already for
the variance and the skewness. Except that where the variance involved squared deviations
and the skewness involved cubed deviations, the kurtosis involves raising the deviations to the
fourth power:a

kurtosispXq “
1

Nσ̂4

N
ÿ

i“1

`

Xi ´ X̄
˘4
´ 3

I know, it’s not terribly interesting to me either.

aThe “´3” part is something that statisticians tack on to ensure that the normal curve has kurtosis zero.
It looks a bit stupid, just sticking a “-3” at the end of the formula, but there are good mathematical reasons
for doing this.

More to the point, jamovi has a check box for kurtosis just below the check box for skewness,
and this gives a value for kurtosis of 0.101 with a standard error of 0.364. This means that the
AFL winning margins data are just pointy enough.

4.4

Descriptive statistics separately for each group

It is very commonly the case that you find yourself needing to look at descriptive statistics
broken down by some grouping variable. This is pretty easy to do in jamovi. For instance, let’s
say I want to look at the descriptive statistics for some clin.trial data, broken down separately
by therapy type. This is a new data set, one that you’ve never seen before. The data is stored
in the clinicaltrial.csv file and we’ll use it a lot in Chapter 13 (you can find a complete
description of the data at the start of that chapter). Let’s load it and see what we’ve got:

Evidently there were three drugs: a placebo, something called “anxifree” and something
called “joyzepam”, and there were 6 people administered each drug. There were 9 people
treated using cognitive behavioural therapy (CBT) and 9 people who received no psychological
treatment. And we can see from looking at the ‘Descriptives’ of the mood.gain variable that
most people did show a mood gain (mean “ 0.88), though without knowing what the scale is
here it’s hard to say much more than that. Still, that’s not too bad. Overall I feel that I learned
something from that.

We can also go ahead and look at some other descriptive statistics, and this time separately
for each type of therapy. In jamovi, check Std. deviation, Skewness and Kurtosis in the ‘Statis-
tics’ options. At the same time, transfer the therapy variable into the ‘Split by’ box, and you
should get something like Figure 4.14
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Figure 4.13: A screenshot of jamovi showing the variables stored in the clinicaltrial.csv file

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What if you have multiple grouping variables? Suppose you want to look at the average
mood gain separately for all possible combinations of drug and therapy. It is possible to do
this by adding another variable, drug, into the ‘Split by’ box. Easy peasy, though sometimes if
you split too much there isn’t enough data in each breakdown combination to make meaningful
calculations. In this case jamovi tells you this by stating something like NaN or Inf.6

6Sometimes jamovi will also present numbers in an unusual way. If a number is very small, or very large,
then jamovi switches to an exponential form for numbers. For example 6.51e-4 is the same as saying that the
decimal point is moved 4 places to the left, so the actual number is 0.000651. If there is a plus sign (i.e. 6.51e+4
then the decimal point is moved to the right, i.e. 65,100.00. Usually only very small or very large numbers are
expressed in this way, for example 6.51e-16, which would be quite unwieldy to write out in the normal way.
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Figure 4.14: A screenshot of jamovi showing Descriptives split by therapy type
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4.5

Standard scores

Suppose my friend is putting together a new questionnaire intended to measure “grumpiness”.
The survey has 50 questions which you can answer in a grumpy way or not. Across a big sample
(hypothetically, let’s imagine a million people or so!) the data are fairly normally distributed,
with the mean grumpiness score being 17 out of 50 questions answered in a grumpy way, and
the standard deviation is 5. In contrast, when I take the questionnaire I answer 35 out of 50
questions in a grumpy way. So, how grumpy am I? One way to think about it would be to say
that I have grumpiness of 35/50, so you might say that I’m 70% grumpy. But that’s a bit weird,
when you think about it. If my friend had phrased her questions a bit differently people might
have answered them in a different way, so the overall distribution of answers could easily move
up or down depending on the precise way in which the questions were asked. So, I’m only 70%
grumpy with respect to this set of survey questions. Even if it’s a very good questionnaire this
isn’t very a informative statement.

A simpler way around this is to describe my grumpiness by comparing me to other people.
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Shockingly, out of my friend’s sample of 1,000,000 people, only 159 people were as grumpy as
me (that’s not at all unrealistic, frankly) suggesting that I’m in the top 0.016% of people for
grumpiness. This makes much more sense than trying to interpret the raw data. This idea,
that we should describe my grumpiness in terms of the overall distribution of the grumpiness of
humans, is the qualitative idea that standardisation attempts to get at. One way to do this is to
do exactly what I just did and describe everything in terms of percentiles. However, the problem
with doing this is that “it’s lonely at the top”. Suppose that my friend had only collected a
sample of 1000 people (still a pretty big sample for the purposes of testing a new questionnaire,
I’d like to add), and this time gotten, let’s say, a mean of 16 out of 50 with a standard deviation
of 5. The problem is that almost certainly not a single person in that sample would be as grumpy
as me.

However, all is not lost. A different approach is to convert my grumpiness score into a
standard score, also referred to as a z-score. The standard score is defined as the number of
standard deviations above the mean that my grumpiness score lies. To phrase it in “pseudo-
maths” the standard score is calculated like this:

standard score “
raw score´mean

standard deviation

In actual maths, the equation for the z-score is

zi “
Xi ´ X̄

σ̂

So, going back to the grumpiness data, we can now transform Dani’s raw grumpiness into a
standardised grumpiness score.

z “
35´ 17

5
“ 3.6

To interpret this value, recall the rough heuristic that I provided in Section 4.2.5 in which I
noted that 99.7% of values are expected to lie within 3 standard deviations of the mean. So the
fact that my grumpiness corresponds to a z score of 3.6 indicates that I’m very grumpy indeed.
In fact this suggests that I’m grumpier than 99.98% of people. Sounds about right.

In addition to allowing you to interpret a raw score in relation to a larger population (and
thereby allowing you to make sense of variables that lie on arbitrary scales), standard scores
serve a second useful function. Standard scores can be compared to one another in situations
where the raw scores can’t. Suppose, for instance, my friend also had another questionnaire that
measured extraversion using a 24 item questionnaire. The overall mean for this measure turns
out to be 13 with standard deviation 4, and I scored a 2. As you can imagine, it doesn’t make
a lot of sense to try to compare my raw score of 2 on the extraversion questionnaire to my raw
score of 35 on the grumpiness questionnaire. The raw scores for the two variables are “about”
fundamentally different things, so this would be like comparing apples to oranges.

What about the standard scores? Well, this is a little different. If we calculate the standard
scores we get z “ p35´ 17q{5 “ 3.6 for grumpiness and z “ p2´ 13q{4 “ ´2.75 for extraversion.
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These two numbers can be compared to each other.7 I’m much less extraverted than most people
(z “ ´2.75) and much grumpier than most people (z “ 3.6). But the extent of my unusualness
is much more extreme for grumpiness, since 3.6 is a bigger number than 2.75. Because each
standardised score is a statement about where an observation falls relative to its own population,
it is possible to compare standardised scores across completely different variables.

4.6

Summary

Calculating some basic descriptive statistics is one of the very first things you do when analysing
real data, and descriptive statistics are much simpler to understand than inferential statistics,
so like every other statistics textbook I’ve started with descriptives. In this chapter, we talked
about the following topics:

• Measures of central tendency. Broadly speaking, central tendency measures tell you where
the data are. There’s three measures that are typically reported in the literature: the
mean, median and mode. (Section 4.1)

• Measures of variability. In contrast, measures of variability tell you about how “spread
out” the data are. The key measures are: range, standard deviation, and interquartile
range. (Section 4.2)

• Measures of skewness and kurtosis. We also looked at assymetry in a variable’s distribution
(skew) and pointness (kurtosis). (Section 4.3)

• Getting group summaries of variables in jamovi. Since this book focuses on doing data
analysis in jamovi, we spent a bit of time talking about how descriptive statistics are
computed for different subgroups. (Section 4.4)

• Standard scores. The z-score is a slightly unusual beast. It’s not quite a descriptive
statistic, and not quite an inference. We talked about it in Section 4.5. Make sure you
understand that section. It’ll come up again later.

In the next Chapter we’ll move on to a discussion of how to draw pictures! Everyone loves a
pretty picture, right? But before we do, I want to end on an important point. A traditional first
course in statistics spends only a small proportion of the class on descriptive statistics, maybe
one or two lectures at most. The vast majority of the lecturer’s time is spent on inferential
statistics because that’s where all the hard stuff is. That makes sense, but it hides the practical
everyday importance of choosing good descriptives. With that in mind. . .

7Though some caution is usually warranted. It’s not always the case that one standard deviation on variable
A corresponds to the same “kind” of thing as one standard deviation on variable B. Use common sense when
trying to determine whether or not the z scores of two variables can be meaningfully compared.
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4.6.1 Epilogue: Good descriptive statistics are descriptive!

The death of one man is a tragedy.
The death of millions is a statistic.

– Josef Stalin, Potsdam 1945

950,000 – 1,200,000
– Estimate of Soviet repression deaths,

1937-1938 (Ellman 2002)

Stalin’s infamous quote about the statistical character of the deaths of millions is worth
giving some thought. The clear intent of his statement is that the death of an individual
touches us personally and its force cannot be denied, but that the deaths of a multitude are
incomprehensible and as a consequence are mere statistics and more easily ignored. I’d argue
that Stalin was half right. A statistic is an abstraction, a description of events beyond our
personal experience, and so hard to visualise. Few if any of us can imagine what the deaths of
millions is “really” like, but we can imagine one death and this gives the lone death its feeling
of immediate tragedy, a feeling that is missing from Ellman’s cold statistical description.

Yet it is not so simple. Without numbers, without counts, without a description of what
happened, we have no chance of understanding what really happened, no opportunity even to
try to summon the missing feeling. And in truth, as I write this sitting in comfort on a Saturday
morning half a world and a whole lifetime away from the Gulags, when I put the Ellman
estimate next to the Stalin quote a dull dread settles in my stomach and a chill settles over
me. The Stalinist repression is something truly beyond my experience, but with a combination
of statistical data and those recorded personal histories that have come down to us, it is not
entirely beyond my comprehension. Because what Ellman’s numbers tell us is this: over a
two year period Stalinist repression wiped out the equivalent of every man, woman and child
currently alive in the city where I live. Each one of those deaths had it’s own story, was it’s
own tragedy, and only some of those are known to us now. Even so, with a few carefully chosen
statistics, the scale of the atrocity starts to come into focus.

Thus it is no small thing to say that the first task of the statistician and the scientist is to
summarise the data, to find some collection of numbers that can convey to an audience a sense
of what has happened. This is the job of descriptive statistics, but it’s not a job that can be
told solely using the numbers. You are a data analyst, and not a statistical software package.
Part of your job is to take these statistics and turn them into a description. When you analyse
data it is not sufficient to list off a collection of numbers. Always remember that what you’re
really trying to do is communicate with a human audience. The numbers are important, but
they need to be put together into a meaningful story that your audience can interpret. That
means you need to think about framing. You need to think about context. And you need to
think about the individual events that your statistics are summarising.
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5. Drawing graphs

Above all else show the data.
–Edward Tufte1

Visualising data is one of the most important tasks facing the data analyst. It’s important
for two distinct but closely related reasons. Firstly, there’s the matter of drawing “presentation
graphics”, displaying your data in a clean, visually appealing fashion makes it easier for your
reader to understand what you’re trying to tell them. Equally important, perhaps even more
important, is the fact that drawing graphs helps you to understand the data. To that end, it’s
important to draw “exploratory graphics” that help you learn about the data as you go about
analysing it. These points might seem pretty obvious but I cannot count the number of times
I’ve seen people forget them.

To give a sense of the importance of this chapter, I want to start with a classic illustration of
just how powerful a good graph can be. To that end, Figure 5.1 shows a redrawing of one of the
most famous data visualisations of all time. This is John Snow’s 1854 map of cholera deaths.
The map is elegant in its simplicity. In the background we have a street map which helps orient
the viewer. Over the top we see a large number of small dots, each one representing the location
of a cholera case. The larger symbols show the location of water pumps, labelled by name. Even
the most casual inspection of the graph makes it very clear that the source of the outbreak is
almost certainly the Broad Street pump. Upon viewing this graph Dr Snow arranged to have
the handle removed from the pump and ended the outbreak that had killed over 500 people.
Such is the power of a good data visualisation.

The goals in this chapter are twofold. First, to discuss several fairly standard graphs that
we use a lot when analysing and presenting data, and second to show you how to create these
graphs in jamovi. The graphs themselves tend to be pretty straightforward, so in one respect
this chapter is pretty simple. Where people usually struggle is learning how to produce graphs,
and especially learning how to produce good graphs. Fortunately, learning how to draw graphs
in jamovi is reasonably simple as long as you’re not too picky about what your graph looks like.
What I mean when I say this is that jamovi has a lot of very good default graphs, or plots, that
most of the time produce a clean, high-quality graphic. However, on those occasions when you
do want to do something non-standard, or if you need to make highly specific changes to the
figure, then the graphics functionality in jamovi is not yet capable of supporting advanced work
or detail editing.

1The origin of this quote is Tufte’s lovely book The Visual Display of Quantitative Information.
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Snow’s cholera map of London
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Figure 5.1: A stylised redrawing of John Snow’s original cholera map. Each small dot represents
the location of a cholera case and each large circle shows the location of a well. As the plot
makes clear, the cholera outbreak is centred very closely on the Broad St pump.
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5.1

Histograms

Let’s begin with the humble histogram. Histograms are one of the simplest and most useful
ways of visualising data. They make most sense when you have an interval or ratio scale
variable (e.g., the afl.margins data from Chapter 4) and what you want to do is get an overall
impression of the variable. Most of you probably know how histograms work, since they’re so
widely used, but for the sake of completeness I’ll describe them. All you do is divide up the
possible values into bins and then count the number of observations that fall within each bin.
This count is referred to as the frequency or density of the bin and is displayed as a vertical
bar. Ihe AFL winning margins data there are 33 games in which the winning margin was less
than 10 points and it is this fact that is represented by the height of the leftmost bar that we
showed earlier in Chapter 4, Figure 4.2. With these earlier graphs we used an advanced plotting
package in R which, for now, is beyond the capability of jamovi. But jamovi gets us close,
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and drawing this histogram in jamovi is pretty straightforward. Open up the ‘plots’ options
under ‘Exploration’ - ‘Descriptives’ and click the ‘histogram’ check box, as in Figure 5.2. jamovi
defaults to labelling the y-axis as ‘density’ and the x-axis with the variable name. The bins
are selected automatically, and there is no scale, or count, information on the y-axis unlike the
previous Figure 4.2. But this does not matter too much because after all what we are really
interested in is our impression of the shape of the distribution: is it normally distributed or is
there a skew or kurtosis? Our first impressions of these characteristics come from drawing a
histogram.

Figure 5.2: jamovi screen showing the histogram check box

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One additional feature that jamovi provides is the ability to plot a ‘Density’ curve. You
can do this by clicking the ‘Density’ check box under the ‘Plots’ options (and unchecking ‘His-
togram’), and this gives us the plot shown in Figure 5.3. A density plot visualises the distribution
of data over a continuous interval or time period. This chart is a variation of a histogram that
uses kernel smoothing to plot values, allowing for smoother distributions by smoothing out
the noise. The peaks of a density plot help display where values are concentrated over the inter-
val. An advantage density plots have over histograms is that they are better at determining the
distribution shape because they’re not affected by the number of bins used (each bar used in a
typical histogram). A histogram comprising of only 4 bins wouldn’t produce a distinguishable
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enough shape of distribution as a 20-bin histogram would. However, with density plots, this
isn’t an issue.
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Figure 5.3: A density plot of the afl.margins variable plotted in jamovi
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Although this image would need a lot of cleaning up in order to make a good presentation
graphic (i.e., one you’d include in a report), it nevertheless does a pretty good job of describing
the data. In fact, the big strength of a histogram or density plot is that (properly used) it does
show the entire spread of the data, so you can get a pretty good sense about what it looks like.
The downside to histograms is that they aren’t very compact. Unlike some of the other plots
I’ll talk about it’s hard to cram 20-30 histograms into a single image without overwhelming the
viewer. And of course, if your data are nominal scale then histograms are useless.

5.2

Boxplots

Another alternative to histograms is a boxplot, sometimes called a “box and whiskers” plot.
Like histograms they’re most suited to interval or ratio scale data. The idea behind a boxplot
is to provide a simple visual depiction of the median, the interquartile range, and the range of
the data. And because they do so in a fairly compact way boxplots have become a very popular
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statistical graphic, especially during the exploratory stage of data analysis when you’re trying to
understand the data yourself. Let’s have a look at how they work, again using the afl.margins

data as our example.

Figure 5.4: A box plot of the afl.margins variable plotted in jamovi
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The easiest way to describe what a boxplot looks like is just to draw one. Click on the
‘Box plot’ check box and you will get the plot shown on the lower right of Figure 5.4. jamovi
has drawn the most basic boxplot possible. When you look at this plot this is how you should
interpret it: the thick line in the middle of the box is the median; the box itself spans the
range from the 25th percentile to the 75th percentile; and the “whiskers” go out to the most
extreme data point that doesn’t exceed a certain bound. By default, this value is 1.5 times the
interquartile range (IQR), calculated as 25th percentile - (1.5*IQR) for the lower boundary,
and 75th percentile + (1.5*IQR) for the upper boundary. Any observation whose value falls
outside this range is plotted as a circle or dot instead of being covered by the whiskers, and
is commonly referred to as an outlier. For our AFL margins data there are two observations
that fall outside this range, and these observations are plotted as dots (the upper boundary is
107, and looking over the data column in the spreadsheet there are two observations with values
higher than this, 108 and 116, so these are the dots).
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5.2.1 Violin plots
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Figure 5.5: A violin plot of the afl.margins variable plotted in jamovi, alsow showing a box
plot and data points
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A variation to the traditional box plot is the violin plot. Violin plots are similar to box
plots except that they also show the kernel probability density of the data at different values.
Typically, violin plots will include a marker for the median of the data and a box indicating the
interquartile range, as in standard box plots. In jamovi you can achieve this sort of functionality
by checking both the ‘Violin’ and the ’Box plot’ check boxes. See Figure 5.5, which also has the
‘Data’ check box turned on to show the actual data points on the plot. This does tend to make
the graph a bit too busy though, in my opinion. Clarity is simplicity, so in practice it might be
better to just use a simple box plot.

5.2.2 Drawing multiple boxplots

One last thing. What if you want to draw multiple boxplots at once? Suppose, for instance, I
wanted separate boxplots showing the AFL margins not just for 2010 but for every year between
1987 and 2010. To do that the first thing we’ll have to do is find the data. These are stored in
the aflsmall2.csv file. So let’s load it into jamovi and see what is in it. You will see that it is
a pretty big data set. It contains 4296 games and the variables that we’re interested in. What
we want to do is have jamovi draw boxplots for the margin variable, but plotted separately for
each year. The way to do this is to move the year variable across into the ‘Split by’ box, as in
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Figure 5.6: jamovi screen shot showing the ‘Split by’ window
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Figure 5.6

The result is shown in Figure 5.7. This version of the box plot, split by year, gives a sense
of why it’s sometimes useful to choose box plots instead of histograms. It’s possible to get a
good sense of what the data look like from year to year without getting overwhelmed with too
much detail. Now imagine what would have happened if I’d tried to cram 24 histograms into
this space: no chance at all that the reader is going to learn anything useful.
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Figure 5.7: Multiple boxplots plotted in jamovi, for the margin by year variables in the aflsmall2

data set
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5.2.3 Using box plots to detect outliers

Because the boxplot automatically separates out those observations that lie outside a certain
range, depicting them with a dot in jamovi, people often use them as an informal method
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Figure 5.8: A boxplot showing two very suspicious outliers!
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for detecting outliers: observations that are “suspiciously” distant from the rest of the data.
Here’s an example. Suppose that I’d drawn the boxplot for the AFL margins data and it came
up looking like Figure 5.8. It’s pretty clear that something funny is going on with two of the
observations. Apparently, there were two games in which the margin was over 300 points! That
doesn’t sound right to me. Now that I’ve become suspicious it’s time to look a bit more closely
at the data. In jamovi you can quickly find out which of these observations are suspicious and
then you can go back to the raw data to see if there has been a mistake in data entry. To do this
you need to set up a filter so that only those observations with values over a certain threshold
are included. In our example, the threshold is over 300, so that is the filter we will create. First,
click on the ‘Filters’ button at the top of the jamovi window, and then type ‘margin ą 300’ into
the filter field, as in Figure 5.9.

This filter creates a new column in the spreadsheet view where only those observations that
pass the filter are included. One neat way to quickly identify which observations these are is to
tell jamovi to produce a ‘Frequency table’ (in the ‘Exploration’ - ‘Descriptives’ window) for the
ID variable (which must be a nominal variable otherwise the Frequency table is not produced).
In Figure 5.10 you can see that the ID values for the observations where the margin was over
300 are 14 and 134. These are suspicious cases, or observations, where you should go back to
the original data source to find out what is going on.

Usually you find that someone has just typed in the wrong number. Whilst this might seem
like a silly example, I should stress that this kind of thing actually happens a lot. Real world
data sets are often riddled with stupid errors, especially when someone had to type something
into a computer at some point. In fact, there’s actually a name for this phase of data analysis
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Figure 5.9: the jamovi filter screen
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Figure 5.10: Frequency table for ID showing the ID numbers for the two suspicious outliers: 14

and 134
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and in practice it can take up a huge chunk of our time: data cleaning. It involves searching
for typing mistakes (“typos”), missing data and all sorts of other obnoxious errors in raw data
files.

For less extreme values, even if they are flagged in a a boxplot as outliers, the decision about
whether to include outliers or exclude them in any analysis depends heavily on why you think
the data look they way they do and what you want to use the data for. You really need to
exercise good judgement here. If the outlier looks legitimate to you, then keep it. In any case,
I’ll return to the topic again in Section 12.10.

5.3

Bar graphs

Another form of graph that you often want to plot is the bar graph. Let’s use the afl.finalists

data set with the afl.finalists variable that I introduced in Section 4.1.6. What I want to
do is draw a bar graph that displays the number of finals that each team has played in over
the time spanned by the afl.finalists data set. There are lots of teams, but I am particularly
interested in just four: Brisbane, Carlton, Fremantle and Richmond. So the first step is to set
up a filter so just those four teams are included in the bar graph. This is straightforward in
jamovi and you can do it by using the ‘Filters’ function that we used previously. Open up the
‘Filters’ screen and type in the following:

afl.finalists == ‘Brisbane’ or afl.finalists == ‘Carlton’

or afl.finalists == ‘Fremantle’ or afl.finalists == ‘Richmond’ 2

When you have done this you will see, in the ‘Data’ view, that jamovi has filtered out all
values apart from those we have specified. Next, open up the ‘Exploration’ - ‘Descriptives’
window and click on the ‘Bar plot’ check box (remember to move the ‘afl.finalists’ variable
across into the ‘Variables’ box so that jamovi knows which variable to use). You should then
get a bar graph, something like that shown in Figure 5.11.

5.4

Saving image files using jamovi

Hold on, you might be thinking. What’s the good of being able to draw pretty pictures in jamovi
if I can’t save them and send them to friends to brag about how awesome my data is? How do I
save the picture? Simples. Just right click on the plot image and save it to a file, either as ‘eps’,
‘svg’ or ‘pdf’. These formats all produce nice images that you can the send to your friends, or
include in your assignments or papers.

2jamovi uses the symbol “==” here to mean “matches”.
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Figure 5.11: Filtering to include just four AFL teams, and drawing a bar plot in jamovi
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5.5

Summary

Perhaps I’m a simple minded person, but I love pictures. Every time I write a new scientific
paper one of the first things I do is sit down and think about what the pictures will be. In my
head an article is really just a sequence of pictures linked together by a story. All the rest of
it is just window dressing. What I’m really trying to say here is that the human visual system
is a very powerful data analysis tool. Give it the right kind of information and it will supply a
human reader with a massive amount of knowledge very quickly. Not for nothing do we have
the saying “a picture is worth a thousand words”. With that in mind, I think that this is one
of the most important chapters in the book. The topics covered were:

• Common plots. Much of the chapter was focused on standard graphs that statisticians like
to produce: histograms (Section 5.1), boxplots (Section 5.2) and bar graphs (Section 5.3)

• Saving image files. Importantly, we also covered how to export your pictures (Section 5.4)

One final thing to point out. Whilst jamovi produces some really neat default graphics,
editing the plots is currently not possible. For more advanced graphics and plotting capability
the packages available in R are much more powerful. One of the most popular graphics systems
is provided by the ggplot2 package (see http://ggplot2.org/), which is loosely based on “The
grammar of graphics” (Wilkinson, Wills, Rope, Norton, and Dubbs 2006). It’s not for novices.
You need to have a pretty good grasp of R before you can start using it, and even then it takes
a while to really get the hang of it. But when you’re ready it’s worth taking the time to teach
yourself, because it’s a much more powerful and cleaner system.
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6. Pragmatic matters

The garden of life never seems to confine itself to the plots philosophers have laid
out for its convenience. Maybe a few more tractors would do the trick.

– Roger Zelazny1

This is a somewhat strange chapter, even by my standards. My goal in this chapter is to
talk a bit more honestly about the realities of working with data than you’ll see anywhere else
in the book. The problem with real world data sets is that they are messy. Very often the
data file that you start out with doesn’t have the variables stored in the right format for the
analysis you want to do. Sometimes there might be a lot of missing values in your data set.
Sometimes you only want to analyse a subset of the data. Et cetera. In other words, there’s a
lot of data manipulation that you need to do just to get the variables in your data set into
the format that you need it. The purpose of this chapter is to provide a basic introduction to
these pragmatic topics. Although the chapter is motivated by the kinds of practical issues that
arise when manipulating real data, I’ll stick with the practice that I’ve adopted through most
of the book and rely on very small, toy data sets that illustrate the underlying issue. Because
this chapter is essentially a collection of techniques and doesn’t tell a single coherent story, it
may be useful to start with a list of topics:

• Section 6.1. Tabulating data.

• Section 6.2. Using logical expressions.

• Section 6.3. Transforming or recoding a variable.

• Section 6.4. Some useful mathematical functions.

• Section 6.5. Extracting a subset of a data set.

As you can see, the list of topics that the chapter covers is pretty broad, and there’s a lot of
content there. Even though this is one of the longest and hardest chapters in the book, I’m really
only scratching the surface of several fairly different and important topics. My advice, as usual,
is to read through the chapter once and try to follow as much of it as you can. Don’t worry too
much if you can’t grasp it all at once, especially the later sections. The rest of the book is only

1The quote comes from Home is the Hangman, published in 1975.
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lightly reliant on this chapter so you can get away with just understanding the basics. However,
what you’ll probably find is that later on you’ll need to flick back to this chapter in order to
understand some of the concepts that I refer to here.

6.1

Tabulating and cross-tabulating data

A very common task when analysing data is the construction of frequency tables, or cross-
tabulation of one variable against another. These tasks can be achieved in jamovi and I’ll show
you how in this section.

6.1.1 Creating tables for single variables

Let’s start with a simple example. As the father of a small child I naturally spend a lot of time
watching TV shows like In the Night Garden. In the nightgarden.csv file, I’ve transcribed a
short section of the dialogue. The file contains two variables of interest, speaker and utterance.
Open up this data set in jamovi and take a look at the data in the ‘spreadsheet’ view. You will
see that the data looks something like this:

‘speaker’ variable:
upsy-daisy upsy-daisy upsy-daisy upsy-daisy tombliboo tombliboo makka-pakka

makka-pakka makka-pakka makka-pakka

‘utterance’ variable:
pip pip onk onk ee oo pip pip onk onk

Looking at this it becomes very clear what happened to my sanity! With these as my data, one
task I might find myself needing to do is construct a frequency count of the number of words
each character speaks during the show. The jamovi ‘Descriptives’ screen has a check box called
‘Frequency tables’ which does just this, see Figure 6.1.

Figure 6.1: Frequency table for the speaker variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The output here tells us on the first line that what we’re looking at is a tabulation of the
speaker variable. In the ‘Levels’ column it lists all the different speakers that exist in the data,
and in the ‘Counts’ column it tells you how many times that speaker appears in the data. In
other words, it’s a frequency table.

In jamovi, the ‘Frequency tables’ check box will only produce a table for single variables.
For a table of two variables, for example combining speaker and utterance so that we can
see how many times each speaker said a particular utterance, we need a cross-tabulation or
contingency table. In jamovi you can do this by selecting the ‘Frequencies’ - ‘Contingency
Tables’ - ‘Independent Samples’ analysis, and moving the speaker variable into the ‘Rows’ box,
and the utterances variable into the ‘Columns’ box. You then should have a contingency table
like the one shown in Figure 6.2.

Figure 6.2: Contingency table for the speaker and utterances variables

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Don’t worry about the “χ2 Tests” table that is produced. We are going to cover this later
on in chapter 10. When interpreting the contingency table remember that these are counts, so
the fact that the first row and second column of numbers corresponds to a value of 2 indicates
that Makka-Pakka (row 1) says “onk” (column 2) twice in this data set.

6.1.2 Adding percentages to a contingency table

The contingency table shown in Figure 6.2 shows a table of raw frequencies. That is, a
count of the total number of cases for different combinations of levels of the specified variables.
However, often you want your data to be organised in terms of percentages as well as counts. You
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can find the check boxes for different percentages under the ‘Cells’ option in the ‘Contingency
Tables’ window. First, click on the ‘Row’ check box and the Contingency Table in the output
window will change to the one in Figure 6.3.

Figure 6.3: Contingency table for the speaker and utterances variables, with row percentages

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.4: Contingency table for the speaker and utterances variables, with column percentages

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What we’re looking at here is the percentage of utterances made by each character. In other
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words, 50% of Makka-Pakka’s utterances are “pip”, and the other 50% are “onk”. Let’s contrast
this with the table we get when we calculate column percentages (uncheck ‘Row’ and check
‘Column’ in the Cells options window), see Figure 6.4. In this version, what we’re seeing is the
percentage of characters associated with each utterance. For instance, whenever the utterance
“ee” is made (in this data set), 100% of the time it’s a Tombliboo saying it.

6.2

Logical expressions in jamovi

A key concept that a lot of data transformations in jamovi rely on is the idea of a logical value.
A logical value is an assertion about whether something is true or false. This is implemented in
jamovi in a pretty straightforward way. There are two logical values, namely TRUE and FALSE.
Despite the simplicity, logical values are very useful things. Let’s see how they work.

6.2.1 Assessing mathematical truths

In George Orwell’s classic book 1984 one of the slogans used by the totalitarian Party was “two
plus two equals five”. The idea being that the political domination of human freedom becomes
complete when it is possible to subvert even the most basic of truths. It’s a terrifying thought,
especially when the protagonist Winston Smith finally breaks down under torture and agrees
to the proposition. “Man is infinitely malleable”, the book says. I’m pretty sure that this isn’t
true of humans2 and it’s definitely not true of jamovi. jamovi is not infinitely malleable, it has
rather firm opinions on the topic of what is and isn’t true, at least as regards basic mathematics.
If I ask it to calculate 2 + 23, it always gives the same answer, and it’s not bloody 5!

Of course, so far jamovi is just doing the calculations. I haven’t asked it to explicitly assert
that 2` 2 “ 4 is a true statement. If I want jamovi to make an explicit judgement, I can use a
command like this: 2 + 2 == 4

What I’ve done here is use the equality operator, ==, to force jamovi to make a “true or
false” judgement.4 Okay, let’s see what jamovi thinks of the Party slogan, so type this into the
compute new variable ‘formula’ box:

2 + 2 == 5

And what do you get? It should be a whole set of ‘false’ values in the spreadsheet column for
your newly computed variable. Booyah! Freedom and ponies for all! Or something like that.

2I offer up my teenage attempts to be “cool” as evidence that some things just can’t be done.
3You can do this in the Compute new variable screen, though just calculating 2 + 2 for every cell of a new

variable is not very useful!
4Note that this is a very different operator to the equals operator =. A common typo that people make when

trying to write logical commands in jamovi (or other languages, since the “= versus ==” distinction is important
in many computer and statistical programs) is to accidentally type = when you really mean ==. Be especially
cautious with this, I’ve been programming in various languages since I was a teenager and I still screw this up a
lot. Hmm. I think I see why I wasn’t cool as a teenager. And why I’m still not cool.
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Anyway, it was worth having a look at what happens if I try to force jamovi to believe that
two plus two is five by making a statement like 2 + 2 = 5. I know that if I do this in another
program, say R, then it throws up an error message. But wait, if you do this in jamovi you get a
whole set of ‘false’ values. So what is going on? Well, it seems that jamovi is being pretty smart
and realises that you are testing whether it is TRUE or FALSE that 2 + 2 = 5, regardless of
whether you use the correct equality operator, ==, or the equals sign “=”.

6.2.2 Logical operations

So now we’ve seen logical operations at work. But so far we’ve only seen the simplest possible
example. You probably won’t be surprised to discover that we can combine logical operations
with other operations and functions in a more complicated way, like this:

3*3 + 4*4 == 5*5

or this

SQRT(25) == 5

Not only that, but as Table 6.1 illustrates, there are several other logical operators that you
can use corresponding to some basic mathematical concepts. Hopefully these are all pretty self-
explanatory. For example, the less than operator < checks to see if the number on the left is
less than the number on the right. If it’s less, then jamovi returns an answer of TRUE, but if the
two numbers are equal, or if the one on the right is larger, then jamovi returns an answer of
FALSE.

In contrast, the less than or equal to operator <= will do exactly what it says. It returns
a value of TRUE if the number of the left hand side is less than or equal to the number on the
right hand side. At this point I hope it’s pretty obvious what the greater than operator > and
the greater than or equal to operator >= do!

Next on the list of logical operators is the not equal to operator != which, as with all the
others, does what it says it does. It returns a value of TRUE when things on either side are not
identical to each other. Therefore, since 2` 2 isn’t equal to 5, we would get ‘true’ as the value
for our newly computed variable. Try it and see:

2 + 2 != 5

We’re not quite done yet. There are three more logical operations that are worth knowing
about, listed in Table 6.2. These are the not operator !, the and operator and, and the or
operator or. Like the other logical operators, their behaviour is more or less exactly what you’d
expect given their names. For instance, if I ask you to assess the claim that “either 2 ` 2 “ 4
or 2` 2 “ 5” you’d say that it’s true. Since it’s an “either-or” statement, all we need is for one
of the two parts to be true. That’s what the or operator does: 5

5Now, here’s a quirk in jamovi. When you have simple logical expressions like the ones we have already met, e.g.
2 + 2 == 5 then jamovi neatly states ‘false’ (or ‘true’) in the corresponding spreadsheet column. Underneath
the hood, jamovi stores ‘false’ as 0 and ‘true’ as 1. When we have more complex logical expressions, such as
(2+2 == 4) or (2+2 == 5), then jamovi just displays either 0 or 1, depending whether the logical expression
is evaluated as false, or true.
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Table 6.1: Some logical operators. Technically I should be calling these “binary relational
operators”, but quite frankly I don’t want to. It’s my book so no-one can make me.

operation operator example input answer

less than < 2 < 3 TRUE

less than or equal to <= 2 <= 2 TRUE

greater than > 2 > 3 FALSE

greater than or equal to >= 2 >= 2 TRUE

equal to == 2 == 3 FALSE

not equal to != 2 != 3 TRUE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6.2: Some more logical operators.

operation operator example input answer

not NOT NOT(1==1) FALSE

or or (1==1) or (2==3) TRUE

and and (1==1) and (2==3) FALSE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2+2 == 4) or (2+2 == 5)

On the other hand, if I ask you to assess the claim that “both 2 ` 2 “ 4 and 2 ` 2 “ 5” you’d
say that it’s false. Since this is an and statement we need both parts to be true. And that’s
what the and operator does:

(2+2 == 4) and (2+2 == 5)

Finally, there’s the not operator, which is simple but annoying to describe in English. If I ask
you to assess my claim that “it is not true that 2` 2 “ 5” then you would say that my claim is
true, because actually my claim is that “2 ` 2 “ 5 is false”. And I’m right. If we write this in
jamovi we use this:

NOT(2+2 == 5)

In other words, since 2+2 == 5 is a FALSE statement, it must be the case that NOT(2+2 == 5) is
a TRUE one. Essentially, what we’ve really done is claim that “not false” is the same thing as
“true”. Obviously, this isn’t really quite right in real life. But jamovi lives in a much more black
or white world. For jamovi everything is either true or false. No shades of grey are allowed.

Of course, in our 2` 2 “ 5 example, we didn’t really need to use the “not” operator NOT and
the “equals to” operator == as two separate operators. We could have just used the “not equals
to” operator != like this:
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2+2 != 5

6.2.3 Applying logical operation to text

I also want to briefly point out that you can apply these logical operators to text as well
as to logical data. It’s just that we need to be a bit more careful in understanding how jamovi
interprets the different operations. In this section I’ll talk about how the equal to operator ==

applies to text, since this is the most important one. Obviously, the not equal to operator !=

gives the exact opposite answers to == so I’m implicitly talking about that one too, but I won’t
give specific commands showing the use of !=.

Okay, let’s see how it works. In one sense, it’s very simple. For instance, I can ask jamovi if
the word "cat" is the same as the word "dog", like this:

"cat" == "dog"

That’s pretty obvious, and it’s good to know that even jamovi can figure that out. Similarly,
jamovi does recognise that a "cat" is a "cat":

"cat" == "cat"

Again, that’s exactly what we’d expect. However, what you need to keep in mind is that jamovi
is not at all tolerant when it comes to grammar and spacing. If two strings differ in any way
whatsoever, jamovi will say that they’re not equal to each other, as with the following:

" cat" == "cat"

"cat" == "CAT"

"cat" == "c a t"

You can also use other logical operators too. For instance jamovi also allows you to use the <

and > operators to determine which of two text ‘strings’ comes first, alphabetically speaking.
Sort of. Actually, it’s a bit more complicated than that, but let’s start with a simple example:

"cat" < "dog"

In jamovi, this example evaluates to ‘true’. This is because "cat" does does come before "dog"

alphabetically, so jamovi judges the statement to be true. However, if we ask jamovi to tell us
if "cat" comes before "anteater" then it will evaluate the expression as false. So far, so good.
But text data is a bit more complicated than the dictionary suggests. What about "cat" and
"CAT"? Which of these comes first? Try it and find out:

"CAT" < "cat"

This in fact evaluates to ‘true’. In other words, jamovi assumes that uppercase letters come
before lowercase ones. Fair enough. No-one is likely to be surprised by that. What you might find
surprising is that jamovi assumes that all uppercase letters come before all lowercase ones. That
is, while "anteater" < "zebra" is a true statement, and the uppercase equivalent "ANTEATER" <

"ZEBRA" is also true, it is not true to say that "anteater" < "ZEBRA", as the following extract
illustrates. Try this:
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Table 6.3: The ordering of various text characters used by the < and > operators. Not shown is
the “space” character, which actually comes first on the list.

! " # $ % & ’ ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ‘

a b c d e f g h i j k l m n o p q r s t u v w x y z } | {

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

"anteater" < "ZEBRA"

This evaluates to ‘false’, and this may seem slightly counterintuitive. With that in mind, it may
help to have a quick look at Table 6.3 which lists various text characters in the order that jamovi
processes them.

6.3

Transforming and recoding a variable

It’s not uncommon in real world data analysis to find that one of your variables isn’t quite
equivalent to the variable that you really want. For instance, it’s often convenient to take a
continuous-valued variable (e.g., age) and break it up into a smallish number of categories (e.g.,
younger, middle, older). At other times, you may need to convert a numeric variable into a
different numeric variable (e.g., you may want to analyse at the absolute value of the original
variable). In this section I’ll describe a few key ways you can do these things in jamovi.

6.3.1 Creating a transformed variable

The first trick to discuss is the idea of transforming a variable. Taken literally, anything you
do to a variable is a transformation, but in practice what it usually means is that you apply a
relatively simple mathematical function to the original variable in order to create a new variable
that either (a) provides a better way of describing the thing you’re actually interested in, or
(b) is more closely in agreement with the assumptions of the statistical tests you want to do.
Since, at this stage, I haven’t talked about statistical tests or their assumptions, I’ll show you
an example based on the first case.

Suppose I’ve run a short study in which I ask 10 people a single question:

On a scale of 1 (strongly disagree) to 7 (strongly agree), to what extent do you agree
with the proposition that “Dinosaurs are awesome”?

Now let’s load and look at the data. The data file likert.omv contains a single variable that
contains raw Likert-scale responses for these 10 people. However, if you think about it, this isn’t
the best way to represent these responses. Because of the fairly symmetric way that we set up
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the response scale, there’s a sense in which the midpoint of the scale should have been coded as
0 (no opinion), and the two endpoints should be `3 (strongly agree) and ´3 (strongly disagree).
By recoding the data in this way it’s a bit more reflective of how we really think about the
responses. The recoding here is pretty straightforward, we just subtract 4 from the raw scores.
In jamovi you can do this by computing a new variable: click on the ‘Data’ - ‘Compute’ button
and you will see that a new variable has been added to the spreadsheet. Let’s call this new
variable likert.centred (go ahead and type that in) and then add the following in the formula
box, like in Figure 6.5: ‘likert.raw - 4’

Figure 6.5: Creating a new computed variable in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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One reason why it might be useful to have the data in this format is that there are a lot
of situations where you might prefer to analyse the strength of the opinion separately from
the direction of the opinion. We can do two different transformations on this likert.centred

variable in order to distinguish between these two different concepts. First, to compute an
opinion.strength variable, we want to take the absolute value of the centred data (using the
‘ABS’ function).6 In jamovi, create another new variable using the ‘Compute’ button. Name the
variable opinion.strength and this time click on the fx button next to the ‘Formula’ box. This
shows the different ‘Functions’ and ‘Variables’ that you can add to the ‘Formula’ box, so double
click on ‘ABS’ and then double click on “likert.centred’ and you will see that the ‘Formula’ box
is populated with ABS(likert.centred) and a new variable has been created in the spreadsheet
view, as in Figure 6.6

Figure 6.6: Using the fx button to select functions and variables

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Second, to compute a variable that contains only the direction of the opinion and ignores the
strength, we want to calculate the ‘sign’ of the variable. In jamovi we can use the IF function to
do this. Create another new variable using the ‘Compute’ button, name this one opinion.sign,
and then type the following into the function box:

6The absolute value of a number is its distance from zero, regardless of whether it’s sign is negative or positive.
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IF(likert.centred == 0, 0, likert.centred / opinion.strength)

When done, you’ll see that all negative numbers from the likert.centred variable are con-
verted to ´1, all positive numbers are converted to 1 and zero stays as 0, like so:

-1 1 -1 0 0 0 -1 1 1 1

Let’s break down what this ‘IF’ command is doing. In jamovi there are three parts to an ‘IF’
statement, written as ’IF(expression, value, else)’. The first part, ‘expression’ can be a logical
or mathematical statement. In our example, we have specified ‘likert.centred == 0’, which is
TRUE for values where likert.centred is zero. The next part, ‘value’, is the new value where the
expression in part one is TRUE. In our example, we have said that for all those values where
likert.centred is zero, keep them zero. In the next part, ‘else’, we can enter another logical or
mathematical statement to be used if part one evaluates to FALSE, i.e. where likert.centred

is not zero. In our example we have divided likert.centred by opinion.strength to give ‘-1’ or
‘+1’ depending of the sign of the original value in likert.centred.7

And we’re done. We now have three shiny new variables, all of which are useful transforma-
tions of the original likert.raw data.

6.3.2 Collapsing a variable into a smaller number of discrete levels or categories

One pragmatic task that comes up quite often is the problem of collapsing a variable into a
smaller number of discrete levels or categories. For instance, suppose I’m interested in looking
at the age distribution of people at a social gathering:

60,58,24,26,34,42,31,30,33,2,9

In some situations it can be quite helpful to group these into a smallish number of categories. For
example, we could group the data into three broad categories: young (0-20), adult (21-40) and
older (41-60). This is a quite coarse-grained classification, and the labels that I’ve attached only
make sense in the context of this data set (e.g., viewed more generally, a 42 year old wouldn’t
consider themselves as “older”). We can slice this variable up quite easily using the jamovi
‘IF’ function that we have already used. This time we have to specify nested ‘IF’ statements,
meaning simply that IF the first logical expression is TRUE, insert a first value, but IF a second
logical expression is TRUE, insert a second value, but IF a third logical expression is TRUE,
then insert a third value. This can be written as:

IF(Age >= 0 and Age <= 20, 1,

IF(Age >= 21 and Age <= 40, 2,

IF(Age >= 41 and Age <= 60, 3 )))

Note that there are three left parentheses used during the nesting, so the whole statement
has to end with three right parentheses otherwise you will get an error message. The jamovi
screen shot for this data manipulation, along with an accompanying frequency table, is shown
in Figure 6.7

7The reason we have to use the ‘IF’ command and keep zero as zero is that you cannot just use likert.centred
/ opinion.strength to calculate the sign of likert.centred, because mathematically dividing zero by zero does not
work. Try it and see
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Figure 6.7: Collapsing a variable into a smaller number of discrete levels using the jamovi ‘IF’
function

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It’s important to take the time to figure out whether or not the resulting categories make any
sense at all in terms of your research project. If they don’t make any sense to you as meaningful
categories, then any data analysis that uses those categories is likely to be just as meaningless.
More generally, in practice I’ve noticed that people have a very strong desire to carve their
(continuous and messy) data into a few (discrete and simple) categories, and then run analyses
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using the categorised data instead of the original data.8 I wouldn’t go so far as to say that this
is an inherently bad idea, but it does have some fairly serious drawbacks at times, so I would
advise some caution if you are thinking about doing it.

6.3.3 Creating a transformation that can be applied to multiple variables

Sometimes you want to apply the same transformation to more than one variable, for example
when you have multiple questionnaire items that all need to be recalculated or recoded in the
same way. And one of the neat features in jamovi is that you can create a transformation, using
the ‘Data’ - ‘Transform’ button, that can then be saved and applied to multiple variables. Let’s
go back to the first example above, using the data file likert.omv that contains a single variable
with raw Likert-scale responses for 10 people. To create a transformation that you can save and
then apply across multiple variables (assuming you had more variables like this in your data
file), first in the spreadsheet editor select (i.e., click) the variable you want to use to initially
create the transformation. In our example this is likert.raw. Next click the ‘Transform’ button
in the jamovi ‘Data’ ribbon, and you’ll see something like Figure 6.8.

Give your new variable a name, let’s call it opinion.strength and then click on the ‘using
transform’ selection box and select ‘Create New Transform...’. This is where you will create,
and name, the transformation that can be re-applied to as many variables as you like. The
transformation is automatically named for us as ‘Transform 1’ (imaginative, huh. You can
change this if you like). Then type the expression “ABS($source - 4)” into the function text
box, as in Figure 6.9, press Enter or Return on your keyboard and, hey presto, you have created
a new transformation and applied it to the likert.raw variable! Good, eh. Note that instead of
using the variable label in the expression, we have instead used ‘$source’. This is so that we can
then use the same transformation with as many different variables as we like - jamovi requires
you to use ‘$source’ to refer to the source variable you are transforming. Your transformation
has also been saved and can be re-used any time you like (providing you save the dataset as an
‘.omv’ file, otherwise you’ll lose it!).

You can also create a transformation with the second example we looked at, the age dis-
tribution of people at a social gathering. Go on, you know you want to! Remember that we
collapsed this variable into three groups: younger, adult and older. This time we will achieve
the same thing, but using the jamovi ‘Transform’ - ‘Add condition’ button. With this data set
(go back to it or create it again if you didn’t save it) set up a new variable transformation. Call
the transformed variable AgeCats and the transformation you will create Agegroupings. Then
click on the big “+” sign next to the function box. This is the ‘Add condition’ button and I’ve
stuck a big red arrow onto Figure 6.10 so you can see exactly where this is. Re-create the trans-
formation shown in Figure 6.10 and when you have done, you will see the new values appear

8If you’ve read further into the book, and are re-reading this section, then a good example of this would be
someone choosing to do an ANOVA using AgeCats as the grouping variable, instead of running a regression using
Age as a predictor. There are sometimes good reasons for doing this. For instance, if the relationship between
Age and your outcome variable is highly non-linear and you aren’t comfortable with trying to run non-linear
regression! However, unless you really do have a good rationale for doing this, it’s best not to. It tends to
introduce all sorts of other problems (e.g., the data will probably violate the normality assumption) and you can
lose a lot of statistical power.
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Figure 6.8: Creating a new variable transformation using the jamovi ‘Transform’ command

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 6.9: Specifying a transformation in jamovi, to be saved as the imaginatively named
‘Transform 1’

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

in the spreadsheet window. What’s more, the Agegroupings transformation has been saved and
can be re-applied any time you like. Ok, so I know that it’s unlikely you will have more than
one ‘Age’ variable, but you get the idea now of how to set up transformations in jamovi, so you
can follow this idea with other sorts of variables. A typical scenario for this is when you have a
questionnaire scale with, say, 20 items (variables) and each item was originally scored from 1 to
6 but, for some reason or quirk of the data you decide to recode all the items as 1 to 3. You can
easily do this in jamovi by creating and then re-applying your transformation for each variable
that you want to recode.
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Figure 6.10: jamovi transformation into three age categories, using the ‘Add condition’ button

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 6.4: Some of the mathematical functions available in jamovi

function example input (answer)

square root SQRT(x) SQRT(25) 5

absolute value ABS(x) ABS(-23) 23

logarithm (base 10) LOG10(x) LOG10(1000) 3

logarithm (base e) LN(x) LN(1000) 6.908

exponentiation EXP(x) EXP(6.908) 1000.245

box-cox BOXCOX(x, lamda) BOXCOX(6.908, 3) 109.551

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.4

A few more mathematical functions and operations

In Section 6.3 I discussed the ideas behind variable transformations and showed that a lot
of the transformations that you might want to apply to your data are based on fairly simple
mathematical functions and operations. In this section I want to return to that discussion and
mention several other mathematical functions and arithmetic operations that are actually quite
useful for a lot of real world data analysis. Table 6.4 gives a brief overview of the various
mathematical functions I want to talk about here, or later.9 Obviously this doesn’t even come
close to cataloguing the range of possibilities available, but it does cover a range of functions
that are used regularly in data analysis and that are available in jamovi.

6.4.1 Logarithms and exponentials

As I’ve mentioned earlier, jamovi has an useful range of mathematical functions built into it and
there really wouldn’t be much point in trying to describe or even list all of them. For the most
part, I’ve focused only on those functions that are strictly necessary for this book. However I
do want to make an exception for logarithms and exponentials. Although they aren’t needed
anywhere else in this book, they are everywhere in statistics more broadly. And not only that,
there are a lot of situations in which it is convenient to analyse the logarithm of a variable (i.e.,
to take a “log-transform” of the variable). I suspect that many (maybe most) readers of this
book will have encountered logarithms and exponentials before, but from past experience I know
that there’s a substantial proportion of students who take a social science statistics class who
haven’t touched logarithms since high school, and would appreciate a bit of a refresher.

In order to understand logarithms and exponentials, the easiest thing to do is to actually
calculate them and see how they relate to other simple calculations. There are three jamovi
functions in particular that I want to talk about, namely LN(), LOG10() and EXP(). To start with,
let’s consider LOG10(), which is known as the “logarithm in base 10”. The trick to understanding
a logarithm is to understand that it’s basically the “opposite” of taking a power. Specifically,

9We’ll leave the box-cox function until later on, see page 317
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the logarithm in base 10 is closely related to the powers of 10. So let’s start by noting that
10-cubed is 1000. Mathematically, we would write this:

103 “ 1000

The trick to understanding a logarithm is to recognise that the statement that “10 to the power
of 3 is equal to 1000” is equivalent to the statement that “the logarithm (in base 10) of 1000 is
equal to 3”. Mathematically, we write this as follows,

log10p1000q “ 3

Okay, since the LOG10() function is related to the powers of 10, you might expect that there
are other logarithms (in bases other than 10) that are related to other powers too. And of course
that’s true: there’s not really anything mathematically special about the number 10. You and I
happen to find it useful because decimal numbers are built around the number 10, but the big bad
world of mathematics scoffs at our decimal numbers. Sadly, the universe doesn’t actually care
how we write down numbers. Anyway, the consequence of this cosmic indifference is that there’s
nothing particularly special about calculating logarithms in base 10. You could, for instance,
calculate your logarithms in base 2. Alternatively, a third type of logarithm, and one we see a
lot more of in statistics than either base 10 or base 2, is called the natural logarithm, and
corresponds to the logarithm in base e. Since you might one day run into it, I’d better explain
what e is. The number e, known as Euler’s number, is one of those annoying “irrational”
numbers whose decimal expansion is infinitely long, and is considered one of the most important
numbers in mathematics. The first few digits of e are:

e “ 2.718282

There are quite a few situation in statistics that require us to calculate powers of e, though none
of them appear in this book. Raising e to the power x is called the exponential of x, and so
it’s very common to see ex written as exppxq. And so it’s no surprise that jamovi has a function
that calculates exponentials, called EXP(). Because the number e crops up so often in statistics,
the natural logarithm (i.e., logarithm in base e) also tends to turn up. Mathematicians often
write it as logepxq or lnpxq. In fact, jamovi works the same way: the LN() function corresponds
to the natural logarithm.

And with that, I think we’ve had quite enough exponentials and logarithms for this book!

6.5

Extracting a subset of the data

One very important kind of data handling is being able to extract a particular subset of the
data. For instance, you might be interested only in analysing the data from one experimental
condition, or you may want to look closely at the data from people over 50 years in age. To
do this, the first step is getting jamovi to filter the subset of the data corresponding to the
observations that you’re interested in.
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This section returns to the nightgarden.csv data set. If you’re reading this whole chapter
in one sitting, then you should already have this data set loaded into a jamovi window. For
this section, let’s focus on the two variables speaker and utterance (see Section 6.1 if you’ve
forgotten what those variables look like). Suppose that what I want to do is pull out only those
utterances that were made by Makka-Pakka. To that end, we need to specify a filter in jamovi.
First open up a filter window by clicking on ‘Filters’ on the main jamovi ‘Data’ toolbar. Then,
in the ‘Filter 1’ text box, next to the ‘=’ sign, type the following:

speaker == ’makka-pakka’

Figure 6.11: Creating a subset of the nightgarden data using the jamovi ‘Filters’ option

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When you have done this, you will see that a new column has been added to the spreadsheet
window (see Figure 6.11), labelled ‘Filter 1’, with the cases where speaker is not ‘makka-pakka’
greyed-out (i.e., filtered out) and, conversely, the cases where speaker is ‘makka-pakka’ have a
green check mark indicating they are filtered in. You can test this by running ‘Exploration’ -
‘Descriptives’ - ‘Frequency tables’ for the speaker variable and seeing what that shows. Go on,
try it!

Following on from this simple example, you can also build up more complex filters using
logical expressions in jamovi. For instance, suppose I wanted to keep only those cases when the
utterance is either “pip” or “oo”. In this case in the ‘Filter 1’ text box, next to the ‘=’ sign,
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you would type the following:

utterance == ’pip’ or utterance == ’oo’

6.6

Summary

Obviously, there’s no real coherence to this chapter. It’s just a grab bag of topics and tricks
that can be handy to know about, so the best wrap up I can give here is just to repeat this list:

• Section 6.1. Tabulating data.

• Section 6.2. Using logical expressions.

• Section 6.3. Transforming or recoding a variable.

• Section 6.4. Some useful mathematical functions.

• Section 6.5. Extracting a subset of a data set.
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Part IV.

Statistical theory

- 119 -





Prelude to Part IV

Part IV of the book is by far the most theoretical, focusing as it does on the theory of statistical
inference. Over the next three chapters my goal is to give you an introduction to probability
theory (Chapter 7), sampling and estimation (Chapter 8) and statistical hypothesis testing
(Chapter 9). Before we get started though, I want to say something about the big picture.
Statistical inference is primarily about learning from data. The goal is no longer merely to
describe our data but to use the data to draw conclusions about the world. To motivate the
discussion I want to spend a bit of time talking about a philosophical puzzle known as the riddle
of induction, because it speaks to an issue that will pop up over and over again throughout the
book: statistical inference relies on assumptions. This sounds like a bad thing. In everyday life
people say things like “you should never make assumptions”, and psychology classes often talk
about assumptions and biases as bad things that we should try to avoid. From bitter personal
experience I have learned never to say such things around philosophers!

On the limits of logical reasoning

The whole art of war consists in getting at what is on the other side of the hill, or,
in other words, in learning what we do not know from what we do.

– Arthur Wellesley, 1st Duke of Wellington

I am told that quote above came about as a consequence of a carriage ride across the
countryside.10 He and his companion, J. W. Croker, were playing a guessing game, each trying
to predict what would be on the other side of each hill. In every case it turned out that Wellesley
was right and Croker was wrong. Many years later when Wellesley was asked about the game
he explained that “the whole art of war consists in getting at what is on the other side of the
hill”. Indeed, war is not special in this respect. All of life is a guessing game of one form or
another, and getting by on a day to day basis requires us to make good guesses. So let’s play a
guessing game of our own.

Suppose you and I are observing the Wellesley-Croker competition and after every three hills
you and I have to predict who will win the next one, Wellesley or Croker. Let’s say that W refers
to a Wellesley victory and C refers to a Croker victory. After three hills, our data set looks like
this:

WWW

Our conversation goes like this:

10Source: http://www.bartleby.com/344/400.html.
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you: Three in a row doesn’t mean much. I suppose Wellesley might be better
at this than Croker, but it might just be luck. Still, I’m a bit of a gambler.
I’ll bet on Wellesley.

me: I agree that three in a row isn’t informative and I see no reason to prefer
Wellesley’s guesses over Croker’s. I can’t justify betting at this stage.
Sorry. No bet for me.

Your gamble paid off: three more hills go by and Wellesley wins all three. Going into the
next round of our game the score is 1-0 in favour of you and our data set looks like this:

WWW WWW

I’ve organised the data into blocks of three so that you can see which batch corresponds to the
observations that we had available at each step in our little side game. After seeing this new
batch, our conversation continues:

you: Six wins in a row for Duke Wellesley. This is starting to feel a bit suspi-
cious. I’m still not certain, but I reckon that he’s going to win the next
one too.

me: I guess I don’t see that. Sure, I agree that Wellesley has won six in a row,
but I don’t see any logical reason why that means he’ll win the seventh
one. No bet.

you: Do you really think so? Fair enough, but my bet worked out last time
and I’m okay with my choice.

For a second time you were right, and for a second time I was wrong. Wellesley wins the
next three hills, extending his winning record against Croker to 9-0. The data set available to
us is now this:

WWW WWW WWW

And our conversation goes like this:

you: Okay, this is pretty obvious. Wellesley is way better at this game. We
both agree he’s going to win the next hill, right?

me: Is there really any logical evidence for that? Before we started this game,
there were lots of possibilities for the first 10 outcomes, and I had no idea
which one to expect. WWW WWW WWW W was one possibility, but so was WCC

CWC WWC C and WWW WWW WWW C or even CCC CCC CCC C. Because I had no
idea what would happen so I’d have said they were all equally likely. I
assume you would have too, right? I mean, that’s what it means to say
you have “no idea”, isn’t it?

you: I suppose so.
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me: Well then, the observations we’ve made logically rule out all possibilities
except two: WWW WWW WWW C or WWW WWW WWW W. Both of these are perfectly
consistent with the evidence we’ve encountered so far, aren’t they?

you: Yes, of course they are. Where are you going with this?

me: So what’s changed then? At the start of our game, you’d have agreed with
me that these are equally plausible and none of the evidence that we’ve
encountered has discriminated between these two possibilities. Therefore,
both of these possibilities remain equally plausible and I see no logical
reason to prefer one over the other. So yes, while I agree with you that
Wellesley’s run of 9 wins in a row is remarkable, I can’t think of a good
reason to think he’ll win the 10th hill. No bet.

you: I see your point, but I’m still willing to chance it. I’m betting on Wellesley.

Wellesley’s winning streak continues for the next three hills. The score in the Wellesley-Croker
game is now 12-0, and the score in our game is now 3-0. As we approach the fourth round of
our game, our data set is this:

WWW WWW WWW WWW

and the conversation continues:

you: Oh yeah! Three more wins for Wellesley and another victory for me.
Admit it, I was right about him! I guess we’re both betting on Wellesley
this time around, right?

me: I don’t know what to think. I feel like we’re in the same situation we
were in last round, and nothing much has changed. There are only two
legitimate possibilities for a sequence of 13 hills that haven’t already been
ruled out, WWW WWW WWW WWW C and WWW WWW WWW WWW W. It’s just like I
said last time. If all possible outcomes were equally sensible before the
game started, shouldn’t these two be equally sensible now given that our
observations don’t rule out either one? I agree that it feels like Wellesley
is on an amazing winning streak, but where’s the logical evidence that the
streak will continue?

you: I think you’re being unreasonable. Why not take a look at our scorecard,
if you need evidence? You’re the expert on statistics and you’ve been using
this fancy logical analysis, but the fact is you’re losing. I’m just relying on
common sense and I’m winning. Maybe you should switch strategies.

me: Hmm, that is a good point and I don’t want to lose the game, but I’m
afraid I don’t see any logical evidence that your strategy is better than
mine. It seems to me that if there were someone else watching our game,
what they’d have observed is a run of three wins to you. Their data would
look like this: YYY. Logically, I don’t see that this is any different to our
first round of watching Wellesley and Croker. Three wins to you doesn’t
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seem like a lot of evidence, and I see no reason to think that your strategy
is working out any better than mine. If I didn’t think that WWW was good
evidence then for Wellesley being better than Croker at their game, surely
I have no reason now to think that YYY is good evidence that you’re better
at ours?

you: Okay, now I think you’re being a jerk.

me: I don’t see the logical evidence for that.

Learning without making assumptions is a myth

There are lots of different ways in which we could dissect this dialogue, but since this is a
statistics book pitched at psychologists and not an introduction to the philosophy and psychology
of reasoning, I’ll keep it brief. What I’ve described above is sometimes referred to as the riddle
of induction. It seems entirely reasonable to think that a 12-0 winning record by Wellesley is
pretty strong evidence that he will win the 13th game, but it is not easy to provide a proper
logical justification for this belief. On the contrary, despite the obviousness of the answer, it’s
not actually possible to justify betting on Wellesley without relying on some assumption that
you don’t have any logical justification for.

The riddle of induction is most associated with the philosophical work of David Hume and
more recently Nelson Goodman, but you can find examples of the problem popping up in fields as
diverse as literature (Lewis Carroll) and machine learning (the “no free lunch” theorem). There
really is something weird about trying to “learn what we do not know from what we do know”.
The critical point is that assumptions and biases are unavoidable if you want to learn anything
about the world. There is no escape from this, and it is just as true for statistical inference as
it is for human reasoning. In the dialogue I was taking aim at your perfectly sensible inferences
as a human being, but the common sense reasoning that you relied on is no different to what
a statistician would have done. Your “common sense” half of the dialog relied on an implicit
assumption that there exists some difference in skill between Wellesley and Croker, and what
you were doing was trying to work out what that difference in skill level would be. My “logical
analysis” rejects that assumption entirely. All I was willing to accept is that there are sequences
of wins and losses and that I did not know which sequences would be observed. Throughout
the dialogue I kept insisting that all logically possible data sets were equally plausible at the
start of the Wellesely-Croker game, and the only way in which I ever revised my beliefs was to
eliminate those possibilities that were factually inconsistent with the observations.

That sounds perfectly sensible on its own terms. In fact, it even sounds like the hallmark
of good deductive reasoning. Like Sherlock Holmes, my approach was to rule out that which
is impossible in the hope that what would be left is the truth. Yet as we saw, ruling out the
impossible never led me to make a prediction. On its own terms everything I said in my half of
the dialogue was entirely correct. An inability to make any predictions is the logical consequence
of making “no assumptions”. In the end I lost our game because you did make some assumptions
and those assumptions turned out to be right. Skill is a real thing, and because you believed in

- 124 -



the existence of skill you were able to learn that Wellesley had more of it than Croker. Had you
relied on a less sensible assumption to drive your learning you might not have won the game.

Ultimately there are two things you should take away from this. First, as I’ve said, you
cannot avoid making assumptions if you want to learn anything from your data. But second,
once you realise that assumptions are necessary it becomes important to make sure you make
the right ones! A data analysis that relies on few assumptions is not necessarily better than
one that makes many assumptions, it all depends on whether those assumptions are good ones
for your data. As we go through the rest of this book I’ll often point out the assumptions that
underpin a particular statistical technique, and how you can check whether those assumptions
are sensible.
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7. Introduction to probability

[God] has afforded us only the twilight . . . of Probability.

– John Locke

Up to this point in the book we’ve discussed some of the key ideas in experimental design,
and we’ve talked a little about how you can summarise a data set. To a lot of people this
is all there is to statistics: collecting all the numbers, calculating averages, drawing pictures,
and putting them all in a report somewhere. Kind of like stamp collecting but with numbers.
However, statistics covers much more than that. In fact, descriptive statistics is one of the
smallest parts of statistics and one of the least powerful. The bigger and more useful part of
statistics is that it provides information that lets you make inferences about data.

Once you start thinking about statistics in these terms, that statistics is there to help us
draw inferences from data, you start seeing examples of it everywhere. For instance, here’s a
tiny extract from a newspaper article in the Sydney Morning Herald (30 Oct 2010):

“I have a tough job,” the Premier said in response to a poll which found her government is
now the most unpopular Labor administration in polling history, with a primary vote of just
23 per cent.

This kind of remark is entirely unremarkable in the papers or in everyday life, but let’s have
a think about what it entails. A polling company has conducted a survey, usually a pretty
big one because they can afford it. I’m too lazy to track down the original survey so let’s just
imagine that they called 1000 New South Wales (NSW) voters at random, and 230 (23%) of
those claimed that they intended to vote for the Australian Labor Party (ALP). For the 2010
Federal election the Australian Electoral Commission reported 4,610,795 enrolled voters in NSW,
so the opinions of the remaining 4,609,795 voters (about 99.98% of voters) remain unknown to
us. Even assuming that no-one lied to the polling company the only thing we can say with
100% confidence is that the true ALP primary vote is somewhere between 230/4610795 (about
0.005%) and 4610025/4610795 (about 99.83%). So, on what basis is it legitimate for the polling
company, the newspaper, and the readership to conclude that the ALP primary vote is only
about 23%?

The answer to the question is pretty obvious. If I call 1000 people at random, and 230 of
them say they intend to vote for the ALP, then it seems very unlikely that these are the only
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230 people out of the entire voting public who actually intend to vote ALP. In other words, we
assume that the data collected by the polling company is pretty representative of the population
at large. But how representative? Would we be surprised to discover that the true ALP primary
vote is actually 24%? 29%? 37%? At this point everyday intuition starts to break down a bit.
No-one would be surprised by 24%, and everybody would be surprised by 37%, but it’s a bit
hard to say whether 29% is plausible. We need some more powerful tools than just looking at
the numbers and guessing.

Inferential statistics provides the tools that we need to answer these sorts of questions,
and since these kinds of questions lie at the heart of the scientific enterprise, they take up the
lions share of every introductory course on statistics and research methods. However, the theory
of statistical inference is built on top of probability theory. And it is to probability theory
that we must now turn. This discussion of probability theory is basically background detail.
There’s not a lot of statistics per se in this chapter, and you don’t need to understand this
material in as much depth as the other chapters in this part of the book. Nevertheless, because
probability theory does underpin so much of statistics, it’s worth covering some of the basics.

7.1

How are probability and statistics different?

Before we start talking about probability theory, it’s helpful to spend a moment thinking about
the relationship between probability and statistics. The two disciplines are closely related but
they’re not identical. Probability theory is “the doctrine of chances”. It’s a branch of mathe-
matics that tells you how often different kinds of events will happen. For example, all of these
questions are things you can answer using probability theory:

• What are the chances of a fair coin coming up heads 10 times in a row?

• If I roll a six sided dice twice, how likely is it that I’ll roll two sixes?

• How likely is it that five cards drawn from a perfectly shuffled deck will all be hearts?

• What are the chances that I’ll win the lottery?

Notice that all of these questions have something in common. In each case the “truth of
the world” is known and my question relates to the “what kind of events” will happen. In the
first question I know that the coin is fair so there’s a 50% chance that any individual coin flip
will come up heads. In the second question I know that the chance of rolling a 6 on a single
die is 1 in 6. In the third question I know that the deck is shuffled properly. And in the fourth
question I know that the lottery follows specific rules. You get the idea. The critical point is
that probabilistic questions start with a known model of the world, and we use that model
to do some calculations. The underlying model can be quite simple. For instance, in the coin
flipping example we can write down the model like this:

P pheadsq “ 0.5

which you can read as “the probability of heads is 0.5”. As we’ll see later, in the same way that
percentages are numbers that range from 0% to 100%, probabilities are just numbers that range
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from 0 to 1. When using this probability model to answer the first question I don’t actually
know exactly what’s going to happen. Maybe I’ll get 10 heads, like the question says. But
maybe I’ll get three heads. That’s the key thing. In probability theory the model is known but
the data are not.

So that’s probability. What about statistics? Statistical questions work the other way
around. In statistics we do not know the truth about the world. All we have is the data and it
is from the data that we want to learn the truth about the world. Statistical questions tend to
look more like these:

• If my friend flips a coin 10 times and gets 10 heads are they playing a trick on me?

• If five cards off the top of the deck are all hearts how likely is it that the deck was shuffled?

• If the lottery commissioner’s spouse wins the lottery how likely is it that the lottery was
rigged?

This time around the only thing we have are data. What I know is that I saw my friend flip
the coin 10 times and it came up heads every time. And what I want to infer is whether or not
I should conclude that what I just saw was actually a fair coin being flipped 10 times in a row,
or whether I should suspect that my friend is playing a trick on me. The data I have look like
this:

H H H H H H H H H H H

and what I’m trying to do is work out which “model of the world” I should put my trust
in. If the coin is fair then the model I should adopt is one that says that the probability of
heads is 0.5, that is P pheadsq “ 0.5. If the coin is not fair then I should conclude that the
probability of heads is not 0.5, which we would write as P pheadsq ‰ 0.5. In other words, the
statistical inference problem is to figure out which of these probability models is right. Clearly,
the statistical question isn’t the same as the probability question, but they’re deeply connected
to one another. Because of this, a good introduction to statistical theory will start with a
discussion of what probability is and how it works.

7.2

What does probability mean?

Let’s start with the first of these questions. What is “probability”? It might seem surprising to
you but while statisticians and mathematicians (mostly) agree on what the rules of probability
are, there’s much less of a consensus on what the word really means. It seems weird because
we’re all very comfortable using words like “chance”, “likely”, “possible” and “probable”, and
it doesn’t seem like it should be a very difficult question to answer. But if you’ve ever had that
experience in real life you might walk away from the conversation feeling like you didn’t quite
get it right, and that (like many everyday concepts) it turns out that you don’t really know what
it’s all about.
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So I’ll have a go at it. Let’s suppose I want to bet on a soccer game between two teams of
robots, Arduino Arsenal and C Milan. After thinking about it, I decide that there is an 80%
probability of Arduino Arsenal winning. What do I mean by that? Here are three possibilities:

• They’re robot teams so I can make them play over and over again, and if I did that Arduino
Arsenal would win 8 out of every 10 games on average.

• For any given game, I would agree that betting on this game is only “fair” if a $1 bet on
C Milan gives a $5 payoff (i.e. I get my $1 back plus a $4 reward for being correct), as
would a $4 bet on Arduino Arsenal (i.e., my $4 bet plus a $1 reward).

• My subjective “belief” or “confidence” in an Arduino Arsenal victory is four times as
strong as my belief in a C Milan victory.

Each of these seems sensible. However, they’re not identical and not every statistician would
endorse all of them. The reason is that there are different statistical ideologies (yes, really!)
and depending on which one you subscribe to, you might say that some of those statements are
meaningless or irrelevant. In this section I give a brief introduction the two main approaches
that exist in the literature. These are by no means the only approaches, but they’re the two big
ones.

7.2.1 The frequentist view

The first of the two major approaches to probability, and the more dominant one in statistics,
is referred to as the frequentist view and it defines probability as a long-run frequency.
Suppose we were to try flipping a fair coin over and over again. By definition this is a coin that
has P pHq “ 0.5. What might we observe? One possibility is that the first 20 flips might look
like this:

T,H,H,H,H,T,T,H,H,H,H,T,H,H,T,T,T,T,T,H

In this case 11 of these 20 coin flips (55%) came up heads. Now suppose that I’d been keeping a
running tally of the number of heads (which I’ll call NH) that I’ve seen, across the first N flips,
and calculate the proportion of heads NH{N every time. Here’s what I’d get (I did literally flip
coins to produce this!):

number of flips 1 2 3 4 5 6 7 8 9 10
number of heads 0 1 2 3 4 4 4 5 6 7

proportion .00 .50 .67 .75 .80 .67 .57 .63 .67 .70

number of flips 11 12 13 14 15 16 17 18 19 20
number of heads 8 8 9 10 10 10 10 10 10 11

proportion .73 .67 .69 .71 .67 .63 .59 .56 .53 .55

Notice that at the start of the sequence the proportion of heads fluctuates wildly, starting at
.00 and rising as high as .80. Later on, one gets the impression that it dampens out a bit, with
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more and more of the values actually being pretty close to the “right” answer of .50. This is the
frequentist definition of probability in a nutshell. Flip a fair coin over and over again, and as
N grows large (approaches infinity, denoted N Ñ 8) the proportion of heads will converge to
50%. There are some subtle technicalities that the mathematicians care about, but qualitatively
speaking that’s how the frequentists define probability. Unfortunately, I don’t have an infinite
number of coins or the infinite patience required to flip a coin an infinite number of times.
However, I do have a computer and computers excel at mindless repetitive tasks. So I asked my
computer to simulate flipping a coin 1000 times and then drew a picture of what happens to
the proportion NH{N as N increases. Actually, I did it four times just to make sure it wasn’t
a fluke. The results are shown in Figure 7.1. As you can see, the proportion of observed heads
eventually stops fluctuating and settles down. When it does, the number at which it finally
settles is the true probability of heads.

The frequentist definition of probability has some desirable characteristics. First, it is ob-
jective. The probability of an event is necessarily grounded in the world. The only way that
probability statements can make sense is if they refer to (a sequence of) events that occur in the
physical universe.1 Secondly, it is unambiguous. Any two people watching the same sequence
of events unfold, trying to calculate the probability of an event, must inevitably come up with
the same answer.

However, it also has undesirable characteristics. First, infinite sequences don’t exist in the
physical world. Suppose you picked up a coin from your pocket and started to flip it. Every
time it lands it impacts on the ground. Each impact wears the coin down a bit. Eventually
the coin will be destroyed. So, one might ask whether it really makes sense to pretend that an
“infinite” sequence of coin flips is even a meaningful concept, or an objective one. We can’t
say that an “infinite sequence” of events is a real thing in the physical universe, because the
physical universe doesn’t allow infinite anything. More seriously, the frequentist definition has
a narrow scope. There are lots of things out there that human beings are happy to assign
probability to in everyday language, but cannot (even in theory) be mapped onto a hypothetical
sequence of events. For instance, if a meteorologist comes on TV and says “the probability of
rain in Adelaide on 2 November 2048 is 60%” we humans are happy to accept this. But it’s not
clear how to define this in frequentist terms. There’s only one city of Adelaide, and only one
2 November 2048. There’s no infinite sequence of events here, just a one-off thing. Frequentist
probability genuinely forbids us from making probability statements about a single event. From
the frequentist perspective it will either rain tomorrow or it will not. There is no “probability”
that attaches to a single non-repeatable event. Now, it should be said that there are some
very clever tricks that frequentists can use to get around this. One possibility is that what the
meteorologist means is something like “There is a category of days for which I predict a 60%
chance of rain, and if we look only across those days for which I make this prediction, then on
60% of those days it will actually rain”. It’s very weird and counterintuitive to think of it this
way, but you do see frequentists do this sometimes. And it will come up later in this book (see
Section 8.5).

1This doesn’t mean that frequentists can’t make hypothetical statements, of course. It’s just that if you want
to make a statement about probability then it must be possible to redescribe that statement in terms of a sequence
of potentially observable events, together with the relative frequencies of different outcomes that appear within
that sequence.
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Figure 7.1: An illustration of how frequentist probability works. If you flip a fair coin over and
over again the proportion of heads that you’ve seen eventually settles down and converges to the
true probability of 0.5. Each panel shows four different simulated experiments. In each case we
pretend we flipped a coin 1000 times and kept track of the proportion of flips that were heads
as we went along. Although none of these sequences actually ended up with an exact value of
.5, if we’d extended the experiment for an infinite number of coin flips they would have.
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7.2.2 The Bayesian view

The Bayesian view of probability is often called the subjectivist view, and although it
has been a minority view among statisticians it has been steadily gaining traction for the last
several decades. There are many flavours of Bayesianism, making it hard to say exactly what
“the” Bayesian view is. The most common way of thinking about subjective probability is to
define the probability of an event as the degree of belief that an intelligent and rational agent
assigns to that truth of that event. From that perspective, probabilities don’t exist in the world
but rather in the thoughts and assumptions of people and other intelligent beings.

However, in order for this approach to work we need some way of operationalising “degree
of belief”. One way that you can do this is to formalise it in terms of “rational gambling”,
though there are many other ways. Suppose that I believe that there’s a 60% probability of
rain tomorrow. If someone offers me a bet that if it rains tomorrow then I win $5, but if it
doesn’t rain I lose $5. Clearly, from my perspective, this is a pretty good bet. On the other
hand, if I think that the probability of rain is only 40% then it’s a bad bet to take. So we
can operationalise the notion of a “subjective probability” in terms of what bets I’m willing to
accept.

What are the advantages and disadvantages to the Bayesian approach? The main advantage
is that it allows you to assign probabilities to any event you want to. You don’t need to be
limited to those events that are repeatable. The main disadvantage (to many people) is that we
can’t be purely objective. Specifying a probability requires us to specify an entity that has the
relevant degree of belief. This entity might be a human, an alien, a robot, or even a statistician.
But there has to be an intelligent agent out there that believes in things. To many people
this is uncomfortable, it seems to make probability arbitrary. Whilst the Bayesian approach
requires that the agent in question be rational (i.e., obey the rules of probability), it does allow
everyone to have their own beliefs. I can believe the coin is fair and you don’t have to, even
though we’re both rational. The frequentist view doesn’t allow any two observers to attribute
different probabilities to the same event. When that happens then at least one of them must be
wrong. The Bayesian view does not prevent this from occurring. Two observers with different
background knowledge can legitimately hold different beliefs about the same event. In short,
where the frequentist view is sometimes considered to be too narrow (forbids lots of things that
that we want to assign probabilities to), the Bayesian view is sometimes thought to be too broad
(allows too many differences between observers).

7.2.3 What’s the difference? And who is right?

Now that you’ve seen each of these two views independently it’s useful to make sure you can
compare the two. Go back to the hypothetical robot soccer game at the start of the section.
What do you think a frequentist and a Bayesian would say about these three statements? Which
statement would a frequentist say is the correct definition of probability? Which one would a
Bayesian opt for? Would some of these statements be meaningless to a frequentist or a Bayesian?
If you’ve understood the two perspectives you should have some sense of how to answer those
questions.

Okay, assuming you understand the difference then you might be wondering which of them
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is right? Honestly, I don’t know that there is a right answer. As far as I can tell there’s nothing
mathematically incorrect about the way frequentists think about sequences of events, and there’s
nothing mathematically incorrect about the way that Bayesians define the beliefs of a rational
agent. In fact, when you dig down into the details Bayesians and frequentists actually agree
about a lot of things. Many frequentist methods lead to decisions that Bayesians agree a rational
agent would make. Many Bayesian methods have very good frequentist properties.

For the most part, I’m a pragmatist so I’ll use any statistical method that I trust. As it
turns out, that makes me prefer Bayesian methods for reasons I’ll explain towards the end of
the book. But I’m not fundamentally opposed to frequentist methods. Not everyone is quite so
relaxed. For instance, consider Sir Ronald Fisher, one of the towering figures of 20th century
statistics and a vehement opponent to all things Bayesian, whose paper on the mathematical
foundations of statistics referred to Bayesian probability as “an impenetrable jungle [that] arrests
progress towards precision of statistical concepts” (Fisher 1922b, p. 311). Or the psychologist
Paul Meehl, who suggests that relying on frequentist methods could turn you into “a potent but
sterile intellectual rake who leaves in his merry path a long train of ravished maidens but no
viable scientific offspring” (Meehl 1967, p. 114). The history of statistics, as you might gather,
is not devoid of entertainment.

In any case, whilst I personally prefer the Bayesian view, the majority of statistical analyses
are based on the frequentist approach. My reasoning is pragmatic. The goal of this book is to
cover roughly the same territory as a typical undergraduate stats class in psychology, and if you
want to understand the statistical tools used by most psychologists you’ll need a good grasp of
frequentist methods. I promise you that this isn’t wasted effort. Even if you end up wanting
to switch to the Bayesian perspective, you really should read through at least one book on the
“orthodox” frequentist view. Besides, I won’t completely ignore the Bayesian perspective. Every
now and then I’ll add some commentary from a Bayesian point of view, and I’ll revisit the topic
in more depth in Chapter 16.

7.3

Basic probability theory

Ideological arguments between Bayesians and frequentists notwithstanding, it turns out that
people mostly agree on the rules that probabilities should obey. There are lots of different ways
of arriving at these rules. The most commonly used approach is based on the work of Andrey
Kolmogorov, one of the great Soviet mathematicians of the 20th century. I won’t go into a lot
of detail, but I’ll try to give you a bit of a sense of how it works. And in order to do so I’m
going to have to talk about my trousers.

7.3.1 Introducing probability distributions

One of the disturbing truths about my life is that I only own 5 pairs of trousers. Three pairs
of jeans, the bottom half of a suit, and a pair of tracksuit pants. Even sadder, I’ve given them
names: I call them X1, X2, X3, X4 and X5. I really have, that’s why they call me Mister
Imaginative. Now, on any given day, I pick out exactly one of pair of trousers to wear. Not
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even I’m so stupid as to try to wear two pairs of trousers, and thanks to years of training I
never go outside without wearing trousers anymore. If I were to describe this situation using
the language of probability theory, I would refer to each pair of trousers (i.e., each X) as an
elementary event. The key characteristic of elementary events is that every time we make
an observation (e.g., every time I put on a pair of trousers) then the outcome will be one and
only one of these events. Like I said, these days I always wear exactly one pair of trousers so
my trousers satisfy this constraint. Similarly, the set of all possible events is called a sample
space. Granted, some people would call it a “wardrobe”, but that’s because they’re refusing to
think about my trousers in probabilistic terms. Sad.

Okay, now that we have a sample space (a wardrobe), which is built from lots of possible
elementary events (trousers), what we want to do is assign a probability of one of these el-
ementary events. For an event X, the probability of that event P pXq is a number that lies
between 0 and 1. The bigger the value of P pXq, the more likely the event is to occur. So, for
example, if P pXq “ 0 it means the event X is impossible (i.e., I never wear those trousers). On
the other hand, if P pXq “ 1 it means that event X is certain to occur (i.e., I always wear those
trousers). For probability values in the middle it means that I sometimes wear those trousers.
For instance, if P pXq “ 0.5 it means that I wear those trousers half of the time.

At this point, we’re almost done. The last thing we need to recognise is that “something al-
ways happens”. Every time I put on trousers, I really do end up wearing trousers (crazy, right?).
What this somewhat trite statement means, in probabilistic terms, is that the probabilities of the
elementary events need to add up to 1. This is known as the law of total probability, not that
any of us really care. More importantly, if these requirements are satisfied then what we have
is a probability distribution. For example, this is an example of a probability distribution:

Which trousers? Label Probability

Blue jeans X1 P pX1q “ .5
Grey jeans X2 P pX2q “ .3
Black jeans X3 P pX3q “ .1
Black suit X4 P pX4q “ 0
Blue tracksuit X5 P pX5q “ .1

Each of the events has a probability that lies between 0 and 1, and if we add up the probability
of all events they sum to 1. Awesome. We can even draw a nice bar graph (see Section 5.3)
to visualise this distribution, as shown in Figure 7.2. And, at this point, we’ve all achieved
something. You’ve learned what a probability distribution is, and I’ve finally managed to find
a way to create a graph that focuses entirely on my trousers. Everyone wins!

The only other thing that I need to point out is that probability theory allows you to talk
about non elementary events as well as elementary ones. The easiest way to illustrate the
concept is with an example. In the trousers example it’s perfectly legitimate to refer to the
probability that I wear jeans. In this scenario, the “Dan wears jeans” event is said to have
happened as long as the elementary event that actually did occur is one of the appropriate ones.
In this case “blue jeans”, “black jeans” or “grey jeans”. In mathematical terms we defined the
“jeans” event E to correspond to the set of elementary events pX1, X2, X3q. If any of these
elementary events occurs then E is also said to have occurred. Having decided to write down
the definition of the E this way, it’s pretty straightforward to state what the probability P pEq
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Figure 7.2: A visual depiction of the “trousers” probability distribution. There are five “ele-
mentary events”, corresponding to the five pairs of trousers that I own. Each event has some
probability of occurring: this probability is a number between 0 to 1. The sum of these proba-
bilities is 1.
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is: we just add everything up. In this particular case

P pEq “ P pX1q ` P pX2q ` P pX3q

and, since the probabilities of blue, grey and black jeans respectively are .5, .3 and .1, the
probability that I wear jeans is equal to .9.

At this point you might be thinking that this is all terribly obvious and simple and you’d
be right. All we’ve really done is wrap some basic mathematics around a few common sense
intuitions. However, from these simple beginnings it’s possible to construct some extremely
powerful mathematical tools. I’m definitely not going to go into the details in this book, but
what I will do is list, in Table 7.1, some of the other rules that probabilities satisfy. These rules
can be derived from the simple assumptions that I’ve outlined above, but since we don’t actually
use these rules for anything in this book I won’t do so here.

- 136 -



Table 7.1: Some basic rules that probabilities must satisfy. You don’t really need to know these
rules in order to understand the analyses that we’ll talk about later in the book, but they are
important if you want to understand probability theory a bit more deeply.

English Notation Formula

not A P p Aq “ 1´ P pAq
A or B P pAYBq “ P pAq ` P pBq ´ P pAXBq
A and B P pAXBq “ P pA|BqP pBq

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.4

The binomial distribution

As you might imagine, probability distributions vary enormously and there’s an enormous range
of distributions out there. However, they aren’t all equally important. In fact, the vast majority
of the content in this book relies on one of five distributions: the binomial distribution, the
normal distribution, the t distribution, the χ2 (“chi-square”) distribution and the F distribution.
Given this, what I’ll do over the next few sections is provide a brief introduction to all five of
these, paying special attention to the binomial and the normal. I’ll start with the binomial
distribution since it’s the simplest of the five.

7.4.1 Introducing the binomial

The theory of probability originated in the attempt to describe how games of chance work, so it
seems fitting that our discussion of the binomial distribution should involve a discussion of
rolling dice and flipping coins. Let’s imagine a simple “experiment”. In my hot little hand I’m
holding 20 identical six-sided dice. On one face of each die there’s a picture of a skull, the other
five faces are all blank. If I proceed to roll all 20 dice, what’s the probability that I’ll get exactly
4 skulls? Assuming that the dice are fair, we know that the chance of any one die coming up
skulls is 1 in 6. To say this another way, the skull probability for a single die is approximately
.167. This is enough information to answer our question, so let’s have a look at how it’s done.

As usual, we’ll want to introduce some names and some notation. We’ll let N denote the
number of dice rolls in our experiment, which is often referred to as the size parameter of our
binomial distribution. We’ll also use θ to refer to the the probability that a single die comes up
skulls, a quantity that is usually called the success probability of the binomial.2 Finally, we’ll
use X to refer to the results of our experiment, namely the number of skulls I get when I roll

2Note that the term “success” is pretty arbitrary and doesn’t actually imply that the outcome is something
to be desired. If θ referred to the probability that any one passenger gets injured in a bus crash I’d still call it
the success probability, but that doesn’t mean I want people to get hurt in bus crashes!
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Table 7.2: Formulas for the binomial and normal distributions. We don’t really use these
formulas for anything in this book, but they’re pretty important for more advanced work,
so I thought it might be best to put them here in a table, where they can’t get in the way
of the text. In the equation for the binomial, X! is the factorial function (i.e., multiply all
whole numbers from 1 to X), and for the normal distribution “exp” refers to the exponential
function, which we discussed in Chapter 6. If these equations don’t make a lot of sense to you,
don’t worry too much about them.

Binomial Normal

P pX | θ,Nq “
N !

X!pN ´Xq!
θXp1´ θqN´X ppX | µ, σq “

1
?

2πσ
exp

ˆ

´
pX ´ µq2

2σ2

˙

the dice. Since the actual value of X is due to chance we refer to it as a random variable. In
any case, now that we have all this terminology and notation we can use it to state the problem
a little more precisely. The quantity that we want to calculate is the probability that X “ 4
given that we know that θ “ .167 and N “ 20. The general “form” of the thing I’m interested
in calculating could be written as

P pX | θ,Nq

and we’re interested in the special case where X “ 4, θ “ .167 and N “ 20. There’s only one
more piece of notation I want to refer to before moving on to discuss the solution to the problem.
If I want to say that X is generated randomly from a binomial distribution with parameters θ
and N , the notation I would use is as follows:

X „ Binomialpθ,Nq

Yeah, yeah. I know what you’re thinking: notation, notation, notation. Really, who cares? Very
few readers of this book are here for the notation, so I should probably move on and talk about
how to use the binomial distribution. I’ve included the formula for the binomial distribution
in Table 7.2, since some readers may want to play with it themselves, but since most people
probably don’t care that much and because we don’t need the formula in this book, I won’t talk
about it in any detail. Instead, I just want to show you what the binomial distribution looks
like.

To that end, Figure 7.3 plots the binomial probabilities for all possible values of X for our
dice rolling experiment, from X “ 0 (no skulls) all the way up to X “ 20 (all skulls). Note
that this is basically a bar chart, and is no different to the “trousers probability” plot I drew in
Figure 7.2. On the horizontal axis we have all the possible events, and on the vertical axis we
can read off the probability of each of those events. So, the probability of rolling 4 skulls out
of 20 is about 0.20 (the actual answer is 0.2022036, as we’ll see in a moment). In other words,
you’d expect that to happen about 20% of the times you repeated this experiment.

To give you a feel for how the binomial distribution changes when we alter the values of θ and
N , let’s suppose that instead of rolling dice I’m actually flipping coins. This time around, my
experiment involves flipping a fair coin repeatedly and the outcome that I’m interested in is the
number of heads that I observe. In this scenario, the success probability is now θ “ 1{2. Suppose
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Figure 7.3: The binomial distribution with size parameter of N “ 20 and an underlying success
probability of θ “ 1{6. Each vertical bar depicts the probability of one specific outcome (i.e.,
one possible value of X). Because this is a probability distribution, each of the probabilities
must be a number between 0 and 1, and the heights of the bars must sum to 1 as well.
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I were to flip the coin N “ 20 times. In this example, I’ve changed the success probability but
kept the size of the experiment the same. What does this do to our binomial distribution?
Well, as Figure 7.4a shows, the main effect of this is to shift the whole distribution, as you’d
expect. Okay, what if we flipped a coin N “ 100 times? Well, in that case we get Figure 7.4b.
The distribution stays roughly in the middle but there’s a bit more variability in the possible
outcomes.

7.5

The normal distribution

While the binomial distribution is conceptually the simplest distribution to understand, it’s not
the most important one. That particular honour goes to the normal distribution, also referred
to as “the bell curve” or a “Gaussian distribution”. A normal distribution is described using
two parameters: the mean of the distribution µ and the standard deviation of the distribution
σ.
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Figure 7.4: Two binomial distributions, involving a scenario in which I’m flipping a fair coin,
so the underlying success probability is θ “ 1{2. In panel (a), we assume I’m flipping the coin
N “ 20 times. In panel (b) we assume that the coin is flipped N “ 100 times.
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Figure 7.5: The normal distribution with mean µ “ 0 and standard deviation σ “ 1. The x-axis
corresponds to the value of some variable, and the y-axis tells us something about how likely
we are to observe that value. However, notice that the y-axis is labelled “Probability Density”
and not “Probability”. There is a subtle and somewhat frustrating characteristic of continuous
distributions that makes the y axis behave a bit oddly: the height of the curve here isn’t actually
the probability of observing a particular x value. On the other hand, it is true that the heights
of the curve tells you which x values are more likely (the higher ones!). (see Section 7.5.1 for all
the annoying details)
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The notation that we sometimes use to say that a variable X is normally distributed is as
follows:

X „ Normalpµ, σq

Of course, that’s just notation. It doesn’t tell us anything interesting about the normal
distribution itself. As was the case with the binomial distribution, I have included the formula
for the normal distribution in this book, because I think it’s important enough that everyone
who learns statistics should at least look at it, but since this is an introductory text I don’t want
to focus on it, so I’ve tucked it away in Table 7.2.

Instead of focusing on the maths, let’s try to get a sense for what it means for a variable to be
normally distributed. To that end, have a look at Figure 7.5 which plots a normal distribution
with mean µ “ 0 and standard deviation σ “ 1. You can see where the name “bell curve”
comes from; it looks a bit like a bell. Notice that, unlike the plots that I drew to illustrate
the binomial distribution, the picture of the normal distribution in Figure 7.5 shows a smooth
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Figure 7.6: An illustration of what happens when you change the mean of a normal distribution.
The solid line depicts a normal distribution with a mean of µ “ 4. The dashed line shows a
normal distribution with a mean of µ “ 7. In both cases, the standard deviation is σ “ 1. Not
surprisingly, the two distributions have the same shape, but the dashed line is shifted to the
right.
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curve instead of “histogram-like” bars. This isn’t an arbitrary choice, the normal distribution
is continuous whereas the binomial is discrete. For instance, in the die rolling example from
the last section it was possible to get 3 skulls or 4 skulls, but impossible to get 3.9 skulls. The
figures that I drew in the previous section reflected this fact. In Figure 7.3, for instance, there’s
a bar located at X “ 3 and another one at X “ 4 but there’s nothing in between. Continuous
quantities don’t have this constraint. For instance, suppose we’re talking about the weather.
The temperature on a pleasant Spring day could be 23 degrees, 24 degrees, 23.9 degrees, or
anything in between since temperature is a continuous variable. And so a normal distribution
might be quite appropriate for describing Spring temperatures.3

With this in mind, let’s see if we can’t get an intuition for how the normal distribution
works. First, let’s have a look at what happens when we play around with the parameters of
the distribution. To that end, Figure 7.6 plots normal distributions that have different means

3In practice, the normal distribution is so handy that people tend to use it even when the variable isn’t actually
continuous. As long as there are enough categories (e.g., Likert scale responses to a questionnaire), it’s pretty
standard practice to use the normal distribution as an approximation. This works out much better in practice
than you’d think.
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Figure 7.7: An illustration of what happens when you change the the standard deviation of a
normal distribution. Both distributions plotted in this figure have a mean of µ “ 5, but they have
different standard deviations. The solid line plots a distribution with standard deviation σ “ 1,
and the dashed line shows a distribution with standard deviation σ “ 2. As a consequence, both
distributions are “centred” on the same spot, but the dashed line is wider than the solid one.
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but have the same standard deviation. As you might expect, all of these distributions have
the same “width”. The only difference between them is that they’ve been shifted to the left or
to the right. In every other respect they’re identical. In contrast, if we increase the standard
deviation while keeping the mean constant, the peak of the distribution stays in the same place
but the distribution gets wider, as you can see in Figure 7.7. Notice, though, that when we
widen the distribution the height of the peak shrinks. This has to happen, in the same way
that the heights of the bars that we used to draw a discrete binomial distribution have to sum
to 1, the total area under the curve for the normal distribution must equal 1. Before moving
on, I want to point out one important characteristic of the normal distribution. Irrespective
of what the actual mean and standard deviation are, 68.3% of the area falls within 1 standard
deviation of the mean. Similarly, 95.4% of the distribution falls within 2 standard deviations of
the mean, and 99.7% of the distribution is within 3 standard deviations. This idea is illustrated
in Figure 7.8.
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Figure 7.8: The area under the curve tells you the probability that an observation falls within
a particular range. The solid lines plot normal distributions with mean µ “ 0 and standard
deviation σ “ 1. The shaded areas illustrate “areas under the curve” for two important cases.
In panel a, we can see that there is a 68.3% chance that an observation will fall within one
standard deviation of the mean. In panel b, we see that there is a 95.4% chance that an
observation will fall within two standard deviations of the mean.
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Figure 7.9: Two more examples of the “area under the curve idea”. There is a 15.9% chance that
an observation is one standard deviation below the mean or smaller (panel a), and a 34.1% chance
that the observation is somewhere between one standard deviation below the mean and the mean
(panel b). Notice that if you add these two numbers together you get 15.9% ` 34.1% “ 50%.
For normally distributed data, there is a 50% chance that an observation falls below the mean.
And of course that also implies that there is a 50% chance that it falls above the mean.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- 144 -



7.5.1 Probability density

There’s something I’ve been trying to hide throughout my discussion of the normal distribu-
tion, something that some introductory textbooks omit completely. They might be right to do
so. This “thing” that I’m hiding is weird and counter-intuitive even by the admittedly distorted
standards that apply in statistics. Fortunately, it’s not something that you need to understand
at a deep level in order to do basic statistics. Rather, it’s something that starts to become
important later on when you move beyond the basics. So, if it doesn’t make complete sense,
don’t worry too much, but try to make sure that you follow the gist of it.

Throughout my discussion of the normal distribution there’s been one or two things that
don’t quite make sense. Perhaps you noticed that the y-axis in these figures is labelled “Proba-
bility Density” rather than density. Maybe you noticed that I used ppXq instead of P pXq when
giving the formula for the normal distribution.

As it turns out, what is presented here isn’t actually a probability, it’s something else. To
understand what that something is you have to spend a little time thinking about what it really
means to say that X is a continuous variable. Let’s say we’re talking about the temperature
outside. The thermometer tells me it’s 23 degrees, but I know that’s not really true. It’s not
exactly 23 degrees. Maybe it’s 23.1 degrees, I think to myself. But I know that that’s not really
true either because it might actually be 23.09 degrees. But I know that... well, you get the idea.
The tricky thing with genuinely continuous quantities is that you never really know exactly what
they are.

Now think about what this implies when we talk about probabilities. Suppose that tomor-
row’s maximum temperature is sampled from a normal distribution with mean 23 and standard
deviation 1. What’s the probability that the temperature will be exactly 23 degrees? The answer
is “zero”, or possibly “a number so close to zero that it might as well be zero”. Why is this?
It’s like trying to throw a dart at an infinitely small dart board. No matter how good your aim,
you’ll never hit it. In real life you’ll never get a value of exactly 23. It’ll always be something
like 23.1 or 22.99998 or suchlike. In other words, it’s completely meaningless to talk about
the probability that the temperature is exactly 23 degrees. However, in everyday language if I
told you that it was 23 degrees outside and it turned out to be 22.9998 degrees you probably
wouldn’t call me a liar. Because in everyday language “23 degrees” usually means something
like “somewhere between 22.5 and 23.5 degrees”. And while it doesn’t feel very meaningful to
ask about the probability that the temperature is exactly 23 degrees, it does seem sensible to
ask about the probability that the temperature lies between 22.5 and 23.5, or between 20 and
30, or any other range of temperatures.

The point of this discussion is to make clear that when we’re talking about continuous
distributions it’s not meaningful to talk about the probability of a specific value. However, what
we can talk about is the probability that the value lies within a particular range of values. To
find out the probability associated with a particular range what you need to do is calculate the
“area under the curve”. We’ve seen this concept already, in Figure 7.8 the shaded areas shown
depict genuine probabilities (e.g., in Figure 7.8a it shows the probability of observing a value
that falls within 1 standard deviation of the mean).

Okay, so that explains part of the story. I’ve explained a little bit about how continuous
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probability distributions should be interpreted (i.e., area under the curve is the key thing). But
what does the formula for ppxq that I described earlier actually mean? Obviously, ppxq doesn’t
describe a probability, but what is it? The name for this quantity ppxq is a probability density,
and in terms of the plots we’ve been drawing it corresponds to the height of the curve. The
densities themselves aren’t meaningful in and of themselves, but they’re “rigged” to ensure that
the area under the curve is always interpretable as genuine probabilities. To be honest, that’s
about as much as you really need to know for now.4

7.6

Other useful distributions

The normal distribution is the distribution that statistics makes most use of (for reasons to be
discussed shortly), and the binomial distribution is a very useful one for lots of purposes. But
the world of statistics is filled with probability distributions, some of which we’ll run into in
passing. In particular, the three that will appear in this book are the t distribution, the χ2

distribution and the F distribution. I won’t give formulas for any of these, or talk about them
in too much detail, but I will show you some pictures.
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Figure 7.10: A t distribution with 3 degrees of freedom (solid line). It looks similar to a normal
distribution, but it’s not quite the same. For comparison purposes I’ve plotted a standard
normal distribution as the dashed line.
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4For those readers who know a little calculus, I’ll give a slightly more precise explanation. In the same way
that probabilities are non-negative numbers that must sum to 1, probability densities are non-negative numbers
that must integrate to 1 (where the integral is taken across all possible values of X). To calculate the probability
that X falls between a and b we calculate the definite integral of the density function over the corresponding
range,

şb

a
ppxq dx. If you don’t remember or never learned calculus, don’t worry about this. It’s not needed for

this book.
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Figure 7.11: A χ2 distribution with 3 degrees of freedom. Notice that the observed values must
always be greater than zero, and that the distribution is pretty skewed. These are the key
features of a chi-square distribution.
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Figure 7.12: An F distribution with 3 and 5 degrees of freedom. Qualitatively speaking, it looks
pretty similar to a chi-square distribution, but they’re not quite the same in general.
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• The t distribution is a continuous distribution that looks very similar to a normal dis-
tribution, see Figure 7.10. Note that the “tails” of the t distribution are “heavier” (i.e.,
extend further outwards) than the tails of the normal distribution). That’s the impor-
tant difference between the two. This distribution tends to arise in situations where you
think that the data actually follow a normal distribution, but you don’t know the mean
or standard deviation. We’ll run into this distribution again in Chapter 11.

• The χ2 distribution is another distribution that turns up in lots of different places. The
situation in which we’ll see it is when doing categorical data analysis (Chapter 10), but
it’s one of those things that actually pops up all over the place. When you dig into the
maths (and who doesn’t love doing that?), it turns out that the main reason why the
χ2 distribution turns up all over the place is that if you have a bunch of variables that
are normally distributed, square their values and then add them up (a procedure referred
to as taking a “sum of squares”), this sum has a χ2 distribution. You’d be amazed how
often this fact turns out to be useful. Anyway, here’s what a χ2 distribution looks like:
Figure 7.11.

• The F distribution looks a bit like a χ2 distribution, and it arises whenever you need to
compare two χ2 distributions to one another. Admittedly, this doesn’t exactly sound like
something that any sane person would want to do, but it turns out to be very important
in real world data analysis. Remember when I said that χ2 turns out to be the key
distribution when we’re taking a “sum of squares”? Well, what that means is if you want
to compare two different “sums of squares”, you’re probably talking about something that
has an F distribution. Of course, as yet I still haven’t given you an example of anything
that involves a sum of squares, but I will in Chapter 13. And that’s where we’ll run into
the F distribution. Oh, and there’s a picture in Figure 7.12.

Okay, time to wrap this section up. We’ve seen three new distributions: χ2, t and F . They’re
all continuous distributions, and they’re all closely related to the normal distribution. The main
thing for our purposes is that you grasp the basic idea that these distributions are all deeply
related to one another, and to the normal distribution. Later on in this book we’re going to run
into data that are normally distributed, or at least assumed to be normally distributed. What
I want you to understand right now is that, if you make the assumption that your data are
normally distributed, you shouldn’t be surprised to see χ2, t and F distributions popping up all
over the place when you start trying to do your data analysis.

7.7

Summary

In this chapter we’ve talked about probability. We’ve talked about what probability means and
why statisticians can’t agree on what it means. We talked about the rules that probabilities have
to obey. And we introduced the idea of a probability distribution and spent a good chunk of the
chapter talking about some of the more important probability distributions that statisticians
work with. The section by section breakdown looks like this:
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• Probability theory versus statistics (Section 7.1)

• Frequentist versus Bayesian views of probability (Section 7.2)

• Basics of probability theory (Section 7.3)

• Binomial distribution (Section 7.4), normal distribution (Section 7.5), and others (Sec-
tion 7.6)

As you’d expect, my coverage is by no means exhaustive. Probability theory is a large
branch of mathematics in its own right, entirely separate from its application to statistics and
data analysis. As such, there are thousands of books written on the subject and universities
generally offer multiple classes devoted entirely to probability theory. Even the “simpler” task
of documenting standard probability distributions is a big topic. I’ve described five standard
probability distributions in this chapter, but sitting on my bookshelf I have a 45-chapter book
called “Statistical Distributions” (Evans, Hastings, and Peacock 2011) that lists a lot more than
that. Fortunately for you, very little of this is necessary. You’re unlikely to need to know dozens
of statistical distributions when you go out and do real world data analysis, and you definitely
won’t need them for this book, but it never hurts to know that there’s other possibilities out
there.

Picking up on that last point, there’s a sense in which this whole chapter is something of
a digression. Many undergraduate psychology classes on statistics skim over this content very
quickly (I know mine did), and even the more advanced classes will often “forget” to revisit
the basic foundations of the field. Most academic psychologists would not know the difference
between probability and density, and until recently very few would have been aware of the
difference between Bayesian and frequentist probability. However, I think it’s important to
understand these things before moving onto the applications. For example, there are a lot of
rules about what you’re “allowed” to say when doing statistical inference and many of these can
seem arbitrary and weird. However, they start to make sense if you understand that there is this
Bayesian/frequentist distinction. Similarly, in Chapter 11 we’re going to talk about something
called the t-test, and if you really want to have a grasp of the mechanics of the t-test it really
helps to have a sense of what a t-distribution actually looks like. You get the idea, I hope.
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8. Estimating unknown quantities from a sample

At the start of the last chapter I highlighted the critical distinction between descriptive statistics
and inferential statistics. As discussed in Chapter 4, the role of descriptive statistics is to
concisely summarise what we do know. In contrast, the purpose of inferential statistics is to
“learn what we do not know from what we do”. Now that we have a foundation in probability
theory we are in a good position to think about the problem of statistical inference. What kinds
of things would we like to learn about? And how do we learn them? These are the questions that
lie at the heart of inferential statistics, and they are traditionally divided into two “big ideas”:
estimation and hypothesis testing. The goal in this chapter is to introduce the first of these
big ideas, estimation theory, but I’m going to witter on about sampling theory first because
estimation theory doesn’t make sense until you understand sampling. As a consequence, this
chapter divides naturally into two parts Sections 8.1 through 8.3 are focused on sampling theory,
and Sections 8.4 and 8.5 make use of sampling theory to discuss how statisticians think about
estimation.

8.1

Samples, populations and sampling

In the prelude to Part IV I discussed the riddle of induction and highlighted the fact that all
learning requires you to make assumptions. Accepting that this is true, our first task to come
up with some fairly general assumptions about data that make sense. This is where sampling
theory comes in. If probability theory is the foundations upon which all statistical theory builds,
sampling theory is the frame around which you can build the rest of the house. Sampling theory
plays a huge role in specifying the assumptions upon which your statistical inferences rely. And
in order to talk about “making inferences” the way statisticians think about it we need to be a
bit more explicit about what it is that we’re drawing inferences from (the sample) and what it
is that we’re drawing inferences about (the population).

In almost every situation of interest what we have available to us as researchers is a sample
of data. We might have run experiment with some number of participants, a polling company
might have phoned some number of people to ask questions about voting intentions, and so on.
In this way the data set available to us is finite and incomplete. We can’t possibly get every
person in the world to do our experiment, for example a polling company doesn’t have the time
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or the money to ring up every voter in the country. In our earlier discussion of descriptive
statistics (Chapter 4) this sample was the only thing we were interested in. Our only goal was
to find ways of describing, summarising and graphing that sample. This is about to change.

8.1.1 Defining a population

A sample is a concrete thing. You can open up a data file and there’s the data from your
sample. A population, on the other hand, is a more abstract idea. It refers to the set of all
possible people, or all possible observations, that you want to draw conclusions about and is
generally much bigger than the sample. In an ideal world the researcher would begin the study
with a clear idea of what the population of interest is, since the process of designing a study
and testing hypotheses with the data does depend on the population about which you want to
make statements.

Sometimes it’s easy to state the population of interest. For instance, in the “polling company”
example that opened the chapter the population consisted of all voters enrolled at the time of the
study, millions of people. The sample was a set of 1000 people who all belong to that population.
In most studies the situation is much less straightforward. In a typical psychological experiment
determining the population of interest is a bit more complicated. Suppose I run an experiment
using 100 undergraduate students as my participants. My goal, as a cognitive scientist, is to try
to learn something about how the mind works. So, which of the following would count as “the
population”:

• All of the undergraduate psychology students at the University of Adelaide?

• Undergraduate psychology students in general, anywhere in the world?

• Australians currently living?

• Australians of similar ages to my sample?

• Anyone currently alive?

• Any human being, past, present or future?

• Any biological organism with a sufficient degree of intelligence operating in a terrestrial
environment?

• Any intelligent being?

Each of these defines a real group of mind-possessing entities, all of which might be of interest
to me as a cognitive scientist, and it’s not at all clear which one ought to be the true population
of interest. As another example, consider the Wellesley-Croker game that we discussed in the
prelude. The sample here is a specific sequence of 12 wins and 0 losses for Wellesley. What is
the population?

• All outcomes until Wellesley and Croker arrived at their destination?

• All outcomes if Wellesley and Croker had played the game for the rest of their lives?

• All outcomes if Wellseley and Croker lived forever and played the game until the world
ran out of hills?

• All outcomes if we created an infinite set of parallel universes and the Wellesely/Croker
pair made guesses about the same 12 hills in each universe?
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Figure 8.1: Simple random sampling without replacement from a finite population
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Again, it’s not obvious what the population is.

8.1.2 Simple random samples

Irrespective of how I define the population, the critical point is that the sample is a subset
of the population and our goal is to use our knowledge of the sample to draw inferences about
the properties of the population. The relationship between the two depends on the procedure by
which the sample was selected. This procedure is referred to as a sampling method and it is
important to understand why it matters.

To keep things simple, let’s imagine that we have a bag containing 10 chips. Each chip has
a unique letter printed on it so we can distinguish between the 10 chips. The chips come in
two colours, black and white. This set of chips is the population of interest and it is depicted
graphically on the left of Figure 8.1. As you can see from looking at the picture there are 4
black chips and 6 white chips, but of course in real life we wouldn’t know that unless we looked
in the bag. Now imagine you run the following “experiment”: you shake up the bag, close your
eyes, and pull out 4 chips without putting any of them back into the bag. First out comes the
a chip (black), then the c chip (white), then j (white) and then finally b (black). If you wanted
you could then put all the chips back in the bag and repeat the experiment, as depicted on the
right hand side of Figure 8.1. Each time you get different results but the procedure is identical
in each case. The fact that the same procedure can lead to different results each time we refer
to as a random process.1 However, because we shook the bag before pulling any chips out, it
seems reasonable to think that every chip has the same chance of being selected. A procedure in
which every member of the population has the same chance of being selected is called a simple
random sample. The fact that we did not put the chips back in the bag after pulling them
out means that you can’t observe the same thing twice, and in such cases the observations are

1The proper mathematical definition of randomness is extraordinarily technical, and way beyond the scope of
this book. We’ll be non-technical here and say that a process has an element of randomness to it whenever it is
possible to repeat the process and get different answers each time.
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Figure 8.2: Biased sampling without replacement from a finite population
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Figure 8.3: Simple random sampling with replacement from a finite population
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said to have been sampled without replacement.

To help make sure you understand the importance of the sampling procedure, consider an
alternative way in which the experiment could have been run. Suppose that my 5-year old son
had opened the bag and decided to pull out four black chips without putting any of them back
in the bag. This biased sampling scheme is depicted in Figure 8.2. Now consider the evidential
value of seeing 4 black chips and 0 white chips. Clearly it depends on the sampling scheme,
does it not? If you know that the sampling scheme is biased to select only black chips then a
sample that consists of only black chips doesn’t tell you very much about the population! For
this reason statisticians really like it when a data set can be considered a simple random sample,
because it makes the data analysis much easier.

A third procedure is worth mentioning. This time around we close our eyes, shake the bag,
and pull out a chip. This time, however, we record the observation and then put the chip back
in the bag. Again we close our eyes, shake the bag, and pull out a chip. We then repeat this
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procedure until we have 4 chips. Data sets generated in this way are still simple random samples,
but because we put the chips back in the bag immediately after drawing them it is referred to as
a sample with replacement. The difference between this situation and the first one is that it
is possible to observe the same population member multiple times, as illustrated in Figure 8.3.

In my experience, most psychology experiments tend to be sampling without replacement,
because the same person is not allowed to participate in the experiment twice. However, most
statistical theory is based on the assumption that the data arise from a simple random sample
with replacement. In real life this very rarely matters. If the population of interest is large (e.g.,
has more than 10 entities!) the difference between sampling with- and without- replacement
is too small to be concerned with. The difference between simple random samples and biased
samples, on the other hand, is not such an easy thing to dismiss.

8.1.3 Most samples are not simple random samples

As you can see from looking at the list of possible populations that I showed above, it is
almost impossible to obtain a simple random sample from most populations of interest. When
I run experiments I’d consider it a minor miracle if my participants turned out to be a random
sampling of the undergraduate psychology students at Adelaide university, even though this is
by far the narrowest population that I might want to generalise to. A thorough discussion of
other types of sampling schemes is beyond the scope of this book, but to give you a sense of
what’s out there I’ll list a few of the more important ones.

• Stratified sampling. Suppose your population is (or can be) divided into several different
sub-populations, or strata. Perhaps you’re running a study at several different sites, for
example. Instead of trying to sample randomly from the population as a whole, you in-
stead try to collect a separate random sample from each of the strata. Stratified sampling
is sometimes easier to do than simple random sampling, especially when the population
is already divided into the distinct strata. It can also be more efficient than simple ran-
dom sampling, especially when some of the sub-populations are rare. For instance, when
studying schizophrenia it would be much better to divide the population into two2 strata
(schizophrenic and not-schizophrenic) and then sample an equal number of people from
each group. If you selected people randomly you would get so few schizophrenic people in
the sample that your study would be useless. This specific kind of of stratified sampling is
referred to as oversampling because it makes a deliberate attempt to over-represent rare
groups.

• Snowball sampling is a technique that is especially useful when sampling from a “hidden”
or hard to access population and is especially common in social sciences. For instance,
suppose the researchers want to conduct an opinion poll among transgender people. The
research team might only have contact details for a few trans folks, so the survey starts by
asking them to participate (stage 1). At the end of the survey the participants are asked
to provide contact details for other people who might want to participate. In stage 2 those
new contacts are surveyed. The process continues until the researchers have sufficient data.

2Nothing in life is that simple. There’s not an obvious division of people into binary categories like
“schizophrenic” and “not schizophrenic”. But this isn’t a clinical psychology text so please forgive me a few
simplifications here and there.
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The big advantage to snowball sampling is that it gets you data in situations that might
otherwise be impossible to get any. On the statistical side, the main disadvantage is that
the sample is highly non-random, and non-random in ways that are difficult to address.
On the real life side, the disadvantage is that the procedure can be unethical if not handled
well, because hidden populations are often hidden for a reason. I chose transgender people
as an example here to highlight this issue. If you weren’t careful you might end up outing
people who don’t want to be outed (very, very bad form), and even if you don’t make
that mistake it can still be intrusive to use people’s social networks to study them. It’s
certainly very hard to get people’s informed consent before contacting them, yet in many
cases the simple act of contacting them and saying “hey we want to study you” can be
hurtful. Social networks are complex things, and just because you can use them to get
data doesn’t always mean you should.

• Convenience sampling is more or less what it sounds like. The samples are chosen in a
way that is convenient to the researcher, and not selected at random from the population
of interest. Snowball sampling is one type of convenience sampling, but there are many
others. A common example in psychology are studies that rely on undergraduate psychol-
ogy students. These samples are generally non-random in two respects. First, reliance
on undergraduate psychology students automatically means that your data are restricted
to a single sub-population. Second, the students usually get to pick which studies they
participate in, so the sample is a self selected subset of psychology students and not a
randomly selected subset. In real life most studies are convenience samples of one form or
another. This is sometimes a severe limitation, but not always.

8.1.4 How much does it matter if you don’t have a simple random sample?

Okay, so real world data collection tends not to involve nice simple random samples. Does
that matter? A little thought should make it clear to you that it can matter if your data are not
a simple random sample. Just think about the difference between Figures 8.1 and 8.2. However,
it’s not quite as bad as it sounds. Some types of biased samples are entirely unproblematic.
For instance, when using a stratified sampling technique you actually know what the bias is
because you created it deliberately, often to increase the effectiveness of your study, and there
are statistical techniques that you can use to adjust for the biases you’ve introduced (not covered
in this book!). So in those situations it’s not a problem.

More generally though, it’s important to remember that random sampling is a means to
an end, and not the end in itself. Let’s assume you’ve relied on a convenience sample, and as
such you can assume it’s biased. A bias in your sampling method is only a problem if it causes
you to draw the wrong conclusions. When viewed from that perspective, I’d argue that we
don’t need the sample to be randomly generated in every respect, we only need it to be random
with respect to the psychologically-relevant phenomenon of interest. Suppose I’m doing a study
looking at working memory capacity. In study 1, I actually have the ability to sample randomly
from all human beings currently alive, with one exception: I can only sample people born on
a Monday. In study 2, I am able to sample randomly from the Australian population. I want
to generalise my results to the population of all living humans. Which study is better? The
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answer, obviously, is study 1. Why? Because we have no reason to think that being “born on a
Monday” has any interesting relationship to working memory capacity. In contrast, I can think
of several reasons why “being Australian” might matter. Australia is a wealthy, industrialised
country with a very well-developed education system. People growing up in that system will have
had life experiences much more similar to the experiences of the people who designed the tests
for working memory capacity. This shared experience might easily translate into similar beliefs
about how to “take a test”, a shared assumption about how psychological experimentation works,
and so on. These things might actually matter. For instance, “test taking” style might have
taught the Australian participants how to direct their attention exclusively on fairly abstract
test materials much more than people who haven’t grown up in a similar environment. This
could therefore lead to a misleading picture of what working memory capacity is.

There are two points hidden in this discussion. First, when designing your own studies, it’s
important to think about what population you care about and try hard to sample in a way that
is appropriate to that population. In practice, you’re usually forced to put up with a “sample
of convenience” (e.g., psychology lecturers sample psychology students because that’s the least
expensive way to collect data, and our coffers aren’t exactly overflowing with gold), but if so
you should at least spend some time thinking about what the dangers of this practice might
be. Second, if you’re going to criticise someone else’s study because they’ve used a sample of
convenience rather than laboriously sampling randomly from the entire human population, at
least have the courtesy to offer a specific theory as to how this might have distorted the results.

8.1.5 Population parameters and sample statistics

Okay. Setting aside the thorny methodological issues associated with obtaining a random
sample, let’s consider a slightly different issue. Up to this point we have been talking about
populations the way a scientist might. To a psychologist a population might be a group of
people. To an ecologist a population might be a group of bears. In most cases the populations
that scientists care about are concrete things that actually exist in the real world. Statisticians,
however, are a funny lot. On the one hand, they are interested in real world data and real science
in the same way that scientists are. On the other hand, they also operate in the realm of pure
abstraction in the way that mathematicians do. As a consequence, statistical theory tends to be a
bit abstract in how a population is defined. In much the same way that psychological researchers
operationalise our abstract theoretical ideas in terms of concrete measurements (Section 2.1),
statisticians operationalise the concept of a “population” in terms of mathematical objects that
they know how to work with. You’ve already come across these objects in Chapter 7. They’re
called probability distributions.

The idea is quite simple. Let’s say we’re talking about IQ scores. To a psychologist the
population of interest is a group of actual humans who have IQ scores. A statistician “simpli-
fies” this by operationally defining the population as the probability distribution depicted in
Figure 8.4a. IQ tests are designed so that the average IQ is 100, the standard deviation of IQ
scores is 15, and the distribution of IQ scores is normal. These values are referred to as the
population parameters because they are characteristics of the entire population. That is, we
say that the population mean µ is 100 and the population standard deviation σ is 15.

Now suppose I run an experiment. I select 100 people at random and administer an IQ test,
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Figure 8.4: The population distribution of IQ scores (panel a) and two samples drawn randomly
from it. In panel b we have a sample of 100 observations, and panel c we have a sample of 10,000
observations.
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giving me a simple random sample from the population. My sample would consist of a collection
of numbers like this:

106 101 98 80 74 ... 107 72 100

Each of these IQ scores is sampled from a normal distribution with mean 100 and standard
deviation 15. So if I plot a histogram of the sample I get something like the one shown in
Figure 8.4b. As you can see, the histogram is roughly the right shape but it’s a very crude
approximation to the true population distribution shown in Figure 8.4a. When I calculate the
mean of my sample, I get a number that is fairly close to the population mean 100 but not
identical. In this case, it turns out that the people in my sample have a mean IQ of 98.5, and
the standard deviation of their IQ scores is 15.9. These sample statistics are properties of
my data set, and although they are fairly similar to the true population values they are not the
same. In general, sample statistics are the things you can calculate from your data set and the
population parameters are the things you want to learn about. Later on in this chapter I’ll talk
about how you can estimate population parameters using your sample statistics (Section 8.4)
and how to work out how confident you are in your estimates (Section 8.5) but before we get to
that there’s a few more ideas in sampling theory that you need to know about.

8.2

The law of large numbers

In the previous section I showed you the results of one fictitious IQ experiment with a sample
size of N “ 100. The results were somewhat encouraging as the true population mean is 100 and
the sample mean of 98.5 is a pretty reasonable approximation to it. In many scientific studies
that level of precision is perfectly acceptable, but in other situations you need to be a lot more
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precise. If we want our sample statistics to be much closer to the population parameters, what
can we do about it?

The obvious answer is to collect more data. Suppose that we ran a much larger experiment,
this time measuring the IQs of 10,000 people. We can simulate the results of this experiment
using jamovi. The IQsim.omv file is a jamovi data file. In this file I have generated 10,000
random numbers sampled from a normal distribution for a population with mean = 100 and
sd = 15. This was done by computing a new variable using the = NORM(100,15) function. A
histogram and density plot shows that this larger sample is a much better approximation to the
true population distribution than the smaller one. This is reflected in the sample statistics. The
mean IQ for the larger sample turns out to be 99.68 and the standard deviation is 14.90. These
values are now very close to the true population. See Figure 8.5

I feel a bit silly saying this, but the thing I want you to take away from this is that large
samples generally give you better information. I feel silly saying it because it’s so bloody obvious
that it shouldn’t need to be said. In fact, it’s such an obvious point that when Jacob Bernoulli,
one of the founders of probability theory, formalised this idea back in 1713 he was kind of a jerk
about it. Here’s how he described the fact that we all share this intuition:

For even the most stupid of men, by some instinct of nature, by himself and without
any instruction (which is a remarkable thing), is convinced that the more observations
have been made, the less danger there is of wandering from one’s goal (see Stigler
1986, p65)

Okay, so the passage comes across as a bit condescending (not to mention sexist), but his main
point is correct. It really does feel obvious that more data will give you better answers. The
question is, why is this so? Not surprisingly, this intuition that we all share turns out to be
correct, and statisticians refer to it as the law of large numbers. The law of large numbers
is a mathematical law that applies to many different sample statistics but the simplest way to
think about it is as a law about averages. The sample mean is the most obvious example of a
statistic that relies on averaging (because that’s what the mean is... an average), so let’s look
at that. When applied to the sample mean what the law of large numbers states is that as the
sample gets larger, the sample mean tends to get closer to the true population mean. Or, to say
it a little bit more precisely, as the sample size “approaches” infinity (written as N Ñ 8), the
sample mean approaches the population mean (X̄ Ñ µ).3

I don’t intend to subject you to a proof that the law of large numbers is true, but it’s one
of the most important tools for statistical theory. The law of large numbers is the thing we can
use to justify our belief that collecting more and more data will eventually lead us to the truth.
For any particular data set the sample statistics that we calculate from it will be wrong, but the
law of large numbers tells us that if we keep collecting more data those sample statistics will
tend to get closer and closer to the true population parameters.

3Technically, the law of large numbers pertains to any sample statistic that can be described as an average
of independent quantities. That’s certainly true for the sample mean. However, it’s also possible to write many
other sample statistics as averages of one form or another. The variance of a sample, for instance, can be rewritten
as a kind of average and so is subject to the law of large numbers. The minimum value of a sample, however,
cannot be written as an average of anything and is therefore not governed by the law of large numbers.
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Figure 8.5: A random sample drawn from a normal distribution using jamovi
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8.3

Sampling distributions and the central limit theorem

The law of large numbers is a very powerful tool but it’s not going to be good enough to answer
all our questions. Among other things, all it gives us is a “long run guarantee”. In the long run,
if we were somehow able to collect an infinite amount of data, then the law of large numbers
guarantees that our sample statistics will be correct. But as John Maynard Keynes famously
argued in economics, a long run guarantee is of little use in real life.

[The] long run is a misleading guide to current affairs. In the long run we are
all dead. Economists set themselves too easy, too useless a task, if in tempestuous
seasons they can only tell us, that when the storm is long past, the ocean is flat again.
(Keynes 1923, p. 80)

As in economics, so too in psychology and statistics. It is not enough to know that we will
eventually arrive at the right answer when calculating the sample mean. Knowing that an
infinitely large data set will tell me the exact value of the population mean is cold comfort when
my actual data set has a sample size of N “ 100. In real life, then, we must know something
about the behaviour of the sample mean when it is calculated from a more modest data set!

8.3.1 Sampling distribution of the mean

With this in mind, let’s abandon the idea that our studies will have sample sizes of 10,000
and consider instead a very modest experiment indeed. This time around we’ll sample N “ 5
people and measure their IQ scores. As before, I can simulate this experiment in jamovi =

NORM(100,15) function, but I only need 5 participant IDs this time, not 10,000. These are the
five numbers that jamovi generated:

90 82 94 99 110

The mean IQ in this sample turns out to be exactly 95. Not surprisingly, this is much
less accurate than the previous experiment. Now imagine that I decided to replicate the
experiment. That is, I repeat the procedure as closely as possible and I randomly sample 5 new
people and measure their IQ. Again, jamovi allows me to simulate the results of this procedure,
and generates these five numbers:

78 88 111 111 117

This time around, the mean IQ in my sample is 101. If I repeat the experiment 10 times
I obtain the results shown in Table 8.1, and as you can see the sample mean varies from one
replication to the next.

Now suppose that I decided to keep going in this fashion, replicating this “five IQ scores”
experiment over and over again. Every time I replicate the experiment I write down the sample
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Table 8.1: Ten replications of the IQ experiment, each with a sample size of N “ 5.

Person 1 Person 2 Person 3 Person 4 Person 5 Sample Mean

Replication 1 90 82 94 99 110 95.0
Replication 2 78 88 111 111 117 101.0
Replication 3 111 122 91 98 86 101.6
Replication 4 98 96 119 99 107 103.8
Replication 5 105 113 103 103 98 104.4
Replication 6 81 89 93 85 114 92.4
Replication 7 100 93 108 98 133 106.4
Replication 8 107 100 105 117 85 102.8
Replication 9 86 119 108 73 116 100.4
Replication 10 95 126 112 120 76 105.8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mean. Over time, I’d be amassing a new data set, in which every experiment generates a single
data point. The first 10 observations from my data set are the sample means listed in Table 8.1,
so my data set starts out like this:

95.0 101.0 101.6 103.8 104.4 ...

What if I continued like this for 10,000 replications, and then drew a histogram. Well that’s
exactly what I did, and you can see the results in Figure 8.6. As this picture illustrates, the
average of 5 IQ scores is usually between 90 and 110. But more importantly, what it highlights
is that if we replicate an experiment over and over again, what we end up with is a distribution
of sample means! This distribution has a special name in statistics, it’s called the sampling
distribution of the mean.

Sampling distributions are another important theoretical idea in statistics, and they’re crucial
for understanding the behaviour of small samples. For instance, when I ran the very first “five
IQ scores” experiment, the sample mean turned out to be 95. What the sampling distribution
in Figure 8.6 tells us, though, is that the “five IQ scores” experiment is not very accurate. If
I repeat the experiment, the sampling distribution tells me that I can expect to see a sample
mean anywhere between 80 and 120.

8.3.2 Sampling distributions exist for any sample statistic!

One thing to keep in mind when thinking about sampling distributions is that any sample
statistic you might care to calculate has a sampling distribution. For example, suppose that
each time I replicated the “five IQ scores” experiment I wrote down the largest IQ score in the
experiment. This would give me a data set that started out like this:

110 117 122 119 113 ...

Doing this over and over again would give me a very different sampling distribution, namely
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Figure 8.6: The sampling distribution of the mean for the “five IQ scores experiment”. If you
sample 5 people at random and calculate their average IQ you’ll almost certainly get a number
between 80 and 120, even though there are quite a lot of individuals who have IQs above 120 or
below 80. For comparison, the black line plots the population distribution of IQ scores.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 8.7: The sampling distribution of the maximum for the “five IQ scores experiment”. If
you sample 5 people at random and select the one with the highest IQ score you’ll probably see
someone with an IQ between 100 and 140.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the sampling distribution of the maximum. The sampling distribution of the maximum of 5 IQ
scores is shown in Figure 8.7. Not surprisingly, if you pick 5 people at random and then find
the person with the highest IQ score, they’re going to have an above average IQ. Most of the
time you’ll end up with someone whose IQ is measured in the 100 to 140 range.
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Figure 8.8: An illustration of the how sampling distribution of the mean depends on sample
size. In each panel I generated 10,000 samples of IQ data and calculated the mean IQ observed
within each of these data sets. The histograms in these plots show the distribution of these
means (i.e., the sampling distribution of the mean). Each individual IQ score was drawn from
a normal distribution with mean 100 and standard deviation 15, which is shown as the solid
black line. In panel a, each data set contained only a single observation, so the mean of each
sample is just one person’s IQ score. As a consequence, the sampling distribution of the mean
is of course identical to the population distribution of IQ scores. However, when we raise the
sample size to 2 the mean of any one sample tends to be closer to the population mean than a
one person’s IQ score, and so the histogram (i.e., the sampling distribution) is a bit narrower
than the population distribution. By the time we raise the sample size to 10 (panel c), we can
see that the distribution of sample means tend to be fairly tightly clustered around the true
population mean.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.3.3 The central limit theorem

At this point I hope you have a pretty good sense of what sampling distributions are, and
in particular what the sampling distribution of the mean is. In this section I want to talk about
how the sampling distribution of the mean changes as a function of sample size. Intuitively, you
already know part of the answer. If you only have a few observations, the sample mean is likely
to be quite inaccurate. If you replicate a small experiment and recalculate the mean you’ll get
a very different answer. In other words, the sampling distribution is quite wide. If you replicate
a large experiment and recalculate the sample mean you’ll probably get the same answer you
got last time, so the sampling distribution will be very narrow. You can see this visually in
Figure 8.8, showing that the bigger the sample size, the narrower the sampling distribution gets.
We can quantify this effect by calculating the standard deviation of the sampling distribution,
which is referred to as the standard error. The standard error of a statistic is often denoted
SE, and since we’re usually interested in the standard error of the sample mean, we often use
the acronym SEM. As you can see just by looking at the picture, as the sample size N increases,
the SEM decreases.

Okay, so that’s one part of the story. However, there’s something I’ve been glossing over so
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far. All my examples up to this point have been based on the “IQ scores” experiments, and
because IQ scores are roughly normally distributed I’ve assumed that the population distribution
is normal. What if it isn’t normal? What happens to the sampling distribution of the mean? The
remarkable thing is this, no matter what shape your population distribution is, as N increases
the sampling distribution of the mean starts to look more like a normal distribution. To give you
a sense of this I ran some simulations. To do this, I started with the “ramped” distribution shown
in the histogram in Figure 8.9. As you can see by comparing the triangular shaped histogram to
the bell curve plotted by the black line, the population distribution doesn’t look very much like
a normal distribution at all. Next, I simulated the results of a large number of experiments. In
each experiment I took N “ 2 samples from this distribution, and then calculated the sample
mean. Figure 8.9b plots the histogram of these sample means (i.e., the sampling distribution of
the mean for N “ 2). This time, the histogram produces a X-shaped distribution. It’s still not
normal, but it’s a lot closer to the black line than the population distribution in Figure 8.9a.
When I increase the sample size to N “ 4, the sampling distribution of the mean is very close
to normal (Figure 8.9c), and by the time we reach a sample size of N “ 8 it’s almost perfectly
normal. In other words, as long as your sample size isn’t tiny, the sampling distribution of the
mean will be approximately normal no matter what your population distribution looks like!

On the basis of these figures, it seems like we have evidence for all of the following claims
about the sampling distribution of the mean.

• The mean of the sampling distribution is the same as the mean of the population

• The standard deviation of the sampling distribution (i.e., the standard error) gets smaller
as the sample size increases

• The shape of the sampling distribution becomes normal as the sample size increases

As it happens, not only are all of these statements true, there is a very famous theorem in
statistics that proves all three of them, known as the central limit theorem. Among other
things, the central limit theorem tells us that if the population distribution has mean µ and
standard deviation σ, then the sampling distribution of the mean also has mean µ and the
standard error of the mean is

SEM “
σ
?
N

Because we divide the population standard deviation σ by the square root of the sample size N ,
the SEM gets smaller as the sample size increases. It also tells us that the shape of the sampling
distribution becomes normal.4

This result is useful for all sorts of things. It tells us why large experiments are more reliable
than small ones, and because it gives us an explicit formula for the standard error it tells us how
much more reliable a large experiment is. It tells us why the normal distribution is, well, normal.
In real experiments, many of the things that we want to measure are actually averages of lots
of different quantities (e.g., arguably, “general” intelligence as measured by IQ is an average of

4As usual, I’m being a bit sloppy here. The central limit theorem is a bit more general than this section
implies. Like most introductory stats texts I’ve discussed one situation where the central limit theorem holds:
when you’re taking an average across lots of independent events drawn from the same distribution. However, the
central limit theorem is much broader than this. There’s a whole class of things called “U -statistics” for instance,
all of which satisfy the central limit theorem and therefore become normally distributed for large sample sizes.
The mean is one such statistic, but it’s not the only one.
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Figure 8.9: A demonstration of the central limit theorem. In panel a, we have a non-normal
population distribution, and panels b-d show the sampling distribution of the mean for samples
of size 2,4 and 8 for data drawn from the distribution in panel a. As you can see, even though the
original population distribution is non-normal the sampling distribution of the mean becomes
pretty close to normal by the time you have a sample of even 4 observations.
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a large number of “specific” skills and abilities), and when that happens, the averaged quantity
should follow a normal distribution. Because of this mathematical law, the normal distribution
pops up over and over again in real data.

8.4

Estimating population parameters

In all the IQ examples in the previous sections we actually knew the population parameters ahead
of time. As every undergraduate gets taught in their very first lecture on the measurement of
intelligence, IQ scores are defined to have mean 100 and standard deviation 15. However, this
is a bit of a lie. How do we know that IQ scores have a true population mean of 100? Well,
we know this because the people who designed the tests have administered them to very large
samples, and have then “rigged” the scoring rules so that their sample has mean 100. That’s
not a bad thing of course, it’s an important part of designing a psychological measurement.
However, it’s important to keep in mind that this theoretical mean of 100 only attaches to the
population that the test designers used to design the tests. Good test designers will actually
go to some lengths to provide “test norms” that can apply to lots of different populations (e.g.,
different age groups, nationalities etc).

This is very handy, but of course almost every research project of interest involves looking
at a different population of people to those used in the test norms. For instance, suppose you
wanted to measure the effect of low level lead poisoning on cognitive functioning in Port Pirie,
a South Australian industrial town with a lead smelter. Perhaps you decide that you want to
compare IQ scores among people in Port Pirie to a comparable sample in Whyalla, a South
Australian industrial town with a steel refinery.5 Regardless of which town you’re thinking
about, it doesn’t make a lot of sense simply to assume that the true population mean IQ is
100. No-one has, to my knowledge, produced sensible norming data that can automatically be
applied to South Australian industrial towns. We’re going to have to estimate the population
parameters from a sample of data. So how do we do this?

5Please note that if you were actually interested in this question you would need to be a lot more careful than
I’m being here. You can’t just compare IQ scores in Whyalla to Port Pirie and assume that any differences are
due to lead poisoning. Even if it were true that the only differences between the two towns corresponded to the
different refineries (and it isn’t, not by a long shot), you need to account for the fact that people already believe
that lead pollution causes cognitive deficits. If you recall back to Chapter 2, this means that there are different
demand effects for the Port Pirie sample than for the Whyalla sample. In other words, you might end up with an
illusory group difference in your data, caused by the fact that people think that there is a real difference. I find
it pretty implausible to think that the locals wouldn’t be well aware of what you were trying to do if a bunch
of researchers turned up in Port Pirie with lab coats and IQ tests, and even less plausible to think that a lot of
people would be pretty resentful of you for doing it. Those people won’t be as co-operative in the tests. Other
people in Port Pirie might be more motivated to do well because they don’t want their home town to look bad.
The motivational effects that would apply in Whyalla are likely to be weaker, because people don’t have any
concept of “iron ore poisoning” in the same way that they have a concept for “lead poisoning”. Psychology is
hard.
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8.4.1 Estimating the population mean

Suppose we go to Port Pirie and 100 of the locals are kind enough to sit through an IQ test.
The average IQ score among these people turns out to be X̄ “ 98.5. So what is the true mean IQ
for the entire population of Port Pirie? Obviously, we don’t know the answer to that question.
It could be 97.2, but it could also be 103.5. Our sampling isn’t exhaustive so we cannot give a
definitive answer. Nevertheless, if I was forced at gunpoint to give a “best guess” I’d have to
say 98.5. That’s the essence of statistical estimation: giving a best guess.

In this example estimating the unknown poulation parameter is straightforward. I calculate
the sample mean and I use that as my estimate of the population mean. It’s pretty simple,
and in the next section I’ll explain the statistical justification for this intuitive answer. However,
for the moment what I want to do is make sure you recognise that the sample statistic and the
estimate of the population parameter are conceptually different things. A sample statistic is a
description of your data, whereas the estimate is a guess about the population. With that in
mind, statisticians often different notation to refer to them. For instance, if the true population
mean is denoted µ, then we would use µ̂ to refer to our estimate of the population mean. In
contrast, the sample mean is denoted X̄ or sometimes m. However, in simple random samples
the estimate of the population mean is identical to the sample mean. If I observe a sample
mean of X̄ “ 98.5 then my estimate of the population mean is also µ̂ “ 98.5. To help keep the
notation clear, here’s a handy table:

Symbol What is it? Do we know what it is?

X̄ Sample mean Yes, calculated from the raw data
µ True population mean Almost never known for sure
µ̂ Estimate of the population mean Yes, identical to the sample mean in

simple random samples

8.4.2 Estimating the population standard deviation

So far, estimation seems pretty simple, and you might be wondering why I forced you to
read through all that stuff about sampling theory. In the case of the mean our estimate of the
population parameter (i.e. µ̂) turned out to identical to the corresponding sample statistic (i.e.
X̄). However, that’s not always true. To see this, let’s have a think about how to construct an
estimate of the population standard deviation, which we’ll denote σ̂. What shall we use
as our estimate in this case? Your first thought might be that we could do the same thing we
did when estimating the mean, and just use the sample statistic as our estimate. That’s almost
the right thing to do, but not quite.

Here’s why. Suppose I have a sample that contains a single observation. For this example, it
helps to consider a sample where you have no intuitions at all about what the true population
values might be, so let’s use something completely fictitious. Suppose the observation in question
measures the cromulence of my shoes. It turns out that my shoes have a cromulence of 20. So
here’s my sample:

20

- 168 -



This is a perfectly legitimate sample, even if it does have a sample size of N “ 1. It has a
sample mean of 20 and because every observation in this sample is equal to the sample mean
(obviously!) it has a sample standard deviation of 0. As a description of the sample this seems
quite right, the sample contains a single observation and therefore there is no variation observed
within the sample. A sample standard deviation of s “ 0 is the right answer here. But as an
estimate of the population standard deviation it feels completely insane, right? Admittedly, you
and I don’t know anything at all about what “cromulence” is, but we know something about
data. The only reason that we don’t see any variability in the sample is that the sample is too
small to display any variation! So, if you have a sample size of N “ 1 it feels like the right
answer is just to say “no idea at all”.

Notice that you don’t have the same intuition when it comes to the sample mean and the
population mean. If forced to make a best guess about the population mean it doesn’t feel
completely insane to guess that the population mean is 20. Sure, you probably wouldn’t feel
very confident in that guess because you have only the one observation to work with, but it’s
still the best guess you can make.

Let’s extend this example a little. Suppose I now make a second observation. My data set
now has N “ 2 observations of the cromulence of shoes, and the complete sample now looks like
this:

20, 22

This time around, our sample is just large enough for us to be able to observe some variability:
two observations is the bare minimum number needed for any variability to be observed! For
our new data set, the sample mean is X̄ “ 21, and the sample standard deviation is s “ 1.
What intuitions do we have about the population? Again, as far as the population mean goes,
the best guess we can possibly make is the sample mean. If forced to guess we’d probably guess
that the population mean cromulence is 21. What about the standard deviation? This is a little
more complicated. The sample standard deviation is only based on two observations, and if
you’re at all like me you probably have the intuition that, with only two observations we haven’t
given the population “enough of a chance” to reveal its true variability to us. It’s not just that
we suspect that the estimate is wrong, after all with only two observations we expect it to be
wrong to some degree. The worry is that the error is systematic. Specifically, we suspect that
the sample standard deviation is likely to be smaller than the population standard deviation.

This intuition feels right, but it would be nice to demonstrate this somehow. There are in
fact mathematical proofs that confirm this intuition, but unless you have the right mathematical
background they don’t help very much. Instead, what I’ll do is simulate the results of some
experiments. With that in mind, let’s return to our IQ studies. Suppose the true population
mean IQ is 100 and the standard deviation is 15. First I’ll conduct an experiment in which I
measure N “ 2 IQ scores and I’ll calculate the sample standard deviation. If I do this over
and over again, and plot a histogram of these sample standard deviations, what I have is the
sampling distribution of the standard deviation. I’ve plotted this distribution in Figure 8.10.
Even though the true population standard deviation is 15 the average of the sample standard
deviations is only 8.5. Notice that this is a very different result to what we found in Figure 8.8b
when we plotted the sampling distribution of the mean, where the population mean is 100 and
the average of the sample means is also 100.
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Figure 8.10: The sampling distribution of the sample standard deviation for a “two IQ scores”
experiment. The true population standard deviation is 15 (dashed line), but as you can see from
the histogram the vast majority of experiments will produce a much smaller sample standard
deviation than this. On average, this experiment would produce a sample standard deviation of
only 8.5, well below the true value! In other words, the sample standard deviation is a biased
estimate of the population standard deviation.
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Now let’s extend the simulation. Instead of restricting ourselves to the situation where
N “ 2, let’s repeat the exercise for sample sizes from 1 to 10. If we plot the average sample
mean and average sample standard deviation as a function of sample size, you get the results
shown in Figure 8.11. On the left hand side (panel a) I’ve plotted the average sample mean
and on the right hand side (panel b) I’ve plotted the average standard deviation. The two
plots are quite different:on average, the average sample mean is equal to the population mean.
It is an unbiased estimator, which is essentially the reason why your best estimate for the
population mean is the sample mean.6 The plot on the right is quite different: on average,
the sample standard deviation s is smaller than the population standard deviation σ. It is a
biased estimator. In other words, if we want to make a “best guess” σ̂ about the value of the
population standard deviation σ we should make sure our guess is a little bit larger than the
sample standard deviation s.

6I should note that I’m hiding something here. Unbiasedness is a desirable characteristic for an estimator, but
there are other things that matter besides bias. However, it’s beyond the scope of this book to discuss this in any
detail. I just want to draw your attention to the fact that there’s some hidden complexity here.
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Figure 8.11: An illustration of the fact that the sample mean is an unbiased estimator of the
population mean (panel a), but the sample standard deviation is a biased estimator of the
population standard deviation (panel b). For the figure I generated 10,000 simulated data sets
with 1 observation each, 10,000 more with 2 observations, and so on up to a sample size of 10.
Each data set consisted of fake IQ data, that is the data were normally distributed with a true
population mean of 100 and standard deviation 15. On average, the sample means turn out to
be 100, regardless of sample size (panel a). However, the sample standard deviations turn out
to be systematically too small (panel b), especially for small sample sizes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- 172 -



The fix to this systematic bias turns out to be very simple. Here’s how it works. Before
tackling the standard deviation let’s look at the variance. If you recall from Section 4.2, the
sample variance is defined to be the average of the squared deviations from the sample mean.
That is:

s2 “
1

N

N
ÿ

i“1

pXi ´ X̄q
2

The sample variance s2 is a biased estimator of the population variance σ2. But as it turns
out, we only need to make a tiny tweak to transform this into an unbiased estimator. All we
have to do is divide by N´1 rather than by N . If we do that, we obtain the following formula:

σ̂2 “
1

N ´ 1

N
ÿ

i“1

pXi ´ X̄q
2

This is an unbiased estimator of the population variance σ. Moreover, this finally answers
the question we raised in Section 4.2. Why did jamovi give us slightly different answers for
variance? It’s because jamovi calculates σ̂2 not s2, that’s why. A similar story applies for
the standard deviation. If we divide by N ´ 1 rather than N our estimate of the population
standard deviation becomes:

σ̂ “

g

f

f

e

1

N ´ 1

N
ÿ

i“1

pXi ´ X̄q2

and when we use jamovi’s built in standard deviation function, what it’s doing is calculating
σ̂, not s.a

aOkay, I’m hiding something else here. In a bizarre and counter-intuitive twist, since σ̂2 is an unbiased
estimator of σ2, you’d assume that taking the square root would be fine and σ̂ would be an unbiased estimator
of σ. Right? Weirdly, it’s not. There’s actually a subtle, tiny bias in σ̂. This is just bizarre: σ̂2 is an unbiased
estimate of the population variance σ2, but when you take the square root, it turns out that σ̂ is a biased
estimator of the population standard deviation σ. Weird, weird, weird, right? So, why is σ̂ biased? The technical
answer is “because non-linear transformations (e.g., the square root) don’t commute with expectation”, but
that just sounds like gibberish to everyone who hasn’t taken a course in mathematical statistics. Fortunately,
it doesn’t matter for practical purposes. The bias is small, and in real life everyone uses σ̂ and it works just
fine. Sometimes mathematics is just annoying.

One final point. In practice, a lot of people tend to refer to σ̂ (i.e., the formula where we
divide by N ´ 1) as the sample standard deviation. Technically, this is incorrect. The sample
standard deviation should be equal to s (i.e., the formula where we divide by N). These aren’t
the same thing, either conceptually or numerically. One is a property of the sample, the other
is an estimated characteristic of the population. However, in almost every real life application
what we actually care about is the estimate of the population parameter, and so people always
report σ̂ rather than s. This is the right number to report, of course. It’s just that people tend
to get a little bit imprecise about terminology when they write it up, because “sample standard
deviation” is shorter than “estimated population standard deviation”. It’s no big deal, and in
practice I do the same thing everyone else does. Nevertheless, I think it’s important to keep
the two concepts separate. It’s never a good idea to confuse “known properties of your sample”
with “guesses about the population from which it came”. The moment you start thinking that
s and σ̂ are the same thing, you start doing exactly that.
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To finish this section off, here’s another couple of tables to help keep things clear.

Symbol What is it? Do we know what it is?

s Sample standard deviation Yes, calculated from the raw data
σ Population standard deviation Almost never known for sure
σ̂ Estimate of the population Yes, but not the same as the

standard deviation sample standard deviation

Symbol What is it? Do we know what it is?

s2 Sample variance Yes, calculated from the raw data
σ2 Population variance Almost never known for sure
σ̂2 Estimate of the population Yes, but not the same as the

variance sample variance

8.5

Estimating a confidence interval

Statistics means never having to say you’re certain

– Unknown origin7

Up to this point in this chapter, I’ve outlined the basics of sampling theory which statisticians
rely on to make guesses about population parameters on the basis of a sample of data. As this
discussion illustrates, one of the reasons we need all this sampling theory is that every data set
leaves us with a some of uncertainty, so our estimates are never going to be perfectly accurate.
The thing that has been missing from this discussion is an attempt to quantify the amount of
uncertainty that attaches to our estimate. It’s not enough to be able guess that, say, the mean
IQ of undergraduate psychology students is 115 (yes, I just made that number up). We also
want to be able to say something that expresses the degree of certainty that we have in our
guess. For example, it would be nice to be able to say that there is a 95% chance that the true
mean lies between 109 and 121. The name for this is a confidence interval for the mean.

Armed with an understanding of sampling distributions, constructing a confidence interval
for the mean is actually pretty easy. Here’s how it works. Suppose the true population mean is µ
and the standard deviation is σ. I’ve just finished running my study that has N participants, and
the mean IQ among those participants is X̄. We know from our discussion of the central limit
theorem (Section 8.3.3) that the sampling distribution of the mean is approximately normal.
We also know from our discussion of the normal distribution Section 7.5 that there is a 95%

7This quote appears on a great many t-shirts and websites, and even gets a mention in a few academic pa-
pers (e.g., http://www.amstat.org/publications/jse/v10n3/friedman.html, but I’ve never found the original
source.
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chance that a normally-distributed quantity will fall within about two standard deviations of
the true mean.

To be more precise, the more correct answer is that there is a 95% chance that a normally-
distributed quantity will fall within 1.96 standard deviations of the true mean. Next, recall that
the standard deviation of the sampling distribution is referred to as the standard error, and the
standard error of the mean is written as SEM. When we put all these pieces together, we learn
that there is a 95% probability that the sample mean X̄ that we have actually observed lies
within 1.96 standard errors of the population mean.

Mathematically, we write this as:

µ´ p1.96ˆ SEMq ď X̄ ď µ` p1.96ˆ SEMq

where the SEM is equal to σ{
?
N and we can be 95% confident that this is true. However,

that’s not answering the question that we’re actually interested in. The equation above tells
us what we should expect about the sample mean given that we know what the population
parameters are. What we want is to have this work the other way around. We want to
know what we should believe about the population parameters, given that we have observed a
particular sample. However, it’s not too difficult to do this. Using a little high school algebra,
a sneaky way to rewrite our equation is like this:

X̄ ´ p1.96ˆ SEMq ď µ ď X̄ ` p1.96ˆ SEMq

What this is telling is is that the range of values has a 95% probability of containing the popu-
lation mean µ. We refer to this range as a 95% confidence interval, denoted CI95. In short,
as long as N is sufficiently large (large enough for us to believe that the sampling distribution
of the mean is normal), then we can write this as our formula for the 95% confidence interval:

CI95 “ X̄ ˘

ˆ

1.96ˆ
σ
?
N

˙

Of course, there’s nothing special about the number 1.96. It just happens to be the multiplier
you need to use if you want a 95% confidence interval. If I’d wanted a 70% confidence interval,
I would have used 1.04 as the magic number rather than 1.96.

8.5.1 A slight mistake in the formula

As usual, I lied. The formula that I’ve given above for the 95% confidence interval is ap-
proximately correct, but I glossed over an important detail in the discussion. Notice my formula
requires you to use the standard error of the mean, SEM, which in turn requires you to use the
true population standard deviation σ. Yet, in Section 8.4 I stressed the fact that we don’t actu-
ally know the true population parameters. Because we don’t know the true value of σ we have to
use an estimate of the population standard deviation σ̂ instead. This is pretty straightforward to
do, but this has the consequence that we need to use the percentiles of the t-distribution rather
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than the normal distribution to calculate our magic number, and the answer depends on the
sample size. When N is very large, we get pretty much the same value using the t-distribution
or the normal distribution: 1.96. But when N is small we get a much bigger number when we
use the t distribution: 2.26.

There’s nothing too mysterious about what’s happening here. Bigger values mean that the
confidence interval is wider, indicating that we’re more uncertain about what the true value of
µ actually is. When we use the t distribution instead of the normal distribution we get bigger
numbers, indicating that we have more uncertainty. And why do we have that extra uncertainty?
Well, because our estimate of the population standard deviation σ̂ might be wrong! If it’s wrong,
it implies that we’re a bit less sure about what our sampling distribution of the mean actually
looks like, and this uncertainty ends up getting reflected in a wider confidence interval.

8.5.2 Interpreting a confidence interval

The hardest thing about confidence intervals is understanding what they mean. Whenever
people first encounter confidence intervals, the first instinct is almost always to say that “there
is a 95% probability that the true mean lies inside the confidence interval”. It’s simple and it
seems to capture the common sense idea of what it means to say that I am “95% confident”. Un-
fortunately, it’s not quite right. The intuitive definition relies very heavily on your own personal
beliefs about the value of the population mean. I say that I am 95% confident because those
are my beliefs. In everyday life that’s perfectly okay, but if you remember back to Section 7.2,
you’ll notice that talking about personal belief and confidence is a Bayesian idea. However, con-
fidence intervals are not Bayesian tools. Like everything else in this chapter, confidence intervals
are frequentist tools, and if you are going to use frequentist methods then it’s not appropriate
to attach a Bayesian interpretation to them. If you use frequentist methods, you must adopt
frequentist interpretations!

Okay, so if that’s not the right answer, what is? Remember what we said about frequentist
probability. The only way we are allowed to make “probability statements” is to talk about
a sequence of events, and to count up the frequencies of different kinds of events. From that
perspective, the interpretation of a 95% confidence interval must have something to do with
replication. Specifically, if we replicated the experiment over and over again and computed
a 95% confidence interval for each replication, then 95% of those intervals would contain the
true mean. More generally, 95% of all confidence intervals constructed using this procedure
should contain the true population mean. This idea is illustrated in Figure 8.12, which shows
50 confidence intervals constructed for a “measure 10 IQ scores” experiment (top panel) and
another 50 confidence intervals for a “measure 25 IQ scores” experiment (bottom panel). A bit
fortuitously, across the 100 replications that I simulated, it turned out that exactly 95 of them
contained the true mean.

The critical difference here is that the Bayesian claim makes a probability statement about
the population mean (i.e., it refers to our uncertainty about the population mean), which is
not allowed under the frequentist interpretation of probability because you can’t “replicate” a
population! In the frequentist claim, the population mean is fixed and no probabilistic claims can
be made about it. Confidence intervals, however, are repeatable so we can replicate experiments.
Therefore a frequentist is allowed to talk about the probability that the confidence interval (a
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Figure 8.12: 95% confidence intervals. The top (panel a) shows 50 simulated replications of an
experiment in which we measure the IQs of 10 people. The dot marks the location of the sample
mean and the line shows the 95% confidence interval. In total 47 of the 50 confidence intervals
do contain the true mean (i.e., 100), but the three intervals marked with asterisks do not. The
lower graph (panel b) shows a similar simulation, but this time we simulate replications of an
experiment that measures the IQs of 25 people.
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random variable) contains the true mean, but is not allowed to talk about the probability that
the true population mean (not a repeatable event) falls within the confidence interval.

I know that this seems a little pedantic, but it does matter. It matters because the difference
in interpretation leads to a difference in the mathematics. There is a Bayesian alternative to
confidence intervals, known as credible intervals. In most situations credible intervals are quite
similar to confidence intervals, but in other cases they are drastically different. As promised,
though, I’ll talk more about the Bayesian perspective in Chapter 16.

8.5.3 Calculating confidence intervals in jamovi

As far as I can tell, jamovi does not (yet) include a simple way to calculate confidence
intervals for the mean as part of the ‘Descriptives’ functionality. But the ‘Descriptives’ do have
a check box for the S.E. Mean, so you can use this to calculate the lower 95% confidence interval
as:

Mean - (1.96 * S.E. Mean) , and the upper 95% confidence interval as:

Mean + (1.96 * S.E. Mean)

95% confidence intervals are the de facto standard in psychology. So, for example, if I load
the IQsim.omv file, check mean and S.E mean under ‘Descriptives, I can work out the confidence
interval associated with the simulated mean IQ:

Lower 95% CI = 99.68 - (1.96 * 0.15) = 99.39

Upper 95% CI = 99.68 + (1.96 * 0.15) = 99.98

So, in our simulated large sample data with N=10,000, the mean IQ score is 99.68 with a
95% CI from 99.39 to 99.98. Hopefully that’s fairly clear. So, although there currently is not
a straightforward way to get jamovi to calculate the confidence interval as part of the variable
‘Descriptives’ options, if we wanted to we could pretty easily work it out by hand.

Similarly, when it comes to plotting confidence intervals in jamovi, this is not (yet) available
as part of the ‘Descriptives’ options. However, when we get onto learning about specific statis-
tical tests, for example in Chapter 13, we will see that we can plot confidence intervals as part
of the data analysis. That’s pretty cool, so we’ll show you how to do that later on.

8.6

Summary

In this chapter I’ve covered two main topics. The first half of the chapter talks about sampling
theory, and the second half talks about how we can use sampling theory to construct estimates
of the population parameters. The section breakdown looks like this:

• Basic ideas about samples, sampling and populations (Section 8.1)

• Statistical theory of sampling: the law of large numbers (Section 8.2), sampling distribu-
tions and the central limit theorem (Section 8.3).

• Estimating means and standard deviations (Section 8.4)

• Estimating a confidence interval (Section 8.5)
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As always, there’s a lot of topics related to sampling and estimation that aren’t covered in this
chapter, but for an introductory psychology class this is fairly comprehensive I think. For most
applied researchers you won’t need much more theory than this. One big question that I haven’t
touched on in this chapter is what you do when you don’t have a simple random sample. There
is a lot of statistical theory you can draw on to handle this situation, but it’s well beyond the
scope of this book.
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9. Hypothesis testing

The process of induction is the process of assuming the simplest law that can be made
to harmonize with our experience. This process, however, has no logical foundation
but only a psychological one. It is clear that there are no grounds for believing that
the simplest course of events will really happen. It is an hypothesis that the sun will
rise tomorrow: and this means that we do not know whether it will rise.

– Ludwig Wittgenstein1

In the last chapter I discussed the ideas behind estimation, which is one of the two “big ideas”
in inferential statistics. It’s now time to turn our attention to the other big idea, which is
hypothesis testing. In its most abstract form, hypothesis testing is really a very simple idea. The
researcher has some theory about the world and wants to determine whether or not the data
actually support that theory. However, the details are messy and most people find the theory
of hypothesis testing to be the most frustrating part of statistics. The structure of the chapter
is as follows. First, I’ll describe how hypothesis testing works in a fair amount of detail, using a
simple running example to show you how a hypothesis test is “built”. I’ll try to avoid being too
dogmatic while doing so, and focus instead on the underlying logic of the testing procedure.2

Afterwards, I’ll spend a bit of time talking about the various dogmas, rules and heresies that
surround the theory of hypothesis testing.

9.1

A menagerie of hypotheses

Eventually we all succumb to madness. For me, that day will arrive once I’m finally promoted to
full professor. Safely ensconced in my ivory tower, happily protected by tenure, I will finally be

1The quote comes from Wittgenstein’s (1922) text, Tractatus Logico-Philosphicus.
2A technical note. The description below differs subtly from the standard description given in a lot of intro-

ductory texts. The orthodox theory of null hypothesis testing emerged from the work of Sir Ronald Fisher and
Jerzy Neyman in the early 20th century; but Fisher and Neyman actually had very different views about how it
should work. The standard treatment of hypothesis testing that most texts use is a hybrid of the two approaches.
The treatment here is a little more Neyman-style than the orthodox view, especially as regards the meaning of
the p value.
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able to take leave of my senses (so to speak) and indulge in that most thoroughly unproductive
line of psychological research, the search for extrasensory perception (ESP).3

Let’s suppose that this glorious day has come. My first study is a simple one in which I seek
to test whether clairvoyance exists. Each participant sits down at a table and is shown a card
by an experimenter. The card is black on one side and white on the other. The experimenter
takes the card away and places it on a table in an adjacent room. The card is placed black
side up or white side up completely at random, with the randomisation occurring only after the
experimenter has left the room with the participant. A second experimenter comes in and asks
the participant which side of the card is now facing upwards. It’s purely a one-shot experiment.
Each person sees only one card and gives only one answer, and at no stage is the participant
actually in contact with someone who knows the right answer. My data set, therefore, is very
simple. I have asked the question of N people and some number X of these people have given
the correct response. To make things concrete, let’s suppose that I have tested N “ 100 people
and X “ 62 of these got the answer right. A surprisingly large number, sure, but is it large
enough for me to feel safe in claiming I’ve found evidence for ESP? This is the situation where
hypothesis testing comes in useful. However, before we talk about how to test hypotheses, we
need to be clear about what we mean by hypotheses.

9.1.1 Research hypotheses versus statistical hypotheses

The first distinction that you need to keep clear in your mind is between research hypotheses
and statistical hypotheses. In my ESP study my overall scientific goal is to demonstrate that
clairvoyance exists. In this situation I have a clear research goal: I am hoping to discover
evidence for ESP. In other situations I might actually be a lot more neutral than that, so I
might say that my research goal is to determine whether or not clairvoyance exists. Regardless
of how I want to portray myself, the basic point that I’m trying to convey here is that a research
hypothesis involves making a substantive, testable scientific claim. If you are a psychologist
then your research hypotheses are fundamentally about psychological constructs. Any of the
following would count as research hypotheses:

• Listening to music reduces your ability to pay attention to other things. This is a claim
about the causal relationship between two psychologically meaningful concepts (listening
to music and paying attention to things), so it’s a perfectly reasonable research hypothesis.

• Intelligence is related to personality. Like the last one, this is a relational claim about two
psychological constructs (intelligence and personality), but the claim is weaker: correla-
tional not causal.

• Intelligence is speed of information processing. This hypothesis has a quite different char-
acter. It’s not actually a relational claim at all. It’s an ontological claim about the funda-
mental character of intelligence (and I’m pretty sure it’s wrong). It’s worth expanding on

3My apologies to anyone who actually believes in this stuff, but on my reading of the literature on ESP it’s
just not reasonable to think this is real. To be fair, though, some of the studies are rigorously designed, so it’s
actually an interesting area for thinking about psychological research design. And of course it’s a free country
so you can spend your own time and effort proving me wrong if you like, but I wouldn’t think that’s a terribly
practical use of your intellect.
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this one actually. It’s usually easier to think about how to construct experiments to test
research hypotheses of the form “does X affect Y?” than it is to address claims like “what
is X?” And in practice what usually happens is that you find ways of testing relational
claims that follow from your ontological ones. For instance, if I believe that intelligence is
speed of information processing in the brain, my experiments will often involve looking for
relationships between measures of intelligence and measures of speed. As a consequence
most everyday research questions do tend to be relational in nature, but they’re almost
always motivated by deeper ontological questions about the state of nature.

Notice that in practice, my research hypotheses could overlap a lot. My ultimate goal in the ESP
experiment might be to test an ontological claim like “ESP exists”, but I might operationally
restrict myself to a narrower hypothesis like “Some people can ‘see’ objects in a clairvoyant
fashion”. That said, there are some things that really don’t count as proper research hypotheses
in any meaningful sense:

• Love is a battlefield. This is too vague to be testable. Whilst it’s okay for a research
hypothesis to have a degree of vagueness to it, it has to be possible to operationalise your
theoretical ideas. Maybe I’m just not creative enough to see it, but I can’t see how this
can be converted into any concrete research design. If that’s true then this isn’t a scientific
research hypothesis, it’s a pop song. That doesn’t mean it’s not interesting. A lot of deep
questions that humans have fall into this category. Maybe one day science will be able to
construct testable theories of love, or to test to see if God exists, and so on. But right now
we can’t, and I wouldn’t bet on ever seeing a satisfying scientific approach to either.

• The first rule of tautology club is the first rule of tautology club. This is not a substantive
claim of any kind. It’s true by definition. No conceivable state of nature could possibly be
inconsistent with this claim. We say that this is an unfalsifiable hypothesis, and as such it
is outside the domain of science. Whatever else you do in science your claims must have
the possibility of being wrong.

• More people in my experiment will say “yes” than “no”. This one fails as a research
hypothesis because it’s a claim about the data set, not about the psychology (unless of
course your actual research question is whether people have some kind of “yes” bias!).
Actually, this hypothesis is starting to sound more like a statistical hypothesis than a
research hypothesis.

As you can see, research hypotheses can be somewhat messy at times and ultimately they
are scientific claims. Statistical hypotheses are neither of these two things. Statistical hy-
potheses must be mathematically precise and they must correspond to specific claims about the
characteristics of the data generating mechanism (i.e., the “population”). Even so, the intent is
that statistical hypotheses bear a clear relationship to the substantive research hypotheses that
you care about! For instance, in my ESP study my research hypothesis is that some people are
able to see through walls or whatever. What I want to do is to “map” this onto a statement
about how the data were generated. So let’s think about what that statement would be. The
quantity that I’m interested in within the experiment is P p“correct”q, the true-but-unknown
probability with which the participants in my experiment answer the question correctly. Let’s
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use the Greek letter θ (theta) to refer to this probability. Here are four different statistical
hypotheses:

• If ESP doesn’t exist and if my experiment is well designed then my participants are just
guessing. So I should expect them to get it right half of the time and so my statistical
hypothesis is that the true probability of choosing correctly is θ “ 0.5.

• Alternatively, suppose ESP does exist and participants can see the card. If that’s true
people will perform better than chance and the statistical hypothesis is that θ ą 0.5.

• A third possibility is that ESP does exist, but the colours are all reversed and people don’t
realise it (okay, that’s wacky, but you never know). If that’s how it works then you’d
expect people’s performance to be below chance. This would correspond to a statistical
hypothesis that θ ă 0.5.

• Finally, suppose ESP exists but I have no idea whether people are seeing the right colour
or the wrong one. In that case the only claim I could make about the data would be that
the probability of making the correct answer is not equal to 0.5. This corresponds to the
statistical hypothesis that θ ‰ 0.5.

All of these are legitimate examples of a statistical hypothesis because they are statements about
a population parameter and are meaningfully related to my experiment.

What this discussion makes clear, I hope, is that when attempting to construct a statistical
hypothesis test the researcher actually has two quite distinct hypotheses to consider. First, he
or she has a research hypothesis (a claim about psychology), and this then corresponds to a
statistical hypothesis (a claim about the data generating population). In my ESP example these
might be:

Dani’s research hypothesis: “ESP exists”
Dani’s statistical hypothesis: θ ‰ 0.5

And a key thing to recognise is this. A statistical hypothesis test is a test of the statistical
hypothesis, not the research hypothesis. If your study is badly designed then the link between
your research hypothesis and your statistical hypothesis is broken. To give a silly example,
suppose that my ESP study was conducted in a situation where the participant can actually see
the card reflected in a window. If that happens I would be able to find very strong evidence
that θ ‰ 0.5, but this would tell us nothing about whether “ESP exists”.

9.1.2 Null hypotheses and alternative hypotheses

So far, so good. I have a research hypothesis that corresponds to what I want to believe
about the world, and I can map it onto a statistical hypothesis that corresponds to what I
want to believe about how the data were generated. It’s at this point that things get somewhat
counter-intuitive for a lot of people. Because what I’m about to do is invent a new statistical
hypothesis (the “null” hypothesis, H0) that corresponds to the exact opposite of what I want
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to believe, and then focus exclusively on that almost to the neglect of the thing I’m actually
interested in (which is now called the “alternative” hypothesis, H1). In our ESP example, the
null hypothesis is that θ “ 0.5, since that’s what we’d expect if ESP didn’t exist. My hope, of
course, is that ESP is totally real and so the alternative to this null hypothesis is θ ‰ 0.5. In
essence, what we’re doing here is dividing up the possible values of θ into two groups: those
values that I really hope aren’t true (the null), and those values that I’d be happy with if they
turn out to be right (the alternative). Having done so, the important thing to recognise is that
the goal of a hypothesis test is not to show that the alternative hypothesis is (probably) true.
The goal is to show that the null hypothesis is (probably) false. Most people find this pretty
weird.

The best way to think about it, in my experience, is to imagine that a hypothesis test is
a criminal trial4, the trial of the null hypothesis. The null hypothesis is the defendant, the
researcher is the prosecutor, and the statistical test itself is the judge. Just like a criminal trial,
there is a presumption of innocence. The null hypothesis is deemed to be true unless you, the
researcher, can prove beyond a reasonable doubt that it is false. You are free to design your
experiment however you like (within reason, obviously!) and your goal when doing so is to
maximise the chance that the data will yield a conviction for the crime of being false. The catch
is that the statistical test sets the rules of the trial and those rules are designed to protect the
null hypothesis, specifically to ensure that if the null hypothesis is actually true the chances
of a false conviction are guaranteed to be low. This is pretty important. After all, the null
hypothesis doesn’t get a lawyer, and given that the researcher is trying desperately to prove it
to be false someone has to protect it.

9.2

Two types of errors

Before going into details about how a statistical test is constructed it’s useful to understand the
philosophy behind it. I hinted at it when pointing out the similarity between a null hypothesis
test and a criminal trial, but I should now be explicit. Ideally, we would like to construct our
test so that we never make any errors. Unfortunately, since the world is messy, this is never
possible. Sometimes you’re just really unlucky. For instance, suppose you flip a coin 10 times in
a row and it comes up heads all 10 times. That feels like very strong evidence for a conclusion
that the coin is biased, but of course there’s a 1 in 1024 chance that this would happen even
if the coin was totally fair. In other words, in real life we always have to accept that there’s a
chance that we made a mistake. As a consequence the goal behind statistical hypothesis testing
is not to eliminate errors, but to minimise them.

At this point, we need to be a bit more precise about what we mean by “errors”. First, let’s
state the obvious. It is either the case that the null hypothesis is true or that it is false, and our

4This analogy only works if you’re from an adversarial legal system like UK/US/Australia. As I understand
these things, the French inquisitorial system is quite different.
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test will either retain the null hypothesis or reject it.5 So, as the table below illustrates, after
we run the test and make our choice one of four things might have happened:

retain H0 reject H0

H0 is true correct decision error (type I)
H0 is false error (type II) correct decision

As a consequence there are actually two different types of error here. If we reject a null hypothesis
that is actually true then we have made a type I error. On the other hand, if we retain the
null hypothesis when it is in fact false then we have made a type II error.

Remember how I said that statistical testing was kind of like a criminal trial? Well, I meant
it. A criminal trial requires that you establish “beyond a reasonable doubt” that the defendant
did it. All of the evidential rules are (in theory, at least) designed to ensure that there’s (almost)
no chance of wrongfully convicting an innocent defendant. The trial is designed to protect the
rights of a defendant, as the English jurist William Blackstone famously said, it is “better that
ten guilty persons escape than that one innocent suffer.” In other words, a criminal trial doesn’t
treat the two types of error in the same way. Punishing the innocent is deemed to be much
worse than letting the guilty go free. A statistical test is pretty much the same. The single most
important design principle of the test is to control the probability of a type I error, to keep it
below some fixed probability. This probability, which is denoted α, is called the significance
level of the test. And I’ll say it again, because it is so central to the whole set-up, a hypothesis
test is said to have significance level α if the type I error rate is no larger than α.

So, what about the type II error rate? Well, we’d also like to keep those under control too,
and we denote this probability by β. However, it’s much more common to refer to the power
of the test, that is the probability with which we reject a null hypothesis when it really is false,
which is 1 ´ β. To help keep this straight, here’s the same table again but with the relevant
numbers added:

retain H0 reject H0

H0 is true 1´ α (probability of correct retention) α (type I error rate)
H0 is false β (type II error rate) 1´ β (power of the test)

A “powerful” hypothesis test is one that has a small value of β, while still keeping α fixed at
some (small) desired level. By convention, scientists make use of three different α levels: .05, .01

5An aside regarding the language you use to talk about hypothesis testing. First, one thing you really want
to avoid is the word “prove”. A statistical test really doesn’t prove that a hypothesis is true or false. Proof
implies certainty and, as the saying goes, statistics means never having to say you’re certain. On that point
almost everyone would agree. However, beyond that there’s a fair amount of confusion. Some people argue that
you’re only allowed to make statements like “rejected the null”, “failed to reject the null”, or possibly “retained
the null”. According to this line of thinking you can’t say things like “accept the alternative” or “accept the
null”. Personally I think this is too strong. In my opinion, this conflates null hypothesis testing with Karl
Popper’s falsificationist view of the scientific process. Whilst there are similarities between falsificationism and
null hypothesis testing, they aren’t equivalent. However, whilst I personally think it’s fine to talk about accepting
a hypothesis (on the proviso that “acceptance” doesn’t actually mean that it’s necessarily true, especially in the
case of the null hypothesis), many people will disagree. And more to the point, you should be aware that this
particular weirdness exists so that you’re not caught unawares by it when writing up your own results.
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and .001. Notice the asymmetry here; the tests are designed to ensure that the α level is kept
small but there’s no corresponding guarantee regarding β. We’d certainly like the type II error
rate to be small and we try to design tests that keep it small, but this is typically secondary
to the overwhelming need to control the type I error rate. As Blackstone might have said if he
were a statistician, it is “better to retain 10 false null hypotheses than to reject a single true
one”. To be honest, I don’t know that I agree with this philosophy. There are situations where
I think it makes sense, and situations where I think it doesn’t, but that’s neither here nor there.
It’s how the tests are built.

9.3

Test statistics and sampling distributions

At this point we need to start talking specifics about how a hypothesis test is constructed. To
that end, let’s return to the ESP example. Let’s ignore the actual data that we obtained, for
the moment, and think about the structure of the experiment. Regardless of what the actual
numbers are, the form of the data is that X out of N people correctly identified the colour of
the hidden card. Moreover, let’s suppose for the moment that the null hypothesis really is true,
that ESP doesn’t exist and the true probability that anyone picks the correct colour is exactly
θ “ 0.5. What would we expect the data to look like? Well, obviously we’d expect the proportion
of people who make the correct response to be pretty close to 50%. Or, to phrase this in more
mathematical terms, we’d say that X{N is approximately 0.5. Of course, we wouldn’t expect
this fraction to be exactly 0.5. If, for example, we tested N “ 100 people and X “ 53 of them
got the question right, we’d probably be forced to concede that the data are quite consistent
with the null hypothesis. On the other hand, if X “ 99 of our participants got the question
right then we’d feel pretty confident that the null hypothesis is wrong. Similarly, if only X “ 3
people got the answer right we’d be similarly confident that the null was wrong. Let’s be a
little more technical about this. We have a quantity X that we can calculate by looking at our
data. After looking at the value of X we make a decision about whether to believe that the null
hypothesis is correct, or to reject the null hypothesis in favour of the alternative. The name for
this thing that we calculate to guide our choices is a test statistic.

Having chosen a test statistic, the next step is to state precisely which values of the test
statistic would cause is to reject the null hypothesis, and which values would cause us to keep it.
In order to do so we need to determine what the sampling distribution of the test statistic
would be if the null hypothesis were actually true (we talked about sampling distributions earlier
in Section 8.3.1). Why do we need this? Because this distribution tells us exactly what values
of X our null hypothesis would lead us to expect. And, therefore, we can use this distribution
as a tool for assessing how closely the null hypothesis agrees with our data.

How do we actually determine the sampling distribution of the test statistic? For a lot of
hypothesis tests this step is actually quite complicated, and later on in the book you’ll see me
being slightly evasive about it for some of the tests (some of them I don’t even understand
myself). However, sometimes it’s very easy. And, fortunately for us, our ESP example provides
us with one of the easiest cases. Our population parameter θ is just the overall probability
that people respond correctly when asked the question, and our test statistic X is the count
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Figure 9.1: The sampling distribution for our test statistic X when the null hypothesis is true.
For our ESP scenario this is a binomial distribution. Not surprisingly, since the null hypothesis
says that the probability of a correct response is θ “ .5, the sampling distribution says that the
most likely value is 50 (out of 100) correct responses. Most of the probability mass lies between
40 and 60.
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of the number of people who did so out of a sample size of N . We’ve seen a distribution like
this before, in Section 7.4, and that’s exactly what the binomial distribution describes! So, to
use the notation and terminology that I introduced in that section, we would say that the null
hypothesis predicts that X is binomially distributed, which is written

X „ Binomialpθ,Nq

Since the null hypothesis states that θ “ 0.5 and our experiment has N “ 100 people, we have
the sampling distribution we need. This sampling distribution is plotted in Figure 9.1. No
surprises really, the null hypothesis says that X “ 50 is the most likely outcome, and it says
that we’re almost certain to see somewhere between 40 and 60 correct responses.
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9.4

Making decisions

Okay, we’re very close to being finished. We’ve constructed a test statistic (X) and we chose
this test statistic in such a way that we’re pretty confident that if X is close to N{2 then we
should retain the null, and if not we should reject it. The question that remains is this. Exactly
which values of the test statistic should we associate with the null hypothesis, and exactly which
values go with the alternative hypothesis? In my ESP study, for example, I’ve observed a value
of X “ 62. What decision should I make? Should I choose to believe the null hypothesis or the
alternative hypothesis?

9.4.1 Critical regions and critical values

To answer this question we need to introduce the concept of a critical region for the test
statistic X. The critical region of the test corresponds to those values of X that would lead us
to reject null hypothesis (which is why the critical region is also sometimes called the rejection
region). How do we find this critical region? Well, let’s consider what we know:

• X should be very big or very small in order to reject the null hypothesis.

• If the null hypothesis is true, the sampling distribution of X is Binomialp0.5, Nq.

• If α “ .05, the critical region must cover 5% of this sampling distribution.

It’s important to make sure you understand this last point. The critical region corresponds to
those values of X for which we would reject the null hypothesis, and the sampling distribution
in question describes the probability that we would obtain a particular value of X if the null
hypothesis were actually true. Now, let’s suppose that we chose a critical region that covers
20% of the sampling distribution, and suppose that the null hypothesis is actually true. What
would be the probability of incorrectly rejecting the null? The answer is of course 20%. And,
therefore, we would have built a test that had an α level of 0.2. If we want α “ .05, the critical
region is only allowed to cover 5% of the sampling distribution of our test statistic.

As it turns out those three things uniquely solve the problem. Our critical region consists of
the most extreme values, known as the tails of the distribution. This is illustrated in Figure 9.2.
If we want α “ .05 then our critical regions correspond to X ď 40 and X ě 60.6 That is, if the
number of people saying “true” is between 41 and 59, then we should retain the null hypothesis.
If the number is between 0 to 40, or between 60 to 100, then we should reject the null hypothesis.
The numbers 40 and 60 are often referred to as the critical values since they define the edges
of the critical region.

6Strictly speaking, the test I just constructed has α “ .057, which is a bit too generous. However, if I’d chosen
39 and 61 to be the boundaries for the critical region then the critical region only covers 3.5% of the distribution.
I figured that it makes more sense to use 40 and 60 as my critical values, and be willing to tolerate a 5.7% type I
error rate, since that’s as close as I can get to a value of α “ .05.
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Figure 9.2: The critical region associated with the hypothesis test for the ESP study, for a
hypothesis test with a significance level of α “ .05. The plot shows the sampling distribution
of X under the null hypothesis (i.e., same as Figure 9.1). The grey bars correspond to those
values of X for which we would retain the null hypothesis. The blue (darker shaded) bars show
the critical region, those values of X for which we would reject the null. Because the alternative
hypothesis is two sided (i.e., allows both θ ă .5 and θ ą .5), the critical region covers both tails
of the distribution. To ensure an α level of .05, we need to ensure that each of the two regions
encompasses 2.5% of the sampling distribution.
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At this point, our hypothesis test is essentially complete:

1. (1) we choose an α level (e.g., α “ .05;

2. (2) come up with some test statistic (e.g., X) that does a good job (in some meaningful
sense) of comparing H0 to H1;

3. (3) figure out the sampling distribution of the test statistic on the assumption that the
null hypothesis is true (in this case, binomial); and then

4. (4) calculate the critical region that produces an appropriate α level (0-40 and 60-100).

All that we have to do now is calculate the value of the test statistic for the real data (e.g.,
X “ 62) and then compare it to the critical values to make our decision. Since 62 is greater than
the critical value of 60 we would reject the null hypothesis. Or, to phrase it slightly differently,
we say that the test has produced a statistically significant result.
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9.4.2 A note on statistical “significance”

Like other occult techniques of divination, the statistical method has a private jargon
deliberately contrived to obscure its methods from non-practitioners.

– Attributed to G. O. Ashley7

A very brief digression is in order at this point, regarding the word “significant”. The concept
of statistical significance is actually a very simple one, but has a very unfortunate name. If the
data allow us to reject the null hypothesis, we say that “the result is statistically significant”,
which is often shortened to “the result is significant”. This terminology is rather old and dates
back to a time when “significant” just meant something like “indicated”, rather than its modern
meaning which is much closer to “important”. As a result, a lot of modern readers get very
confused when they start learning statistics because they think that a “significant result” must
be an important one. It doesn’t mean that at all. All that “statistically significant” means
is that the data allowed us to reject a null hypothesis. Whether or not the result is actually
important in the real world is a very different question, and depends on all sorts of other things.

9.4.3 The difference between one sided and two sided tests

There’s one more thing I want to point out about the hypothesis test that I’ve just constructed.
If we take a moment to think about the statistical hypotheses I’ve been using,

H0 : θ “ .5
H1 : θ ‰ .5

we notice that the alternative hypothesis covers both the possibility that θ ă .5 and the possibility
that θ ą .5. This makes sense if I really think that ESP could produce either better-than-
chance performance or worse-than-chance performance (and there are some people who think
that). In statistical language this is an example of a two-sided test. It’s called this because
the alternative hypothesis covers the area on both “sides” of the null hypothesis, and as a
consequence the critical region of the test covers both tails of the sampling distribution (2.5%
on either side if α “ .05), as illustrated earlier in Figure 9.2.

However, that’s not the only possibility. I might only be willing to believe in ESP if it
produces better than chance performance. If so, then my alternative hypothesis would only
covers the possibility that θ ą .5, and as a consequence the null hypothesis now becomes θ ď .5

H0 : θ ď .5
H1 : θ ą .5

When this happens, we have what’s called a one-sided test and the critical region only covers
one tail of the sampling distribution. This is illustrated in Figure 9.3.
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Figure 9.3: The critical region for a one sided test. In this case, the alternative hypothesis is
that θ ą .5 so we would only reject the null hypothesis for large values of X. As a consequence,
the critical region only covers the upper tail of the sampling distribution, specifically the upper
5% of the distribution. Contrast this to the two-sided version in Figure 9.2.
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9.5

The p value of a test

In one sense, our hypothesis test is complete. We’ve constructed a test statistic, figured out its
sampling distribution if the null hypothesis is true, and then constructed the critical region for
the test. Nevertheless, I’ve actually omitted the most important number of all, the p value.
It is to this topic that we now turn. There are two somewhat different ways of interpreting
a p value, one proposed by Sir Ronald Fisher and the other by Jerzy Neyman. Both versions
are legitimate, though they reflect very different ways of thinking about hypothesis tests. Most
introductory textbooks tend to give Fisher’s version only, but I think that’s a bit of a shame. To
my mind, Neyman’s version is cleaner and actually better reflects the logic of the null hypothesis
test. You might disagree though, so I’ve included both. I’ll start with Neyman’s version.

7The internet seems fairly convinced that Ashley said this, though I can’t for the life of me find anyone willing
to give a source for the claim.
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9.5.1 A softer view of decision making

One problem with the hypothesis testing procedure that I’ve described is that it makes no dis-
tinction at all between a result that is “barely significant” and those that are “highly significant”.
For instance, in my ESP study the data I obtained only just fell inside the critical region, so
I did get a significant effect but it was a pretty near thing. In contrast, suppose that I’d run
a study in which X “ 97 out of my N “ 100 participants got the answer right. This would
obviously be significant too but my a much larger margin, such that there’s really no ambiguity
about this at all. The procedure that I have already described makes no distinction between
the two. If I adopt the standard convention of allowing α “ .05 as my acceptable Type I error
rate, then both of these are significant results.

This is where the p value comes in handy. To understand how it works, let’s suppose that
we ran lots of hypothesis tests on the same data set, but with a different value of α in each case.
When we do that for my original ESP data what we’d get is something like this

Value of α 0.05 0.04 0.03 0.02 0.01

Reject the null? Yes Yes Yes No No

When we test the ESP data (X “ 62 successes out of N “ 100 observations), using α levels of
.03 and above, we’d always find ourselves rejecting the null hypothesis. For α levels of .02 and
below we always end up retaining the null hypothesis. Therefore, somewhere between .02 and
.03 there must be a smallest value of α that would allow us to reject the null hypothesis for this
data. This is the p value. As it turns out the ESP data has p “ .021. In short,

p is defined to be the smallest Type I error rate (α) that you have to be willing to
tolerate if you want to reject the null hypothesis.

If it turns out that p describes an error rate that you find intolerable, then you must retain
the null. If you’re comfortable with an error rate equal to p, then it’s okay to reject the null
hypothesis in favour of your preferred alternative.

In effect, p is a summary of all the possible hypothesis tests that you could have run, taken
across all possible α values. And as a consequence it has the effect of “softening” our decision
process. For those tests in which p ď α you would have rejected the null hypothesis, whereas
for those tests in which p ą α you would have retained the null. In my ESP study I obtained
X “ 62 and as a consequence I’ve ended up with p “ .021. So the error rate I have to tolerate
is 2.1%. In contrast, suppose my experiment had yielded X “ 97. What happens to my p value
now? This time it’s shrunk to p “ 1.36ˆ10´25, which is a tiny, tiny8 Type I error rate. For this
second case I would be able to reject the null hypothesis with a lot more confidence, because I
only have to be “willing” to tolerate a type I error rate of about 1 in 10 trillion trillion in order
to justify my decision to reject.

8That’s p “ .000000000000000000000000136 for folks that don’t like scientific notation!
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9.5.2 The probability of extreme data

The second definition of the p-value comes from Sir Ronald Fisher, and it’s actually this one
that you tend to see in most introductory statistics textbooks. Notice how, when I constructed
the critical region, it corresponded to the tails (i.e., extreme values) of the sampling distribution?
That’s not a coincidence, almost all “good” tests have this characteristic (good in the sense of
minimising our type II error rate, β). The reason for that is that a good critical region almost
always corresponds to those values of the test statistic that are least likely to be observed if the
null hypothesis is true. If this rule is true, then we can define the p-value as the probability that
we would have observed a test statistic that is at least as extreme as the one we actually did
get. In other words, if the data are extremely implausible according to the null hypothesis, then
the null hypothesis is probably wrong.

9.5.3 A common mistake

Okay, so you can see that there are two rather different but legitimate ways to interpret the
p value, one based on Neyman’s approach to hypothesis testing and the other based on Fisher’s.
Unfortunately, there is a third explanation that people sometimes give, especially when they’re
first learning statistics, and it is absolutely and completely wrong. This mistaken approach is
to refer to the p value as “the probability that the null hypothesis is true”. It’s an intuitively
appealing way to think, but it’s wrong in two key respects. First, null hypothesis testing is
a frequentist tool and the frequentist approach to probability does not allow you to assign
probabilities to the null hypothesis. According to this view of probability, the null hypothesis
is either true or it is not, it cannot have a “5% chance” of being true. Second, even within the
Bayesian approach, which does let you assign probabilities to hypotheses, the p value would not
correspond to the probability that the null is true. This interpretation is entirely inconsistent
with the mathematics of how the p value is calculated. Put bluntly, despite the intuitive appeal
of thinking this way, there is no justification for interpreting a p value this way. Never do it.

9.6

Reporting the results of a hypothesis test

When writing up the results of a hypothesis test there’s usually several pieces of information that
you need to report, but it varies a fair bit from test to test. Throughout the rest of the book I’ll
spend a little time talking about how to report the results of different tests (see Section 10.1.9 for
a particularly detailed example), so that you can get a feel for how it’s usually done. However,
regardless of what test you’re doing, the one thing that you always have to do is say something
about the p value and whether or not the outcome was significant.

The fact that you have to do this is unsurprising, it’s the whole point of doing the test.
What might be surprising is the fact that there is some contention over exactly how you’re
supposed to do it. Leaving aside those people who completely disagree with the entire framework
underpinning null hypothesis testing, there’s a certain amount of tension that exists regarding
whether or not to report the exact p value that you obtained, or if you should state only that
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p ă α for a significance level that you chose in advance (e.g., p ă .05).

9.6.1 The issue

To see why this is an issue, the key thing to recognise is that p values are terribly convenient.
In practice, the fact that we can compute a p value means that we don’t actually have to specify
any α level at all in order to run the test. Instead, what you can do is calculate your p value and
interpret it directly. If you get p “ .062, then it means that you’d have to be willing to tolerate
a Type I error rate of 6.2% to justify rejecting the null. If you personally find 6.2% intolerable
then you retain the null. Therefore, the argument goes, why don’t we just report the actual p
value and let the reader make up their own minds about what an acceptable Type I error rate
is? This approach has the big advantage of “softening” the decision making process. In fact, if
you accept the Neyman definition of the p value, that’s the whole point of the p value. We no
longer have a fixed significance level of α “ .05 as a bright line separating “accept” from “reject”
decisions, and this removes the rather pathological problem of being forced to treat p “ .051 in
a fundamentally different way to p “ .049.

This flexibility is both the advantage and the disadvantage to the p value. The reason why a
lot of people don’t like the idea of reporting an exact p value is that it gives the researcher a bit
too much freedom. In particular, it lets you change your mind about what error tolerance you’re
willing to put up with after you look at the data. For instance, consider my ESP experiment.
Suppose I ran my test and ended up with a p value of .09. Should I accept or reject? Now, to
be honest, I haven’t yet bothered to think about what level of Type I error I’m “really” willing
to accept. I don’t have an opinion on that topic. But I do have an opinion about whether or
not ESP exists, and I definitely have an opinion about whether my research should be published
in a reputable scientific journal. And amazingly, now that I’ve looked at the data I’m starting
to think that a 9% error rate isn’t so bad, especially when compared to how annoying it would
be to have to admit to the world that my experiment has failed. So, to avoid looking like I just
made it up after the fact, I now say that my α is .1, with the argument that a 10% type I error
rate isn’t too bad and at that level my test is significant! I win.

In other words, the worry here is that I might have the best of intentions, and be the most
honest of people, but the temptation to just “shade” things a little bit here and there is really,
really strong. As anyone who has ever run an experiment can attest, it’s a long and difficult
process and you often get very attached to your hypotheses. It’s hard to let go and admit the
experiment didn’t find what you wanted it to find. And that’s the danger here. If we use the
“raw” p-value, people will start interpreting the data in terms of what they want to believe, not
what the data are actually saying and, if we allow that, why are we even bothering to do science
at all? Why not let everyone believe whatever they like about anything, regardless of what the
facts are? Okay, that’s a bit extreme, but that’s where the worry comes from. According to this
view, you really must specify your α value in advance and then only report whether the test was
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Table 9.1: A commonly adopted convention for reporting p values: in many places it is conven-
tional to report one of four different things (e.g., p ă .05) as shown below. I’ve included the
“significance stars” notation (i.e., a * indicates p ă .05) because you sometimes see this notation
produced by statistical software. It’s also worth noting that some people will write n.s. (not
significant) rather than p ą .05.

Usual notation Signif. stars English translation The null is...

p ą .05 The test wasn’t significant Retained

p ă .05 * The test was significant at α “ .05 Rejected
but not at α “ .01 or α “ .001.

p ă .01 ** The test was significant at α “ .05 Rejected
and α “ .01 but not at α “ .001.

p ă .001 *** The test was significant at all levels Rejected

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

significant or not. It’s the only way to keep ourselves honest.

9.6.2 Two proposed solutions

In practice, it’s pretty rare for a researcher to specify a single α level ahead of time. Instead,
the convention is that scientists rely on three standard significance levels: .05, .01 and .001.
When reporting your results, you indicate which (if any) of these significance levels allow you
to reject the null hypothesis. This is summarised in Table 9.1. This allows us to soften the
decision rule a little bit, since p ă .01 implies that the data meet a stronger evidential standard
than p ă .05 would. Nevertheless, since these levels are fixed in advance by convention, it does
prevent people choosing their α level after looking at the data.

Nevertheless, quite a lot of people still prefer to report exact p values. To many people, the
advantage of allowing the reader to make up their own mind about how to interpret p “ .06
outweighs any disadvantages. In practice, however, even among those researchers who prefer
exact p values it is quite common to just write p ă .001 instead of reporting an exact value for
small p. This is in part because a lot of software doesn’t actually print out the p value when it’s
that small (e.g., SPSS just writes p “ .000 whenever p ă .001), and in part because a very small
p value can be kind of misleading. The human mind sees a number like .0000000001 and it’s hard
to suppress the gut feeling that the evidence in favour of the alternative hypothesis is a near
certainty. In practice however, this is usually wrong. Life is a big, messy, complicated thing, and
every statistical test ever invented relies on simplifications, approximations and assumptions. As
a consequence, it’s probably not reasonable to walk away from any statistical analysis with a
feeling of confidence stronger than p ă .001 implies. In other words, p ă .001 is really code for
“as far as this test is concerned, the evidence is overwhelming.”

In light of all this, you might be wondering exactly what you should do. There’s a fair bit of
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contradictory advice on the topic, with some people arguing that you should report the exact p
value, and other people arguing that you should use the tiered approach illustrated in Table 9.1.
As a result, the best advice I can give is to suggest that you look at papers/reports written in
your field and see what the convention seems to be. If there doesn’t seem to be any consistent
pattern, then use whichever method you prefer.

9.7

Running the hypothesis test in practice

At this point some of you might be wondering if this is a “real” hypothesis test, or just a toy
example that I made up. It’s real. In the previous discussion I built the test from first principles,
thinking that it was the simplest possible problem that you might ever encounter in real life.
However, this test already exists. It’s called the binomial test, and it’s implemented by jamovi
as one of the statistical analyses available when you hit the ‘Frequencies’ button. To test the
null hypothesis that the response probability is one-half p = .5,9 and using data in which x =

62 of n = 100 people made the correct response, available in the binomialtest.omv data file, we
get the results shown in Figure 9.4.

Figure 9.4: Binomial test analysis and results in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Right now, this output looks pretty unfamiliar to you, but you can see that it’s telling you
more or less the right things. Specifically, the p-value of 0.02 is less than the usual choice of
α “ .05, so you can reject the null. We’ll talk a lot more about how to read this sort of output
as we go along, and after a while you’ll hopefully find it quite easy to read and understand.

9Note that the p here has nothing to do with a p value. The p argument in the jamovi binomial test corresponds
to the probability of making a correct response, according to the null hypothesis. In other words, it’s the θ value.
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9.8

Effect size, sample size and power

In previous sections I’ve emphasised the fact that the major design principle behind statistical
hypothesis testing is that we try to control our Type I error rate. When we fix α “ .05 we are
attempting to ensure that only 5% of true null hypotheses are incorrectly rejected. However, this
doesn’t mean that we don’t care about Type II errors. In fact, from the researcher’s perspective,
the error of failing to reject the null when it is actually false is an extremely annoying one. With
that in mind, a secondary goal of hypothesis testing is to try to minimise β, the Type II error
rate, although we don’t usually talk in terms of minimising Type II errors. Instead, we talk
about maximising the power of the test. Since power is defined as 1´ β, this is the same thing.

9.8.1 The power function

0 20 40 60 80 100

Number of Correct Responses (X)

lower critical region
(2.5% of the distribution)

upper critical region
(2.5% of the distribution)

Sampling Distribution for X if θ=.55

Figure 9.5: Sampling distribution under the alternative hypothesis for a population parameter
value of θ “ 0.55. A reasonable proportion of the distribution lies in the rejection region.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let’s take a moment to think about what a Type II error actually is. A Type II error
occurs when the alternative hypothesis is true, but we are nevertheless unable to reject the null
hypothesis. Ideally, we’d be able to calculate a single number β that tells us the Type II error
rate, in the same way that we can set α “ .05 for the Type I error rate. Unfortunately, this is a
lot trickier to do. To see this, notice that in my ESP study the alternative hypothesis actually
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corresponds to lots of possible values of θ. In fact, the alternative hypothesis corresponds to
every value of θ except 0.5. Let’s suppose that the true probability of someone choosing the
correct response is 55% (i.e., θ “ .55). If so, then the true sampling distribution for X is not
the same one that the null hypothesis predicts, as the most likely value for X is now 55 out of
100. Not only that, the whole sampling distribution has now shifted, as shown in Figure 9.5.
The critical regions, of course, do not change. By definition the critical regions are based on
what the null hypothesis predicts. What we’re seeing in this figure is the fact that when the null
hypothesis is wrong, a much larger proportion of the sampling distribution distribution falls in
the critical region. And of course that’s what should happen. The probability of rejecting the
null hypothesis is larger when the null hypothesis is actually false! However θ “ .55 is not the
only possibility consistent with the alternative hypothesis. Let’s instead suppose that the true
value of θ is actually 0.7. What happens to the sampling distribution when this occurs? The
answer, shown in Figure 9.6, is that almost the entirety of the sampling distribution has now
moved into the critical region. Therefore, if θ “ 0.7, the probability of us correctly rejecting the
null hypothesis (i.e., the power of the test) is much larger than if θ “ 0.55. In short, while θ “ .55
and θ “ .70 are both part of the alternative hypothesis, the Type II error rate is different.

0 20 40 60 80 100

Number of Correct Responses (X)

lower critical region
(2.5% of the distribution)

upper critical region
(2.5% of the distribution)

Sampling Distribution for X if θ=.70

Figure 9.6: Sampling distribution under the alternative hypothesis for a population parameter
value of θ “ 0.70. Almost all of the distribution lies in the rejection region.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What all this means is that the power of a test (i.e., 1´ β) depends on the true value of θ.
To illustrate this, I’ve calculated the expected probability of rejecting the null hypothesis for all
values of θ, and plotted it in Figure 9.7. This plot describes what is usually called the power
function of the test. It’s a nice summary of how good the test is, because it actually tells you
the power (1 ´ β) for all possible values of θ. As you can see, when the true value of θ is very
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Figure 9.7: The probability that we will reject the null hypothesis, plotted as a function of the
true value of θ. Obviously, the test is more powerful (greater chance of correct rejection) if the
true value of θ is very different from the value that the null hypothesis specifies (i.e., θ “ .5).
Notice that when θ actually is equal to .5 (plotted as a black dot), the null hypothesis is in fact
true and rejecting the null hypothesis in this instance would be a Type I error.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

close to 0.5, the power of the test drops very sharply, but when it is further away, the power is
large.

9.8.2 Effect size

Since all models are wrong the scientist must be alert to what is importantly wrong.
It is inappropriate to be concerned with mice when there are tigers abroad

– George Box (Box 1976, p. 792)

The plot shown in Figure 9.7 captures a fairly basic point about hypothesis testing. If the
true state of the world is very different from what the null hypothesis predicts then your power
will be very high, but if the true state of the world is similar to the null (but not identical) then
the power of the test is going to be very low. Therefore, it’s useful to be able to have some way
of quantifying how “similar” the true state of the world is to the null hypothesis. A statistic that
does this is called a measure of effect size (e.g., Cohen 1988; Ellis 2010). Effect size is defined
slightly differently in different contexts (and so this section just talks in general terms) but the
qualitative idea that it tries to capture is always the same. How big is the difference between the
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Table 9.2: A crude guide to understanding the relationship between statistical significance and
effect sizes. Basically, if you don’t have a significant result then the effect size is pretty mean-
ingless because you don’t have any evidence that it’s even real. On the other hand, if you do
have a significant effect but your effect size is small then there’s a pretty good chance that your
result (although real) isn’t all that interesting. However, this guide is very crude. It depends
a lot on what exactly you’re studying. Small effects can be of massive practical importance in
some situations. So don’t take this table too seriously. It’s a rough guide at best.

big effect size small effect size

significant result difference is real, and difference is real, but
of practical importance might not be interesting

non-significant result no effect observed no effect observed

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

true population parameters and the parameter values that are assumed by the null hypothesis?
In our ESP example, if we let θ0 “ 0.5 denote the value assumed by the null hypothesis and let θ
denote the true value, then a simple measure of effect size could be something like the difference
between the true value and null (i.e., θ ´ θ0), or possibly just the magnitude of this difference,
abspθ ´ θ0q.

Why calculate effect size? Let’s assume that you’ve run your experiment, collected the data,
and gotten a significant effect when you ran your hypothesis test. Isn’t it enough just to say
that you’ve gotten a significant effect? Surely that’s the point of hypothesis testing? Well, sort
of. Yes, the point of doing a hypothesis test is to try to demonstrate that the null hypothesis is
wrong, but that’s hardly the only thing we’re interested in. If the null hypothesis claimed that
θ “ .5 and we show that it’s wrong, we’ve only really told half of the story. Rejecting the null
hypothesis implies that we believe that θ ‰ .5, but there’s a big difference between θ “ .51 and
θ “ .8. If we find that θ “ .8, then not only have we found that the null hypothesis is wrong,
it appears to be very wrong. On the other hand, suppose we’ve successfully rejected the null
hypothesis, but it looks like the true value of θ is only .51 (this would only be possible with a
very large study). Sure, the null hypothesis is wrong but it’s not at all clear that we actually
care because the effect size is so small. In the context of my ESP study we might still care
since any demonstration of real psychic powers would actually be pretty cool10, but in other
contexts a 1% difference usually isn’t very interesting, even if it is a real difference. For instance,
suppose we’re looking at differences in high school exam scores between males and females and
it turns out that the female scores are 1% higher on average than the males. If I’ve got data
from thousands of students then this difference will almost certainly be statistically significant,
but regardless of how small the p value is it’s just not very interesting. You’d hardly want to go
around proclaiming a crisis in boys education on the basis of such a tiny difference would you?
It’s for this reason that it is becoming more standard (slowly, but surely) to report some kind of

10Although in practice a very small effect size is worrying because even very minor methodological flaws might
be responsible for the effect, and in practice no experiment is perfect so there are always methodological issues
to worry about.
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standard measure of effect size along with the the results of the hypothesis test. The hypothesis
test itself tells you whether you should believe that the effect you have observed is real (i.e., not
just due to chance), whereas the effect size tells you whether or not you should care.

9.8.3 Increasing the power of your study

Not surprisingly, scientists are fairly obsessed with maximising the power of their experi-
ments. We want our experiments to work and so we want to maximise the chance of rejecting
the null hypothesis if it is false (and of course we usually want to believe that it is false!). As
we’ve seen, one factor that influences power is the effect size. So the first thing you can do
to increase your power is to increase the effect size. In practice, what this means is that you
want to design your study in such a way that the effect size gets magnified. For instance, in my
ESP study I might believe that psychic powers work best in a quiet, darkened room with fewer
distractions to cloud the mind. Therefore I would try to conduct my experiments in just such
an environment. If I can strengthen people’s ESP abilities somehow then the true value of θ will
go up11 and therefore my effect size will be larger. In short, clever experimental design is one
way to boost power, because it can alter the effect size.

Unfortunately, it’s often the case that even with the best of experimental designs you may
have only a small effect. Perhaps, for example, ESP really does exist but even under the best of
conditions it’s very very weak. Under those circumstances your best bet for increasing power is
to increase the sample size. In general, the more observations that you have available, the more
likely it is that you can discriminate between two hypotheses. If I ran my ESP experiment with
10 participants and 7 of them correctly guessed the colour of the hidden card you wouldn’t be
terribly impressed. But if I ran it with 10,000 participants, and 7,000 of them got the answer
right, you would be much more likely to think I had discovered something. In other words,
power increases with the sample size. This is illustrated in Figure 9.8, which shows the power of
the test for a true parameter of θ “ 0.7 for all sample sizes N from 1 to 100, where I’m assuming
that the null hypothesis predicts that θ0 “ 0.5.

Because power is important, whenever you’re contemplating running an experiment it would
be pretty useful to know how much power you’re likely to have. It’s never possible to know
for sure since you can’t possibly know what your real effect size is. However, it’s often (well,
sometimes) possible to guess how big it should be. If so, you can guess what sample size you need!
This idea is called power analysis, and if it’s feasible to do it then it’s very helpful. It can tell
you something about whether you have enough time or money to be able to run the experiment
successfully. It’s increasingly common to see people arguing that power analysis should be a
required part of experimental design, so it’s worth knowing about. I don’t discuss power analysis
in this book, however. This is partly for a boring reason and partly for a substantive one. The
boring reason is that I haven’t had time to write about power analysis yet. The substantive one
is that I’m still a little suspicious of power analysis. Speaking as a researcher, I have very rarely
found myself in a position to be able to do one. It’s either the case that (a) my experiment is

11Notice that the true population parameter θ doesn’t necessarily correspond to an immutable fact of nature.
In this context θ is just the true probability that people would correctly guess the colour of the card in the other
room. As such the population parameter can be influenced by all sorts of things. Of course, this is all on the
assumption that ESP actually exists!
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Figure 9.8: The power of our test plotted as a function of the sample size N . In this case, the
true value of θ is 0.7 but the null hypothesis is that θ “ 0.5. Overall, larger N means greater
power. (The small zig-zags in this function occur because of some odd interactions between
θ, α and the fact that the binomial distribution is discrete, it doesn’t matter for any serious
purpose).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a bit non-standard and I don’t know how to define effect size properly, or (b) I literally have so
little idea about what the effect size will be that I wouldn’t know how to interpret the answers.
Not only that, after extensive conversations with someone who does stats consulting for a living
(my wife, as it happens), I can’t help but notice that in practice the only time anyone ever asks
her for a power analysis is when she’s helping someone write a grant application. In other words,
the only time any scientist ever seems to want a power analysis in real life is when they’re being
forced to do it by bureaucratic process. It’s not part of anyone’s day to day work. In short,
I’ve always been of the view that whilst power is an important concept, power analysis is not
as useful as people make it sound, except in the rare cases where (a) someone has figured out
how to calculate power for your actual experimental design and (b) you have a pretty good idea
what the effect size is likely to be.12 Maybe other people have had better experiences than me,
but I’ve personally never been in a situation where both (a) and (b) were true. Maybe I’ll be
convinced otherwise in the future, and probably a future version of this book would include a

12One possible exception to this is when researchers study the effectiveness of a new medical treatment and
they specify in advance what an important effect size would be to detect, for example over and above any existing
treatment. In this way some information about the potential value of a new treatment can be obtained.
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more detailed discussion of power analysis, but for now this is about as much as I’m comfortable
saying about the topic.

9.9

Some issues to consider

What I’ve described to you in this chapter is the orthodox framework for null hypothesis signif-
icance testing (NHST). Understanding how NHST works is an absolute necessity because it has
been the dominant approach to inferential statistics ever since it came to prominence in the early
20th century. It’s what the vast majority of working scientists rely on for their data analysis, so
even if you hate it you need to know it. However, the approach is not without problems. There
are a number of quirks in the framework, historical oddities in how it came to be, theoretical
disputes over whether or not the framework is right, and a lot of practical traps for the unwary.
I’m not going to go into a lot of detail on this topic, but I think it’s worth briefly discussing a
few of these issues.

9.9.1 Neyman versus Fisher

The first thing you should be aware of is that orthodox NHST is actually a mash-up of two
rather different approaches to hypothesis testing, one proposed by Sir Ronald Fisher and the
other proposed by Jerzy Neyman (see Lehmann 2011, for a historical summary). The history is
messy because Fisher and Neyman were real people whose opinions changed over time, and at
no point did either of them offer “the definitive statement” of how we should interpret their work
many decades later. That said, here’s a quick summary of what I take these two approaches to
be.

First, let’s talk about Fisher’s approach. As far as I can tell, Fisher assumed that you
only had the one hypothesis (the null) and that what you want to do is find out if the null
hypothesis is inconsistent with the data. From his perspective, what you should do is check
to see if the data are “sufficiently unlikely” according to the null. In fact, if you remember
back to our earlier discussion, that’s how Fisher defines the p-value. According to Fisher, if the
null hypothesis provided a very poor account of the data then you could safely reject it. But,
since you don’t have any other hypotheses to compare it to, there’s no way of “accepting the
alternative” because you don’t necessarily have an explicitly stated alternative. That’s more or
less all there is to it.

In contrast, Neyman thought that the point of hypothesis testing was as a guide to action
and his approach was somewhat more formal than Fisher’s. His view was that there are multiple
things that you could do (accept the null or accept the alternative) and the point of the test
was to tell you which one the data support. From this perspective, it is critical to specify your
alternative hypothesis properly. If you don’t know what the alternative hypothesis is, then you
don’t know how powerful the test is, or even which action makes sense. His framework genuinely
requires a competition between different hypotheses. For Neyman, the p value didn’t directly
measure the probability of the data (or data more extreme) under the null, it was more of an
abstract description about which “possible tests” were telling you to accept the null, and which
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“possible tests” were telling you to accept the alternative.

As you can see, what we have today is an odd mishmash of the two. We talk about having
both a null hypothesis and an alternative (Neyman), but usually13 define the p value in terms
of exreme data (Fisher), but we still have α values (Neyman). Some of the statistical tests have
explicitly specified alternatives (Neyman) but others are quite vague about it (Fisher). And,
according to some people at least, we’re not allowed to talk about accepting the alternative
(Fisher). It’s a mess, but I hope this at least explains why it’s a mess.

9.9.2 Bayesians versus frequentists

Earlier on in this chapter I was quite emphatic about the fact that you cannot interpret the
p value as the probability that the null hypothesis is true. NHST is fundamentally a frequentist
tool (see Chapter 7) and as such it does not allow you to assign probabilities to hypotheses.
The null hypothesis is either true or it is not. The Bayesian approach to statistics interprets
probability as a degree of belief, so it’s totally okay to say that there is a 10% chance that the
null hypothesis is true. That’s just a reflection of the degree of confidence that you have in this
hypothesis. You aren’t allowed to do this within the frequentist approach. Remember, if you’re
a frequentist, a probability can only be defined in terms of what happens after a large number of
independent replications (i.e., a long run frequency). If this is your interpretation of probability,
talking about the “probability” that the null hypothesis is true is complete gibberish: a null
hypothesis is either true or it is false. There’s no way you can talk about a long run frequency
for this statement. To talk about “the probability of the null hypothesis” is as meaningless as
“the colour of freedom”. It doesn’t have one!

Most importantly, this isn’t a purely ideological matter. If you decide that you are a Bayesian
and that you’re okay with making probability statements about hypotheses, you have to follow
the Bayesian rules for calculating those probabilities. I’ll talk more about this in Chapter 16,
but for now what I want to point out to you is the p value is a terrible approximation to the
probability that H0 is true. If what you want to know is the probability of the null, then the p
value is not what you’re looking for!

9.9.3 Traps

As you can see, the theory behind hypothesis testing is a mess, and even now there are
arguments in statistics about how it “should” work. However, disagreements among statisti-
cians are not our real concern here. Our real concern is practical data analysis. And while
the “orthodox” approach to null hypothesis significance testing has many drawbacks, even an
unrepentant Bayesian like myself would agree that they can be useful if used responsibly. Most
of the time they give sensible answers and you can use them to learn interesting things. Setting
aside the various ideologies and historical confusions that we’ve discussed, the fact remains that
the biggest danger in all of statistics is thoughtlessness. I don’t mean stupidity, I literally mean
thoughtlessness. The rush to interpret a result without spending time thinking through what

13Although this book describes both Neyman’s and Fisher’s definition of the p value, most don’t. Most intro-
ductory textbooks will only give you the Fisher version.
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each test actually says about the data, and checking whether that’s consistent with how you’ve
interpreted it. That’s where the biggest trap lies.

To give an example of this, consider the following example (see Gelman and Stern 2006).
Suppose I’m running my ESP study and I’ve decided to analyse the data separately for the male
participants and the female participants. Of the male participants, 33 out of 50 guessed the
colour of the card correctly. This is a significant effect (p “ .03). Of the female participants,
29 out of 50 guessed correctly. This is not a significant effect (p “ .32). Upon observing this,
it is extremely tempting for people to start wondering why there is a difference between males
and females in terms of their psychic abilities. However, this is wrong. If you think about it,
we haven’t actually run a test that explicitly compares males to females. All we have done
is compare males to chance (binomial test was significant) and compared females to chance
(binomial test was non significant). If we want to argue that there is a real difference between
the males and the females, we should probably run a test of the null hypothesis that there
is no difference! We can do that using a different hypothesis test,14 but when we do that it
turns out that we have no evidence that males and females are significantly different (p “ .54).
Now do you think that there’s anything fundamentally different between the two groups? Of
course not. What’s happened here is that the data from both groups (male and female) are
pretty borderline. By pure chance one of them happened to end up on the magic side of the
p “ .05 line, and the other one didn’t. That doesn’t actually imply that males and females
are different. This mistake is so common that you should always be wary of it. The difference
between significant and not-significant is not evidence of a real difference. If you want to say
that there’s a difference between two groups, then you have to test for that difference!

The example above is just that, an example. I’ve singled it out because it’s such a common
one, but the bigger picture is that data analysis can be tricky to get right. Think about what
it is you want to test, why you want to test it, and whether or not the answers that your test
gives could possibly make any sense in the real world.

9.10

Summary

Null hypothesis testing is one of the most ubiquitous elements to statistical theory. The vast ma-
jority of scientific papers report the results of some hypothesis test or another. As a consequence
it is almost impossible to get by in science without having at least a cursory understanding of
what a p-value means, making this one of the most important chapters in the book. As usual,
I’ll end the chapter with a quick recap of the key ideas that we’ve talked about:

• Research hypotheses and statistical hypotheses. Null and alternative hypotheses. (Sec-
tion 9.1).

• Type 1 and Type 2 errors (Section 9.2)

• Test statistics and sampling distributions (Section 9.3)

• Hypothesis testing as a decision making process (Section 9.4)

• p-values as “soft” decisions (Section 9.5)

14In this case, the Pearson chi-square test of independence (Chapter 10)
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• Writing up the results of a hypothesis test (Section 9.6)

• Running the hypothesis test in practice (Section 9.7)

• Effect size and power (Section 9.8)

• A few issues to consider regarding hypothesis testing (Section 9.9)

Later in the book, in Chapter 16, I’ll revisit the theory of null hypothesis tests from a Bayesian
perspective and introduce a number of new tools that you can use if you aren’t particularly fond
of the orthodox approach. But for now, though, we’re done with the abstract statistical theory,
and we can start discussing specific data analysis tools.
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Part V.

Statistical tools
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10. Categorical data analysis

Now that we’ve covered the basic theory behind hypothesis testing it’s time to start looking
at specific tests that are commonly used in psychology. So where should we start? Not ev-
ery textbook agrees on where to start, but I’m going to start with “χ2 tests” (this chapter,
pronounced “chi-square”1) and “t-tests” (Chapter 11). Both of these tools are very frequently
used in scientific practice, and whilst they’re not as powerful as “regression” (Chapter 12) and
“analysis of variance” (Chapter 13) they’re much easier to understand.

The term “categorical data” is just another name for “nominal scale data”. It’s nothing that
we haven’t already discussed, it’s just that in the context of data analysis people tend to use
the term “categorical data” rather than “nominal scale data”. I don’t know why. In any case,
categorical data analysis refers to a collection of tools that you can use when your data are
nominal scale. However, there are a lot of different tools that can be used for categorical data
analysis, and this chapter covers only a few of the more common ones.

10.1

The χ2 (chi-square) goodness-of-fit test

The χ2 goodness-of-fit test is one of the oldest hypothesis tests around. It was invented by
Karl Pearson around the turn of the century (Pearson 1900), with some corrections made later
by Sir Ronald Fisher (Fisher 1922a). It tests whether an observed frequency distribution of a
nominal variable matches an expected frequency distribution. For example, suppose a group
of patients has been undergoing an experimental treatment and have had their health assessed
to see whether their condition has improved, stayed the same or worsened. A goodness-of-fit
test could be used to determine whether the numbers in each category - improved, no change,
worsened - match the numbers that would be expected given the standard treatment option.
Let’s think about this some more, with some psychology.

1Also sometimes referred to as “chi-squared”
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10.1.1 The cards data

Over the years there have been many studies showing that humans find it difficult to simulate
randomness. Try as we might to “act” random, we think in terms of patterns and structure and
so, when asked to “do something at random”, what people actually do is anything but random.
As a consequence, the study of human randomness (or non-randomness, as the case may be)
opens up a lot of deep psychological questions about how we think about the world. With this
in mind, let’s consider a very simple study. Suppose I asked people to imagine a shuffled deck of
cards, and mentally pick one card from this imaginary deck “at random”. After they’ve chosen
one card I ask them to mentally select a second one. For both choices what we’re going to look
at is the suit (hearts, clubs, spades or diamonds) that people chose. After asking, say, N “ 200
people to do this, I’d like to look at the data and figure out whether or not the cards that people
pretended to select were really random. The data are contained in the randomness.csv file in
which, when you open it up in jamovi and take a look at the spreadsheet view, you will see three
variables. These are: an id variable that assigns a unique identifier to each participant, and the
two variables choice_1 and choice_2 that indicate the card suits that people chose.

For the moment, let’s just focus on the first choice that people made. We’ll use the Frequency

tables option under ‘Exploration’ - ‘Descriptives’ to count the number of times that we observed
people choosing each suit. This is what we get:

clubs diamonds hearts spades

35 51 64 50

That little frequency table is quite helpful. Looking at it, there’s a bit of a hint that people
might be more likely to select hearts than clubs, but it’s not completely obvious just from looking
at it whether that’s really true, or if this is just due to chance. So we’ll probably have to do
some kind of statistical analysis to find out, which is what I’m going to talk about in the next
section.

Excellent. From this point on, we’ll treat this table as the data that we’re looking to analyse.
However, since I’m going to have to talk about this data in mathematical terms (sorry!) it might
be a good idea to be clear about what the notation is. In mathematical notation, we shorten
the human-readable word “observed” to the letter O, and we use subscripts to denote the
position of the observation. So the second observation in our table is written as O2 in maths.
The relationship between the English descriptions and the mathematical symbols are illustrated
below:

label index, i math. symbol the value

clubs, ♣ 1 O1 35
diamonds, ♦ 2 O2 51

hearts, ♥ 3 O3 64
spades, ♠ 4 O4 50

Hopefully that’s pretty clear. It’s also worth noting that mathematicians prefer to talk about
general rather than specific things, so you’ll also see the notation Oi, which refers to the number
of observations that fall within the i-th category (where i could be 1, 2, 3 or 4). Finally, if we
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want to refer to the set of all observed frequencies, statisticians group all observed values into a
vector2, which I’ll refer to as O.

O “ pO1, O2, O3, O4q

Again, this is nothing new or interesting. It’s just notation. If I say that O “ p35, 51, 64, 50q
all I’m doing is describing the table of observed frequencies (i.e., observed), but I’m referring to
it using mathematical notation.

10.1.2 The null hypothesis and the alternative hypothesis

As the last section indicated, our research hypothesis is that “people don’t choose cards
randomly”. What we’re going to want to do now is translate this into some statistical hypotheses
and then construct a statistical test of those hypotheses. The test that I’m going to describe to
you is Pearson’s χ2 (chi-square) goodness-of-fit test, and as is so often the case we have
to begin by carefully constructing our null hypothesis. In this case, it’s pretty easy. First, let’s
state the null hypothesis in words:

H0: All four suits are chosen with equal probability

Now, because this is statistics, we have to be able to say the same thing in a mathematical
way. To do this, let’s use the notation Pj to refer to the true probability that the j-th suit is
chosen. If the null hypothesis is true, then each of the four suits has a 25% chance of being
selected. In other words, our null hypothesis claims that P1 “ .25, P2 “ .25, P3 “ .25 and
finally that P4 “ .25. However, in the same way that we can group our observed frequencies
into a vector O that summarises the entire data set, we can use P to refer to the probabilities
that correspond to our null hypothesis. So if I let the vector P “ pP1, P2, P3, P4q refer to the
collection of probabilities that describe our null hypothesis, then we have:

H0: P “ p.25, .25, .25, .25q

In this particular instance, our null hypothesis corresponds to a vector of probabilities P in
which all of the probabilities are equal to one another. But this doesn’t have to be the case.
For instance, if the experimental task was for people to imagine they were drawing from a deck
that had twice as many clubs as any other suit, then the null hypothesis would correspond to
something like P “ p.4, .2, .2, .2q. As long as the probabilities are all positive numbers, and they
all sum to 1, then it’s a perfectly legitimate choice for the null hypothesis. However, the most
common use of the goodness-of-fit test is to test a null hypothesis that all of the categories are
equally likely, so we’ll stick to that for our example.

What about our alternative hypothesis, H1? All we’re really interested in is demonstrating
that the probabilities involved aren’t all identical (that is, people’s choices weren’t completely
random). As a consequence, the “human friendly” versions of our hypotheses look like this:

H0: All four suits are chosen with equal probability
H1: At least one of the suit-choice probabilities isn’t 0.25

2A vector is a sequence of data elements of the same basic type
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and the “mathematician friendly” version is:

H0: P “ p.25, .25, .25, .25q
H1: P ‰ p.25, .25, .25, .25q

10.1.3 The “goodness-of-fit” test statistic

At this point, we have our observed frequencies O and a collection of probabilities P corre-
sponding to the null hypothesis that we want to test. What we now want to do is construct a
test of the null hypothesis. As always, if we want to test H0 against H1, we’re going to need
a test statistic. The basic trick that a goodness-of-fit test uses is to construct a test statistic
that measures how “close” the data are to the null hypothesis. If the data don’t resemble what
you’d “expect” to see if the null hypothesis were true, then it probably isn’t true. Okay, if the
null hypothesis were true, what would we expect to see? Or, to use the correct terminology,
what are the expected frequencies. There are N “ 200 observations, and (if the null is true)
the probability of any one of them choosing a heart is P3 “ .25, so I guess we’re expecting
200ˆ .25 “ 50 hearts, right? Or, more specifically, if we let Ei refer to “the number of category
i responses that we’re expecting if the null is true”, then

Ei “ N ˆ Pi

This is pretty easy to calculate.If there are 200 observations that can fall into four categories,
and we think that all four categories are equally likely, then on average we’d expect to see 50
observations in each category, right?

Now, how do we translate this into a test statistic? Clearly, what we want to do is compare the
expected number of observations in each category (Ei) with the observed number of observations
in that category (Oi). And on the basis of this comparison we ought to be able to come up with a
good test statistic. To start with, let’s calculate the difference between what the null hypothesis
expected us to find and what we actually did find. That is, we calculate the “observed minus
expected” difference score, Oi ´ Ei. This is illustrated in the following table.

♣ ♦ ♥ ♠
expected frequency Ei 50 50 50 50
observed frequency Oi 35 51 64 50

difference score Oi ´ Ei -15 1 14 0

So, based on our calculations, it’s clear that people chose more hearts and fewer clubs than
the null hypothesis predicted. However, a moment’s thought suggests that these raw differences
aren’t quite what we’re looking for. Intuitively, it feels like it’s just as bad when the null
hypothesis predicts too few observations (which is what happened with hearts) as it is when
it predicts too many (which is what happened with clubs). So it’s a bit weird that we have
a negative number for clubs and a positive number for hearts. One easy way to fix this is to
square everything, so that we now calculate the squared differences, pEi ´ Oiq

2. As before, we
can do this by hand:
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(observed - expected)^2

clubs diamonds hearts spades

225 1 196 0

Now we’re making progress. What we’ve got now is a collection of numbers that are big
whenever the null hypothesis makes a bad prediction (clubs and hearts), but are small whenever
it makes a good one (diamonds and spades). Next, for some technical reasons that I’ll explain
in a moment, let’s also divide all these numbers by the expected frequency Ei, so we’re actually

calculating pEi´Oiq
2

Ei
. Since Ei “ 50 for all categories in our example, it’s not a very interesting

calculation, but let’s do it anyway:

(observed - expected)^2 / expected

clubs diamonds hearts spades

4.50 0.02 3.92 0.00

In effect, what we’ve got here are four different “error” scores, each one telling us how big a
“mistake” the null hypothesis made when we tried to use it to predict our observed frequencies.
So, in order to convert this into a useful test statistic, one thing we could do is just add these
numbers up. The result is called the goodness-of-fit statistic, conventionally referred to either
as χ2 (chi-square) or GOF. We can calculate it as follows:

sum( (observed - expected)^2 / expected )

This gives us a value of 8.44.

If we let k refer to the total number of categories (i.e., k “ 4 for our cards data), then the χ2

statistic is given by:

χ2 “

k
ÿ

i“1

pOi ´ Eiq
2

Ei

Intuitively, it’s clear that if χ2 is small, then the observed data Oi are very close to what the
null hypothesis predicted Ei, so we’re going to need a large χ2 statistic in order to reject the
null.

As we’ve seen from our calculations, in our cards data set we’ve got a value of χ2 “ 8.44. So
now the question becomes is this a big enough value to reject the null?

10.1.4 The sampling distribution of the GOF statistic

To determine whether or not a particular value of χ2 is large enough to justify rejecting the
null hypothesis, we’re going to need to figure out what the sampling distribution for χ2 would
be if the null hypothesis were true. So that’s what I’m going to do in this section. I’ll show you
in a fair amount of detail how this sampling distribution is constructed, and then, in the next
section, use it to build up a hypothesis test. If you want to cut to the chase and are willing to
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take it on faith that the sampling distribution is a χ2 (chi-square) distribution with k ´ 1
degrees of freedom, you can skip the rest of this section. However, if you want to understand
why the goodness-of-fit test works the way it does, read on.

Okay, let’s suppose that the null hypothesis is actually true. If so, then the true probability
that an observation falls in the i-th category is Pi. After all, that’s pretty much the definition
of our null hypothesis. Let’s think about what this actually means. This is kind of like saying
that “nature” makes the decision about whether or not the observation ends up in category i by
flipping a weighted coin (i.e., one where the probability of getting a head is Pj). And therefore
we can think of our observed frequency Oi by imagining that nature flipped N of these coins
(one for each observation in the data set), and exactly Oi of them came up heads. Obviously,
this is a pretty weird way to think about the experiment. But what it does (I hope) is remind
you that we’ve actually seen this scenario before. It’s exactly the same set up that gave rise to
the binomial distribution in Section 7.4. In other words, if the null hypothesis is true, then it
follows that our observed frequencies were generated by sampling from a binomial distribution:

Oi „ BinomialpPi, Nq

Now, if you remember from our discussion of the central limit theorem (Section 8.3.3) the
binomial distribution starts to look pretty much identical to the normal distribution, especially
when N is large and when Pi isn’t too close to 0 or 1. In other words as long as N ˆ Pi is large
enough. Or, to put it another way, when the expected frequency Ei is large enough then the
theoretical distribution of Oi is approximately normal. Better yet, if Oi is normally distributed,
then so is pOi´Eiq{

?
Ei. Since Ei is a fixed value, subtracting off Ei and dividing by

?
Ei changes

the mean and standard deviation of the normal distribution but that’s all it does. Okay, so now
let’s have a look at what our goodness-of-fit statistic actually is. What we’re doing is taking
a bunch of things that are normally-distributed, squaring them, and adding them up. Wait.
We’ve seen that before too! As we discussed in Section 7.6, when you take a bunch of things
that have a standard normal distribution (i.e., mean 0 and standard deviation 1), square them
and then add them up, the resulting quantity has a chi-square distribution. So now we know
that the null hypothesis predicts that the sampling distribution of the goodness-of-fit statistic
is a chi-square distribution. Cool.

There’s one last detail to talk about, namely the degrees of freedom. If you remember back
to Section 7.6, I said that if the number of things you’re adding up is k, then the degrees of
freedom for the resulting chi-square distribution is k. Yet, what I said at the start of this section
is that the actual degrees of freedom for the chi-square goodness-of-fit test is k ´ 1. What’s
up with that? The answer here is that what we’re supposed to be looking at is the number of
genuinely independent things that are getting added together. And, as I’ll go on to talk about
in the next section, even though there are k things that we’re adding only k ´ 1 of them are
truly independent, and so the degrees of freedom is actually only k ´ 1. That’s the topic of the
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next section.3

10.1.5 Degrees of freedom

0 2 4 6 8 10

Value

df = 3

df = 4

df = 5

Figure 10.1: χ2 (chi-square) distributions with different values for the “degrees of freedom”.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When I introduced the chi-square distribution in Section 7.6, I was a bit vague about what
“degrees of freedom” actually means. Obviously, it matters. Looking at Figure 10.1, you can
see that if we change the degrees of freedom then the chi-square distribution changes shape quite
substantially. But what exactly is it? Again, when I introduced the distribution and explained
its relationship to the normal distribution, I did offer an answer: it’s the number of “normally
distributed variables” that I’m squaring and adding together. But, for most people, that’s kind
of abstract and not entirely helpful. What we really need to do is try to understand degrees of
freedom in terms of our data. So here goes.

The basic idea behind degrees of freedom is quite simple. You calculate it by counting up
the number of distinct “quantities” that are used to describe your data and then subtracting

3If you rewrite the equation for the goodness-of-fit statistic as a sum over k ´ 1 independent things you get
the “proper” sampling distribution, which is chi-square with k ´ 1 degrees of freedom. It’s beyond the scope of
an introductory book to show the maths in that much detail. All I wanted to do is give you a sense of why the
goodness-of-fit statistic is associated with the chi-square distribution.
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off all of the “constraints” that those data must satisfy.4 This is a bit vague, so let’s use our
cards data as a concrete example. We describe our data using four numbers, O1, O2, O3 and
O4 corresponding to the observed frequencies of the four different categories (hearts, clubs,
diamonds, spades). These four numbers are the random outcomes of our experiment. But my
experiment actually has a fixed constraint built into it: the sample size N .5 That is, if we know
how many people chose hearts, how many chose diamonds and how many chose clubs, then we’d
be able to figure out exactly how many chose spades. In other words, although our data are
described using four numbers, they only actually correspond to 4 ´ 1 “ 3 degrees of freedom.
A slightly different way of thinking about it is to notice that there are four probabilities that
we’re interested in (again, corresponding to the four different categories), but these probabilities
must sum to one, which imposes a constraint. Therefore the degrees of freedom is 4 ´ 1 “ 3.
Regardless of whether you want to think about it in terms of the observed frequencies or in
terms of the probabilities, the answer is the same. In general, when running the χ2 (chi-square)
goodness-of-fit test for an experiment involving k groups, then the degrees of freedom will be
k ´ 1.

10.1.6 Testing the null hypothesis

The final step in the process of constructing our hypothesis test is to figure out what the
rejection region is. That is, what values of χ2 would lead us to reject the null hypothesis. As we
saw earlier, large values of χ2 imply that the null hypothesis has done a poor job of predicting
the data from our experiment, whereas small values of χ2 imply that it’s actually done pretty
well. Therefore, a pretty sensible strategy would be to say there is some critical value such that
if χ2 is bigger than the critical value we reject the null, but if χ2 is smaller than this value we
retain the null. In other words, to use the language we introduced in Chapter 9 the chi-square
goodness-of-fit test is always a one-sided test. Right, so all we have to do is figure out what
this critical value is. And it’s pretty straightforward. If we want our test to have significance
level of α “ .05 (that is, we are willing to tolerate a Type I error rate of 5%), then we have to
choose our critical value so that there is only a 5% chance that χ2 could get to be that big if
the null hypothesis is true. This is illustrated in Figure 10.2.

Ah but, I hear you ask, how do I find the critical value of a chi-square distribution with k´1
degrees of freedom? Many many years ago when I first took a psychology statistics class we
used to look up these critical values in a book of critical value tables, like the one in Figure 10.3.
Looking at this Figure, we can see that the critical value for a χ2 distribution with 3 degrees of

4I feel obliged to point out that this is an over-simplification. It works nicely for quite a few situations, but
every now and then we’ll come across degrees of freedom values that aren’t whole numbers. Don’t let this worry
you too much; when you come across this just remind yourself that “degrees of freedom” is actually a bit of a
messy concept, and that the nice simple story that I’m telling you here isn’t the whole story. For an introductory
class it’s usually best to stick to the simple story, but I figure it’s best to warn you to expect this simple story to
fall apart. If I didn’t give you this warning you might start getting confused when you see df “ 3.4 or something,
(incorrectly) thinking that you had misunderstood something that I’ve taught you rather than (correctly) realising
that there’s something that I haven’t told you.

5In practice, the sample size isn’t always fixed. For example, we might run the experiment over a fixed period
of time and the number of people participating depends on how many people show up. That doesn’t matter for
the current purposes.
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Value of the GOF Statistic

The critical value is 7.81

The observed GOF value is 8.44

7.82 7.82 

8.44 

7.82 

8.44 

Figure 10.2: Illustration of how the hypothesis testing works for the χ2 (chi-square) goodness-
of-fit test.
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freedom, and p=0.05 is 7.815.

So, if our calculated χ2 statistic is bigger than the critical value of 7.815, then we can reject
the null hypothesis (remember that the null hypothesis, H0, is that all four suits are chosen
with equal probability). Since we actually already calculated that before (i.e., χ2 “ 8.44) we
can reject the null hypothesis. And that’s it, basically. You now know “Pearson’s χ2 test for
the goodness-of-fit”. Lucky you.

10.1.7 Doing the test in jamovi

Not surprisingly, jamovi provides an analysis that will do these calculations for you. From the
main ‘Analyses’ toolbar select ‘Frequencies’ - ‘One Sample Proportion Tests’ - ‘N Outcomes’.
Then in the analysis window that appears move the variable you want to analyse (choice 1

across into the ‘Variable’ box. Also, click on the ‘Expected counts’ check box so that these are
shown on the results table. When you have done all this, you should see the analysis results in
jamovi as in Figure 10.4. No surprise then that jamovi provides the same expected counts and
statistics that we calculated by hand above, with a χ2 value of 8.44 with 3 d.f. and p=0.038.
Note that we don’t need to look up a critical p-value threshold value any more, as jamovi gives
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Figure 10.3: Table of critical values for the chi-square distribution
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Figure 10.4: A χ2 One Sample Proportion Test in jamovi, with table showing both observed
and expected frequencies and proportions.
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us the actual p-value of the calculated χ2 for 3 d.f.

10.1.8 Specifying a different null hypothesis

At this point you might be wondering what to do if you want to run a goodness-of-fit test but
your null hypothesis is not that all categories are equally likely. For instance, let’s suppose that
someone had made the theoretical prediction that people should choose red cards 60% of the
time, and black cards 40% of the time (I’ve no idea why you’d predict that), but had no other
preferences. If that were the case, the null hypothesis would be to expect 30% of the choices
to be hearts, 30% to be diamonds, 20% to be spades and 20% to be clubs. In other words we
would expect hearts and diamonds to appear 1.5 times more often than spades and clubs (the
ratio 30% : 20% is the same as 1.5 : 1). This seems like a silly theory to me, and it’s pretty
easy to test this explicitly specified null hypothesis with the data in our jamovi analysis. In the
analysis window (labelled ‘Proportion Test (N Outcomes)’ in Figure 10.4 you can expand the
options for ‘Expected Proportions’. When you do this, there are options for entering different
ratio values for the variable you have selected, in our case this is choice 1. Change the ratio to
reflect the new null hypothesis, as in Figure 10.5, and see how the results change.

Figure 10.5: Changing the expected proportions in the χ2 One Sample Proportion Test in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The expected counts are now:

♣ ♦ ♥ ♠
expected frequency Ei 40 60 60 40

and the χ2 statistic is 4.74, 3 d.f., p = 0.182. Now, the results of our updated hypotheses and
the expected frequencies are different from what they were last time. As a consequence our χ2

test statistic is different, and our p-value is different too. Annoyingly, the p-value is .182, so we
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can’t reject the null hypothesis (look back at section 9.5 to remind yourself why). Sadly, despite
the fact that the null hypothesis corresponds to a very silly theory, these data don’t provide
enough evidence against it.

10.1.9 How to report the results of the test

So now you know how the test works, and you know how to do the test using a wonderful
jamovi flavoured magic computing box. The next thing you need to know is how to write up the
results. After all, there’s no point in designing and running an experiment and then analysing
the data if you don’t tell anyone about it! So let’s now talk about what you need to do when
reporting your analysis. Let’s stick with our card-suits example. If I wanted to write this
result up for a paper or something, then the conventional way to report this would be to write
something like this:

Of the 200 participants in the experiment, 64 selected hearts for their first choice, 51
selected diamonds, 50 selected spades, and 35 selected clubs. A chi-square goodness-
of-fit test was conducted to test whether the choice probabilities were identical for
all four suits. The results were significant (χ2p3q “ 8.44, p ă .05), suggesting that
people did not select suits purely at random.

This is pretty straightforward and hopefully it seems pretty unremarkable. That said, there’s a
few things that you should note about this description:

• The statistical test is preceded by the descriptive statistics. That is, I told the reader
something about what the data look like before going on to do the test. In general, this is
good practice. Always remember that your reader doesn’t know your data anywhere near
as well as you do. So, unless you describe it to them properly, the statistical tests won’t
make any sense to them and they’ll get frustrated and cry.

• The description tells you what the null hypothesis being tested is. To be honest, writers
don’t always do this but it’s often a good idea in those situations where some ambiguity
exists, or when you can’t rely on your readership being intimately familiar with the sta-
tistical tools that you’re using. Quite often the reader might not know (or remember) all
the details of the test that your using, so it’s a kind of politeness to “remind” them! As
far as the goodness-of-fit test goes, you can usually rely on a scientific audience knowing
how it works (since it’s covered in most intro stats classes). However, it’s still a good
idea to be explicit about stating the null hypothesis (briefly!) because the null hypothesis
can be different depending on what you’re using the test for. For instance, in the cards
example my null hypothesis was that all the four suit probabilities were identical (i.e.,
P1 “ P2 “ P3 “ P4 “ 0.25), but there’s nothing special about that hypothesis. I could
just as easily have tested the null hypothesis that P1 “ 0.7 and P2 “ P3 “ P4 “ 0.1
using a goodness-of-fit test. So it’s helpful to the reader if you explain to them what your
null hypothesis was. Also, notice that I described the null hypothesis in words, not in
maths. That’s perfectly acceptable. You can describe it in maths if you like, but since
most readers find words easier to read than symbols, most writers tend to describe the
null using words if they can.
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• A “stat block” is included. When reporting the results of the test itself, I didn’t just say
that the result was significant, I included a “stat block” (i.e., the dense mathematical-
looking part in the parentheses) which reports all the “key” statistical information. For
the chi-square goodness-of-fit test, the information that gets reported is the test statistic
(that the goodness-of-fit statistic was 8.44), the information about the distribution used in
the test (χ2 with 3 degrees of freedom which is usually shortened to χ2p3q), and then the
information about whether the result was significant (in this case p ă .05). The particular
information that needs to go into the stat block is different for every test, and so each time
I introduce a new test I’ll show you what the stat block should look like.6 However the
general principle is that you should always provide enough information so that the reader
could check the test results themselves if they really wanted to.

• The results are interpreted. In addition to indicating that the result was significant, I
provided an interpretation of the result (i.e., that people didn’t choose randomly). This
is also a kindness to the reader, because it tells them something about what they should
believe about what’s going on in your data. If you don’t include something like this, it’s
really hard for your reader to understand what’s going on.7

As with everything else, your overriding concern should be that you explain things to your
reader. Always remember that the point of reporting your results is to communicate to another
human being. I cannot tell you just how many times I’ve seen the results section of a report or
a thesis or even a scientific article that is just gibberish, because the writer has focused solely
on making sure they’ve included all the numbers and forgotten to actually communicate with
the human reader.

10.1.10 A comment on statistical notation

Satan delights equally in statistics and in quoting scripture

– H.G. Wells

If you’ve been reading very closely, and are as much of a mathematical pedant as I am, there is
one thing about the way I wrote up the chi-square test in the last section that might be bugging
you a little bit. There’s something that feels a bit wrong with writing “χ2p3q “ 8.44”, you might
be thinking. After all, it’s the goodness-of-fit statistic that is equal to 8.44, so shouldn’t I have

6Well, sort of. The conventions for how statistics should be reported tend to differ somewhat from discipline
to discipline. I’ve tended to stick with how things are done in psychology, since that’s what I do. But the general
principle of providing enough information to the reader to allow them to check your results is pretty universal, I
think.

7To some people, this advice might sound odd, or at least in conflict with the “usual” advice on how to write a
technical report. Very typically, students are told that the “results” section of a report is for describing the data
and reporting statistical analysis, and the “discussion” section is for providing interpretation. That’s true as far
as it goes, but I think people often interpret it way too literally. The way I usually approach it is to provide a
quick and simple interpretation of the data in the results section, so that my reader understands what the data
are telling us. Then, in the discussion, I try to tell a bigger story about how my results fit with the rest of the
scientific literature. In short, don’t let the “interpretation goes in the discussion” advice turn your results section
into incomprehensible garbage. Being understood by your reader is much more important.
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written X2 “ 8.44 or maybe GOF“ 8.44? This seems to be conflating the sampling distribution
(i.e., χ2 with df “ 3) with the test statistic (i.e., X2). Odds are you figured it was a typo,
since χ and X look pretty similar. Oddly, it’s not. Writing χ2p3q “ 8.44 is essentially a highly
condensed way of writing “the sampling distribution of the test statistic is χ2p3q, and the value
of the test statistic is 8.44”.

In one sense, this is kind of stupid. There are lots of different test statistics out there that
turn out to have a chi-square sampling distribution. The X2 statistic that we’ve used for our
goodness-of-fit test is only one of many (albeit one of the most commonly encountered ones). In
a sensible, perfectly organised world we’d always have a separate name for the test statistic and
the sampling distribution. That way, the stat block itself would tell you exactly what it was that
the researcher had calculated. Sometimes this happens. For instance, the test statistic used in
the Pearson goodness-of-fit test is written X2, but there’s a closely related test known as the
G-test8 (Sokal and Rohlf 1994), in which the test statistic is written as G. As it happens, the
Pearson goodness-of-fit test and the G-test both test the same null hypothesis, and the sampling
distribution is exactly the same (i.e., chi-square with k ´ 1 degrees of freedom). If I’d done a
G-test for the cards data rather than a goodness-of-fit test, then I’d have ended up with a test
statistic of G “ 8.65, which is slightly different from the X2 “ 8.44 value that I got earlier
and which produces a slightly smaller p-value of p “ .034. Suppose that the convention was
to report the test statistic, then the sampling distribution, and then the p-value. If that were
true, then these two situations would produce different stat blocks: my original result would be
written X2 “ 8.44, χ2p3q, p “ .038, whereas the new version using the G-test would be written
as G “ 8.65, χ2p3q, p “ .034. However, using the condensed reporting standard, the original
result is written χ2p3q “ 8.44, p “ .038, and the new one is written χ2p3q “ 8.65, p “ .034, and
so it’s actually unclear which test I actually ran.

So why don’t we live in a world in which the contents of the stat block uniquely specifies
what tests were ran? The deep reason is that life is messy. We (as users of statistical tools)
want it to be nice and neat and organised. We want it to be designed, as if it were a product,
but that’s not how life works. Statistics is an intellectual discipline just as much as any other
one, and as such it’s a massively distributed, partly-collaborative and partly-competitive project
that no-one really understands completely. The things that you and I use as data analysis tools
weren’t created by an Act of the Gods of Statistics. They were invented by lots of different
people, published as papers in academic journals, implemented, corrected and modified by lots
of other people, and then explained to students in textbooks by someone else. As a consequence,
there’s a lot of test statistics that don’t even have names, and as a consequence they’re just given
the same name as the corresponding sampling distribution. As we’ll see later, any test statistic
that follows a χ2 distribution is commonly called a “chi-square statistic”, anything that follows
a t-distribution is called a “t-statistic”, and so on. But, as the χ2 versus G example illustrates,
two different things with the same sampling distribution are still, well, different.

As a consequence, it’s sometimes a good idea to be clear about what the actual test was that
you ran, especially if you’re doing something unusual. If you just say “chi-square test” it’s not
actually clear what test you’re talking about. Although, since the two most common chi-square
tests are the goodness-of-fit test and the independence test (Section 10.2), most readers with

8Complicating matters, the G-test is a special case of a whole class of tests that are known as likelihood ratio
tests. I don’t cover LRTs in this book, but they are quite handy things to know about.
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stats training can probably guess. Nevertheless, it’s something to be aware of.

10.2

The χ2 test of independence (or association)

GUARDBOT 1: Halt!
GUARDBOT 2: Be you robot or human?
LEELA: Robot...we be.
FRY: Uh, yup! Just two robots out roboting it up! Eh?
GUARDBOT 1: Administer the test.
GUARDBOT 2: Which of the following would you most prefer?

A: A puppy, B: A pretty flower from your sweetie,
or C: A large properly-formatted data file?

GUARDBOT 1: Choose!

– Futurama, “Fear of a Bot Planet”

The other day I was watching an animated documentary examining the quaint customs of the
natives of the planet Chapek 9. Apparently, in order to gain access to their capital city a visitor
must prove that they’re a robot, not a human. In order to determine whether or not a visitor is
human, the natives ask whether the visitor prefers puppies, flowers, or large, properly formatted
data files. “Pretty clever,” I thought to myself “but what if humans and robots have the same
preferences? That probably wouldn’t be a very good test then, would it?” As it happens, I got
my hands on the testing data that the civil authorities of Chapek 9 used to check this. It turns
out that what they did was very simple. They found a bunch of robots and a bunch of humans
and asked them what they preferred. I saved their data in a file called chapek9.omv, which we
can now load into jamovi. As well as the ID variable that identifies individual people, there are
two nominal text variables, species and choice. In total there are 180 entries in the data set,
one for each person (counting both robots and humans as “people”) who was asked to make
a choice. Specifically, there are 93 humans and 87 robots, and overwhelmingly the preferred
choice is the data file. You can check this yourself by asking jamovi for Frequency Tables, under
the ‘Exploration’ - ‘Descriptives’ button. However, this summary does not address the question
we’re interested in. To do that, we need a more detailed description of the data. What we want
to do is look at the choices broken down by species. That is, we need to cross-tabulate the
data (see Section 6.1). In jamovi we do this using the ‘Frequencies’ - ‘Contingency Tables’ -
‘Independent Samples’ analysis, and we should get a table something like this:

Robot Human Total

Puppy 13 15 28
Flower 30 13 43
Data 44 65 109

Total 87 93 180
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From this, it’s quite clear that the vast majority of the humans chose the data file, whereas
the robots tended to be a lot more even in their preferences. Leaving aside the question of why
the humans might be more likely to choose the data file for the moment (which does seem quite
odd, admittedly), our first order of business is to determine if the discrepancy between human
choices and robot choices in the data set is statistically significant.

10.2.1 Constructing our hypothesis test

How do we analyse this data? Specifically, since my research hypothesis is that “humans
and robots answer the question in different ways”, how can I construct a test of the null hy-
pothesis that “humans and robots answer the question the same way”? As before, we begin by
establishing some notation to describe the data:

Robot Human Total

Puppy O11 O12 R1

Flower O21 O22 R2

Data O31 O32 R3

Total C1 C2 N

In this notation we say that Oij is a count (observed frequency) of the number of respondents
that are of species j (robots or human) who gave answer i (puppy, flower or data) when asked
to make a choice. The total number of observations is written N , as usual. Finally, I’ve used
Ri to denote the row totals (e.g., R1 is the total number of people who chose the flower), and
Cj to denote the column totals (e.g., C1 is the total number of robots).9

So now let’s think about what the null hypothesis says. If robots and humans are responding
in the same way to the question, it means that the probability that “a robot says puppy” is the
same as the probability that “a human says puppy”, and so on for the other two possibilities.
So, if we use Pij to denote “the probability that a member of species j gives response i” then
our null hypothesis is that:

H0: All of the following are true:
P11 “ P12 (same probability of saying “puppy”),
P21 “ P22 (same probability of saying “flower”), and
P31 “ P32 (same probability of saying “data”).

And actually, since the null hypothesis is claiming that the true choice probabilities don’t depend
on the species of the person making the choice, we can let Pi refer to this probability, e.g., P1 is
the true probability of choosing the puppy.

Next, in much the same way that we did with the goodness-of-fit test, what we need to do
is calculate the expected frequencies. That is, for each of the observed counts Oij , we need to

9A technical note. The way I’ve described the test pretends that the column totals are fixed (i.e., the researcher
intended to survey 87 robots and 93 humans) and the row totals are random (i.e., it just turned out that 28 people
chose the puppy). To use the terminology from my mathematical statistics textbook (Hogg, McKean, and Craig
2005), I should technically refer to this situation as a chi-square test of homogeneity and reserve the term chi-
square test of independence for the situation where both the row and column totals are random outcomes of the
experiment. In the initial drafts of this book that’s exactly what I did. However, it turns out that these two tests
are identical, and so I’ve collapsed them together.
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figure out what the null hypothesis would tell us to expect. Let’s denote this expected frequency
by Eij . This time, it’s a little bit trickier. If there are a total of Cj people that belong to species
j, and the true probability of anyone (regardless of species) choosing option i is Pi, then the
expected frequency is just:

Eij “ Cj ˆ Pi

Now, this is all very well and good, but we have a problem. Unlike the situation we had with
the goodness-of-fit test, the null hypothesis doesn’t actually specify a particular value for Pi.
It’s something we have to estimate (Chapter 8) from the data! Fortunately, this is pretty easy
to do. If 28 out of 180 people selected the flowers, then a natural estimate for the probability of
choosing flowers is 28{180, which is approximately .16. If we phrase this in mathematical terms,
what we’re saying is that our estimate for the probability of choosing option i is just the row
total divided by the total sample size:

P̂i “
Ri
N

Therefore, our expected frequency can be written as the product (i.e. multiplication) of the row
total and the column total, divided by the total number of observations:10

Eij “
Ri ˆ Cj
N

Now that we’ve figured out how to calculate the expected frequencies, it’s straightforward to
define a test statistic, following the exact same strategy that we used in the goodness-of-fit
test. In fact, it’s pretty much the same statistic.

For a contingency table with r rows and c columns, the equation that defines our X2

statistic is

X2 “

r
ÿ

i“1

c
ÿ

j“1

pEij ´Oijq
2

Eij

The only difference is that I have to include two summation signs (i.e.,
ř

) to indicate that
we’re summing over both rows and columns.

As before, large values of X2 indicate that the null hypothesis provides a poor description
of the data, whereas small values of X2 suggest that it does a good job of accounting for the
data. Therefore, just like last time, we want to reject the null hypothesis if X2 is too large.

Not surprisingly, this statistic is χ2 distributed. All we need to do is figure out how many
degrees of freedom are involved, which actually isn’t too hard. As I mentioned before, you can
(usually) think of the degrees of freedom as being equal to the number of data points that you’re
analysing, minus the number of constraints. A contingency table with r rows and c columns
contains a total of rˆ c observed frequencies, so that’s the total number of observations. What
about the constraints? Here, it’s slightly trickier. The answer is always the same

df “ pr ´ 1qpc´ 1q

10Technically, Eij here is an estimate, so I should probably write it Êij . But since no-one else does, I won’t
either.
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but the explanation for why the degrees of freedom takes this value is different depending on
the experimental design. For the sake of argument, let’s suppose that we had honestly intended
to survey exactly 87 robots and 93 humans (column totals fixed by the experimenter), but left
the row totals free to vary (row totals are random variables). Let’s think about the constraints
that apply here. Well, since we deliberately fixed the column totals by Act of Experimenter, we
have c constraints right there. But, there’s actually more to it than that. Remember how our
null hypothesis had some free parameters (i.e., we had to estimate the Pi values)? Those matter
too. I won’t explain why in this book, but every free parameter in the null hypothesis is rather
like an additional constraint. So, how many of those are there? Well, since these probabilities
have to sum to 1, there’s only r ´ 1 of these. So our total degrees of freedom is:

df “ (number of observations)´ (number of constraints)
“ prcq ´ pc` pr ´ 1qq
“ rc´ c´ r ` 1
“ pr ´ 1qpc´ 1q

Alternatively, suppose that the only thing that the experimenter fixed was the total sample size
N . That is, we quizzed the first 180 people that we saw and it just turned out that 87 were robots
and 93 were humans. This time around our reasoning would be slightly different, but would still
lead us to the same answer. Our null hypothesis still has r´ 1 free parameters corresponding to
the choice probabilities, but it now also has c´ 1 free parameters corresponding to the species
probabilities, because we’d also have to estimate the probability that a randomly sampled person
turns out to be a robot.11 Finally, since we did actually fix the total number of observations N ,
that’s one more constraint. So, now we have rc observations, and pc´1q`pr´1q`1 constraints.
What does that give?

df “ (number of observations)´ (number of constraints)
“ rc´ ppc´ 1q ` pr ´ 1q ` 1q
“ rc´ c´ r ` 1
“ pr ´ 1qpc´ 1q

Amazing.

10.2.2 Doing the test in jamovi

Okay, now that we know how the test works let’s have a look at how it’s done in jamovi. As
tempting as it is to lead you through the tedious calculations so that you’re forced to learn it
the long way, I figure there’s no point. I already showed you how to do it the long way for the
goodness-of-fit test in the last section, and since the test of independence isn’t conceptually any
different, you won’t learn anything new by doing it the long way. So instead I’ll go straight to
showing you the easy way. After you have run the test in jamovi (‘Frequencies’ - ‘Contingency
Tables’ - ‘Independent Samples’), all you have to do is look underneath the contingency table in
the jamovi results window and there is the χ2 statistic for you. This shows a χ2 statistic value
of 10.72, with 2 d.f. and p-value = 0.005.

11A problem many of us worry about in real life.
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That was easy, wasn’t it! You can also ask jamovi to show you the expected counts - just
click on the check box for ‘Counts’ - ‘Expected’ in the ‘Cells’ options and the expected counts
will appear in the contingency table. And whilst you are doing that, an effect size measure
would be helpful. We’ll choose Cramer’s V, and you can specify this from a check box in the
‘Statistics’ options, and it gives a value for Cramer’s V of 0.24. We will talk about this some
more in just a moment.

This output gives us enough information to write up the result:

Pearson’s χ2 revealed a significant association between species and choice (χ2(2) =
10.7, p ă .01). Robots appeared to be more likely to say that they prefer flowers,
but the humans were more likely to say they prefer data.

Notice that, once again, I provided a little bit of interpretation to help the human reader
understand what’s going on with the data. Later on in my discussion section I’d provide a bit
more context. To illustrate the difference, here’s what I’d probably say later on:

The fact that humans appeared to have a stronger preference for raw data files than
robots is somewhat counter-intuitive. However, in context it makes some sense, as
the civil authority on Chapek 9 has an unfortunate tendency to kill and dissect
humans when they are identified. As such it seems most likely that the human
participants did not respond honestly to the question, so as to avoid potentially un-
desirable consequences. This should be considered to be a substantial methodological
weakness.

This could be classified as a rather extreme example of a reactivity effect, I suppose. Obviously,
in this case the problem is severe enough that the study is more or less worthless as a tool
for understanding the difference preferences among humans and robots. However, I hope this
illustrates the difference between getting a statistically significant result (our null hypothesis is
rejected in favour of the alternative), and finding something of scientific value (the data tell us
nothing of interest about our research hypothesis due to a big methodological flaw).

10.2.3 Postscript

I later found out the data were made up, and I’d been watching cartoons instead of doing
work.

10.3

The continuity correction

Okay, time for a little bit of a digression. I’ve been lying to you a little bit so far. There’s a tiny
change that you need to make to your calculations whenever you only have 1 degree of freedom.
It’s called the “continuity correction”, or sometimes the Yates correction. Remember what
I pointed out earlier: the χ2 test is based on an approximation, specifically on the assumption
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that the binomial distribution starts to look like a normal distribution for large N . One problem
with this is that it often doesn’t quite work, especially when you’ve only got 1 degree of freedom
(e.g., when you’re doing a test of independence on a 2ˆ 2 contingency table). The main reason
for this is that the true sampling distribution for the X2 statistic is actually discrete (because
you’re dealing with categorical data!) but the χ2 distribution is continuous. This can introduce
systematic problems. Specifically, when N is small and when df “ 1, the goodness-of-fit statistic
tends to be “too big”, meaning that you actually have a bigger α value than you think (or,
equivalently, the p values are a bit too small).

Yates (1934) suggested a simple fix, in which you redefine the goodness-of-fit statistic as:

χ2 “
ÿ

i

p|Ei ´Oi| ´ 0.5q2

Ei

Basically, he just subtracts off 0.5 everywhere.

As far as I can tell from reading Yates’ paper, the correction is basically a hack. It’s not
derived from any principled theory. Rather, it’s based on an examination of the behaviour of
the test, and observing that the corrected version seems to work better. You can specify this
correction in jamovi from a check box in the ‘Statistics’ options, where it is called ‘χ2 continuity
correction’.

10.4

Effect size

As we discussed earlier (Section 9.8), it’s becoming commonplace to ask researchers to report
some measure of effect size. So, let’s suppose that you’ve run your chi-square test, which turns
out to be significant. So you now know that there is some association between your variables
(independence test) or some deviation from the specified probabilities (goodness-of-fit test).
Now you want to report a measure of effect size. That is, given that there is an association or
deviation, how strong is it?

There are several different measures that you can choose to report, and several different tools
that you can use to calculate them. I won’t discuss all of them but will instead focus on the
most commonly reported measures of effect size.

By default, the two measures that people tend to report most frequently are the φ statistic
and the somewhat superior version, known as Cramér’s V .
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Mathematically, they’re very simple. To calculate the φ statistic, you just divide your X2

value by the sample size, and take the square root:

φ “

c

X2

N

The idea here is that the φ statistic is supposed to range between 0 (no association at all) and
1 (perfect association), but it doesn’t always do this when your contingency table is bigger
than 2ˆ2, which is a total pain. For bigger tables it’s actually possible to obtain φ ą 1, which
is pretty unsatisfactory. So, to correct for this, people usually prefer to report the V statistic
proposed by Cramer (1946). It’s a pretty simple adjustment to φ. If you’ve got a contingency
table with r rows and c columns, then define k “ minpr, cq to be the smaller of the two values.
If so, then Cramér’s V statistic is

V “

d

X2

Npk ´ 1q

And you’re done. This seems to be a fairly popular measure, presumably because it’s easy
to calculate, and it gives answers that aren’t completely silly. With Cramer’s V, you know that
the value really does range from 0 (no association at all) to 1 (perfect association).

10.5

Assumptions of the test(s)

All statistical tests make assumptions, and it’s usually a good idea to check that those as-
sumptions are met. For the chi-square tests discussed so far in this chapter, the assumptions
are:

• Expected frequencies are sufficiently large. Remember how in the previous section we saw
that the χ2 sampling distribution emerges because the binomial distribution is pretty
similar to a normal distribution? Well, like we discussed in Chapter 7 this is only true
when the number of observations is sufficiently large. What that means in practice is that
all of the expected frequencies need to be reasonably big. How big is reasonably big?
Opinions differ, but the default assumption seems to be that you generally would like to
see all your expected frequencies larger than about 5, though for larger tables you would
probably be okay if at least 80% of the the expected frequencies are above 5 and none of
them are below 1. However, from what I’ve been able to discover (e.g., Cochran 1954)
these seem to have been proposed as rough guidelines, not hard and fast rules, and they
seem to be somewhat conservative (Larntz 1978).

• Data are independent of one another. One somewhat hidden assumption of the chi-square
test is that you have to genuinely believe that the observations are independent. Here’s
what I mean. Suppose I’m interested in proportion of babies born at a particular hospital
that are boys. I walk around the maternity wards and observe 20 girls and only 10
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boys. Seems like a pretty convincing difference, right? But later on, it turns out that I’d
actually walked into the same ward 10 times and in fact I’d only seen 2 girls and 1 boy.
Not as convincing, is it? My original 30 observations were massively non-independent, and
were only in fact equivalent to 3 independent observations. Obviously this is an extreme
(and extremely silly) example, but it illustrates the basic issue. Non-independence “stuffs
things up”. Sometimes it causes you to falsely reject the null, as the silly hospital example
illustrates, but it can go the other way too. To give a slightly less stupid example, let’s
consider what would happen if I’d done the cards experiment slightly differently Instead
of asking 200 people to try to imagine sampling one card at random, suppose I asked 50
people to select 4 cards. One possibility would be that everyone selects one heart, one club,
one diamond and one spade (in keeping with the “representativeness heuristic”; Tversky
and Kahneman (1974). This is highly non-random behaviour from people, but in this case
I would get an observed frequency of 50 for all four suits. For this example the fact that
the observations are non-independent (because the four cards that you pick will be related
to each other) actually leads to the opposite effect, falsely retaining the null.

If you happen to find yourself in a situation where independence is violated, it may be possible
to use the McNemar test (which we’ll discuss) or the Cochran test (which we won’t). Similarly,
if your expected cell counts are too small, check out the Fisher exact test. It is to these topics
that we now turn.

10.6

The Fisher exact test

What should you do if your cell counts are too small, but you’d still like to test the null hypothesis
that the two variables are independent? One answer would be “collect more data”, but that’s far
too glib There are a lot of situations in which it would be either infeasible or unethical do that.
If so, statisticians have a kind of moral obligation to provide scientists with better tests. In this
instance, Fisher (1922a) kindly provided the right answer to the question. To illustrate the basic
idea let’s suppose that we’re analysing data from a field experiment looking at the emotional
status of people who have been accused of Witchcraft, some of whom are currently being burned
at the stake.12 Unfortunately for the scientist (but rather fortunately for the general populace),
it’s actually quite hard to find people in the process of being set on fire, so the cell counts are
awfully small in some cases. A contingency table of the salem.csv data illustrates the point:

on.fire

happy FALSE TRUE

FALSE 3 3

TRUE 10 0

Looking at this data, you’d be hard pressed not to suspect that people not on fire are more
likely to be happy than people on fire. However, the chi-square test makes this very hard to test

12This example is based on a joke article published in the Journal of Irreproducible Results.
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because of the small sample size. So, speaking as someone who doesn’t want to be set on fire,
I’d really like to be able to get a better answer than this. This is where Fisher’s exact test
(Fisher 1922a) comes in very handy.

The Fisher exact test works somewhat differently to the chi-square test (or in fact any of the
other hypothesis tests that I talk about in this book) insofar as it doesn’t have a test statistic,
but it calculates the p-value “directly”. I’ll explain the basics of how the test works for a 2ˆ 2
contingency table. As before, let’s have some notation:

Happy Sad Total

Set on fire O11 O12 R1

Not set on fire O21 O22 R2

Total C1 C2 N

In order to construct the test Fisher treats both the row and column totals (R1, R2, C1 and C2)
as known, fixed quantities and then calculates the probability that we would have obtained the
observed frequencies that we did (O11, O12, O21 and O22) given those totals. In the notation
that we developed in Chapter 7 this is written:

P pO11, O12, O21, O22 | R1, R2, C1, C2q

and as you might imagine, it’s a slightly tricky exercise to figure out what this probability is.
But it turns out that this probability is described by a distribution known as the hypergeometric
distribution. What we have to do to calculate our p-value is calculate the probability of observing
this particular table or a table that is “more extreme”.13 Back in the 1920s, computing this sum
was daunting even in the simplest of situations, but these days it’s pretty easy as long as the
tables aren’t too big and the sample size isn’t too large. The conceptually tricky issue is to
figure out what it means to say that one contingency table is more “extreme” than another.
The easiest solution is to say that the table with the lowest probability is the most extreme.
This then gives us the p-value.

You can specify this test in jamovi from a check box in the ‘Statistics’ options of the ‘Con-
tingency Tables’ analysis. When you do this with the data from the salem.csv file, the Fisher
exact test statistic is shown in the results. The main thing we’re interested in here is the p-value,
which in this case is small enough (p “ .036) to justify rejecting the null hypothesis that people
on fire are just as happy as people not on fire. See Figure 10.6.

10.7

The McNemar test

Suppose you’ve been hired to work for the Australian Generic Political Party (AGPP), and part
of your job is to find out how effective the AGPP political advertisements are. So you decide to
put together a sample of N = 100 people and ask them to watch the AGPP ads. Before they

13Not surprisingly, the Fisher exact test is motivated by Fisher’s interpretation of a p-value, not Neyman’s! See
Section 9.5.
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Figure 10.6: Fisher exact test output in jamovi. Ignore the ‘Value’ and just refer to the p-value.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

see anything, you ask them if they intend to vote for the AGPP, and then after showing the ads
you ask them again to see if anyone has changed their minds. Obviously, if you’re any good at
your job, you’d also do a whole lot of other things too, but let’s consider just this one simple
experiment. One way to describe your data is via the following contingency table:

Before After Total

Yes 30 10 40
No 70 90 160

Total 100 100 200

At first pass, you might think that this situation lends itself to the Pearson χ2 test of indepen-
dence (as per Section 10.2). However, a little bit of thought reveals that we’ve got a problem.
We have 100 participants but 200 observations. This is because each person has provided us
with an answer in both the before column and the after column. What this means is that the
200 observations aren’t independent of each other. If voter A says “yes” the first time and voter
B says “no”, then you’d expect that voter A is more likely to say “yes” the second time than
voter B! The consequence of this is that the usual χ2 test won’t give trustworthy answers due to
the violation of the independence assumption. Now, if this were a really uncommon situation, I
wouldn’t be bothering to waste your time talking about it. But it’s not uncommon at all. This
is a standard repeated measures design, and none of the tests we’ve considered so far can handle
it. Eek.

The solution to the problem was published by McNemar (1947). The trick is to start by
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tabulating your data in a slightly different way:

Before: Yes Before: No Total

After: Yes 5 5 10
After: No 25 65 90

Total 30 70 100

This is exactly the same data, but it’s been rewritten so that each of our 100 participants
appears in only one cell. Because we’ve written our data this way the independence assumption
is now satisfied, and this is a contingency table that we can use to construct a χ2 goodness-of-fit
statistic. However, as we’ll see, we need to do it in a slightly non-standard way. To see what’s
going on, it helps to label the entries in our table a little differently:

Before: Yes Before: No Total

After: Yes a b a` b
After: No c d c` d

Total a` c b` d n

Next, let’s think about what our null hypothesis is: it’s that the “before” test and the “after”
test have the same proportion of people saying “Yes, I will vote for AGPP”. Because of the
way that we have rewritten the data, it means that we’re now testing the hypothesis that the
row totals and column totals come from the same distribution. Thus, the null hypothesis in
McNemar’s test is that we have “marginal homogeneity”. That is, the row totals and column
totals have the same distribution: Pa ` Pb “ Pa ` Pc and similarly that Pc ` Pd “ Pb ` Pd.
Notice that this means that the null hypothesis actually simplifies to Pb “ Pc. In other words,
as far as the McNemar test is concerned, it’s only the off-diagonal entries in this table (i.e., b
and c) that matter! After noticing this, the McNemar test of marginal homogeneity is no
different to a usual χ2 test. After applying the Yates correction, our test statistic becomes:

χ2 “
p|b´ c| ´ 0.5q2

b` c

or, to revert to the notation that we used earlier in this chapter:

χ2 “
p|O12 ´O21| ´ 0.5q2

O12 `O21

and this statistic has a χ2 distribution (approximately) with df “ 1. However, remember that
just like the other χ2 tests it’s only an approximation, so you need to have reasonably large
expected cell counts for it to work.

10.7.1 Doing the McNemar test in jamovi

Now that you know what the McNemar test is all about, lets actually run one. The agpp.csv
file contains the raw data that I discussed previously. The agpp data set contains three variables,
an id variable that labels each participant in the data set (we’ll see why that’s useful in a
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moment), a response_before variable that records the person’s answer when they were asked
the question the first time, and a response_after variable that shows the answer that they gave
when asked the same question a second time. Notice that each participant appears only once
in this data set. Go to the ‘Analyses’ - ‘Frequencies’ - ‘Contingency Tables’ - ‘Paired Samples’
analysis in jamovi, and move response_before into the ‘Rows’ box, and response_after into the
‘Columns’ box. You will then get a contingency table in the results window, with the statistic
for the McNemar test just below it, see Figure 10.7

Figure 10.7: McNemar test output in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

And we’re done. We’ve just run a McNemar’s test to determine if people were just as likely to
vote AGPP after the ads as they were before hand. The test was significant (χ2p1q “ 12.03, p ă
.001), suggesting that they were not. And, in fact it looks like the ads had a negative effect:
people were less likely to vote AGPP after seeing the ads. Which makes a lot of sense when you
consider the quality of a typical political advertisement.
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10.8

What’s the difference between McNemar and independence?

Let’s go all the way back to the beginning of the chapter and look at the cards data set again. If
you recall, the actual experimental design that I described involved people making two choices.
Because we have information about the first choice and the second choice that everyone made,
we can construct the following contingency table that cross-tabulates the first choice against the
second choice.

choice_2

choice_1 clubs diamonds hearts spades

clubs 10 9 10 6

diamonds 20 4 13 14

hearts 20 18 3 23

spades 18 13 15 4

Suppose I wanted to know whether the choice you make the second time is dependent on the
choice you made the first time. This is where a test of independence is useful, and what we’re
trying to do is see if there’s some relationship between the rows and columns of this table.

Alternatively, suppose I wanted to know if on average, the frequencies of suit choices were
different the second time than the first time. In that situation, what I’m really trying to see is
if the row totals are different from the column totals. That’s when you use the McNemar test.

The different statistics produced by these different analyses are shown in Figure 10.8. Notice
that the results are different! These aren’t the same test.
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Figure 10.8: Independent vs. Paired (McNemar) test output in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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10.9

Summary

The key ideas discussed in this chapter are:

• The χ2 (chi-square) goodness-of-fit test (Section 10.1) is used when you have a table of
observed frequencies of different categories, and the null hypothesis gives you a set of
“known” probabilities to compare them to.

• The χ2 (chi-square) test of independence (Section 10.2) is used when you have a contin-
gency table (cross-tabulation) of two categorical variables. The null hypothesis is that
there is no relationship or association between the variables.

• Effect size for a contingency table can be measured in several ways (Section 10.4). In
particular we noted the Cramér’s V statistic.

• Both versions of the Pearson test rely on two assumptions: that the expected frequen-
cies are sufficiently large, and that the observations are independent (Section 10.5). The
Fisher exact test (Section 10.6) can be used when the expected frequencies are small. The
McNemar test (Section 10.7) can be used for some kinds of violations of independence.

If you’re interested in learning more about categorical data analysis a good first choice would be
Agresti (1996) which, as the title suggests, provides an Introduction to Categorical Data Analysis.
If the introductory book isn’t enough for you (or can’t solve the problem you’re working on) you
could consider Agresti (2002), Categorical Data Analysis. The latter is a more advanced text,
so it’s probably not wise to jump straight from this book to that one.
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11. Comparing two means

In Chapter 10 we covered the situation when your outcome variable is nominal scale and your
predictor variable is also nominal scale. Lots of real world situations have that character, and
so you’ll find that chi-square tests in particular are quite widely used. However, you’re much
more likely to find yourself in a situation where your outcome variable is interval scale or higher,
and what you’re interested in is whether the average value of the outcome variable is higher
in one group or another. For instance, a psychologist might want to know if anxiety levels are
higher among parents than non-parents, or if working memory capacity is reduced by listening
to music (relative to not listening to music). In a medical context we might want to know if a
new drug increases or decreases blood pressure. An agricultural scientist might want to know
whether adding phosphorus to Australian native plants will kill them.1 In all these situations
our outcome variable is a fairly continuous, interval or ratio scale variable, and our predictor is
a binary “grouping” variable. In other words, we want to compare the means of the two groups.

The standard answer to the problem of comparing means is to use a t-test, of which there
are several varieties depending on exactly what question you want to solve. As a consequence,
the majority of this chapter focuses on different types of t-test: one sample t-tests are discussed
in Section 11.2, independent samples t-tests are discussed in Sections 11.3 and 11.4, and paired
samples t-tests are discussed in Section 11.5. We’ll then talk about one sided tests (Section 11.6)
and, after that, we’ll talk a bit about Cohen’s d, which is the standard measure of effect size for
a t-test (Section 11.7). The later sections of the chapter focus on the assumptions of the t-tests,
and possible remedies if they are violated. However, before discussing any of these useful things,
we’ll start with a discussion of the z-test.

11.1

The one-sample z-test

In this section I’ll describe one of the most useless tests in all of statistics: the z-test.
Seriously – this test is almost never used in real life. Its only real purpose is that, when

1Informal experimentation in my garden suggests that yes, it does. Australian natives are adapted to low
phosphorus levels relative to everywhere else on Earth, so if you’ve bought a house with a bunch of exotics and
you want to plant natives, keep them separate; nutrients to European plants are poison to Australian ones.
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teaching statistics, it’s a very convenient stepping stone along the way towards the t-test, which
is probably the most (over)used tool in all statistics.

11.1.1 The inference problem that the test addresses

To introduce the idea behind the z-test, let’s use a simple example. A friend of mine, Dr
Zeppo, grades his introductory statistics class on a curve. Let’s suppose that the average grade
in his class is 67.5, and the standard deviation is 9.5. Of his many hundreds of students, it turns
out that 20 of them also take psychology classes. Out of curiosity, I find myself wondering if
the psychology students tend to get the same grades as everyone else (i.e., mean 67.5) or do
they tend to score higher or lower? He emails me the zeppo.csv file, which I use to look at the
grades of those students, in the jamovi spreadsheet view,

50 60 60 64 66 66 67 69 70 74 76 76 77 79 79 79 81 82 82 89

and then calculate the mean in ‘Exploration’ - ‘Descriptives’ 2. The mean value is 72.3.

Hmm. It might be that the psychology students are scoring a bit higher than normal. That
sample mean of X̄ “ 72.3 is a fair bit higher than the hypothesised population mean of µ “ 67.5
but, on the other hand, a sample size of N “ 20 isn’t all that big. Maybe it’s pure chance.

To answer the question, it helps to be able to write down what it is that I think I know.
Firstly, I know that the sample mean is X̄ “ 72.3. If I’m willing to assume that the psychology
students have the same standard deviation as the rest of the class then I can say that the
population standard deviation is σ “ 9.5. I’ll also assume that since Dr Zeppo is grading to a
curve, the psychology student grades are normally distributed.

Next, it helps to be clear about what I want to learn from the data. In this case my research
hypothesis relates to the population mean µ for the psychology student grades, which is unknown.
Specifically, I want to know if µ “ 67.5 or not. Given that this is what I know, can we devise a
hypothesis test to solve our problem? The data, along with the hypothesised distribution from
which they are thought to arise, are shown in Figure 11.1. Not entirely obvious what the right
answer is, is it? For this, we are going to need some statistics.

11.1.2 Constructing the hypothesis test

The first step in constructing a hypothesis test is to be clear about what the null and
alternative hypotheses are. This isn’t too hard to do. Our null hypothesis, H0, is that the true
population mean µ for psychology student grades is 67.5%, and our alternative hypothesis is that
the population mean isn’t 67.5%. If we write this in mathematical notation, these hypotheses
become:

H0 : µ “ 67.5
H1 : µ ‰ 67.5

2In order to do this I had to change the measurement level for X to ‘Continuous’, as during the opening /
import of the csv file jamovi made this a nominal level variable, which isn’t right for my analysis
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Grades

40 50 60 70 80 90

Figure 11.1: The theoretical distribution (solid line) from which the psychology student grades
(bars) are supposed to have been generated.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

though to be honest this notation doesn’t add much to our understanding of the problem,
it’s just a compact way of writing down what we’re trying to learn from the data. The null
hypotheses H0 and the alternative hypothesis H1 for our test are both illustrated in Figure 11.2.
In addition to providing us with these hypotheses, the scenario outlined above provides us with
a fair amount of background knowledge that might be useful. Specifically, there are two special
pieces of information that we can add:

1. The psychology grades are normally distributed.

2. The true standard deviation of these scores σ is known to be 9.5.

For the moment, we’ll act as if these are absolutely trustworthy facts. In real life, this kind
of absolutely trustworthy background knowledge doesn’t exist, and so if we want to rely on
these facts we’ll just have make the assumption that these things are true. However, since these
assumptions may or may not be warranted, we might need to check them. For now though,
we’ll keep things simple.

The next step is to figure out what we would be a good choice for a diagnostic test statistic,
something that would help us discriminate between H0 and H1. Given that the hypotheses all
refer to the population mean µ, you’d feel pretty confident that the sample mean X̄ would be a
pretty useful place to start. What we could do is look at the difference between the sample mean
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µ = µ0

σ = σ0

null hypothesis

value of X

µ ≠ µ0

σ = σ0

alternative hypothesis

value of X

Figure 11.2: Graphical illustration of the null and alternative hypotheses assumed by the one
sample z-test (the two sided version, that is). The null and alternative hypotheses both as-
sume that the population distribution is normal, and additionally assumes that the population
standard deviation is known (fixed at some value σ0). The null hypothesis (left) is that the
population mean µ is equal to some specified value µ0. The alternative hypothesis is that the
population mean differs from this value, µ ‰ µ0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X̄ and the value that the null hypothesis predicts for the population mean. In our example that
would mean we calculate X̄ ´ 67.5. More generally, if we let µ0 refer to the value that the null
hypothesis claims is our population mean, then we’d want to calculate

X̄ ´ µ0

If this quantity equals or is very close to 0, things are looking good for the null hypothesis. If
this quantity is a long way away from 0, then it’s looking less likely that the null hypothesis is
worth retaining. But how far away from zero should it be for us to reject H0?

To figure that out we need to be a bit more sneaky, and we’ll need to rely on those two
pieces of background knowledge that I wrote down previously; namely that the raw data are
normally distributed and that we know the value of the population standard deviation σ. If the
null hypothesis is actually true, and the true mean is µ0, then these facts together mean that
we know the complete population distribution of the data: a normal distribution with mean µ0

and standard deviation σ. Adopting the notation from Section 7.5, a statistician might write
this as:

X „ Normalpµ0, σ
2q

Okay, if that’s true, then what can we say about the distribution of X̄? Well, as we discussed
earlier (see Section 8.3.3), the sampling distribution of the mean X̄ is also normal, and has mean
µ. But the standard deviation of this sampling distribution sepX̄q, which is called the standard
error of the mean, is

sepX̄q “
σ
?
N
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In other words, if the null hypothesis is true then the sampling distribution of the mean can be
written as follows:

X̄ „ Normalpµ0, sepX̄qq

Now comes the trick. What we can do is convert the sample mean X̄ into a standard score
(Section 4.5). This is conventionally written as z, but for now I’m going to refer to it as zX̄ .
(The reason for using this expanded notation is to help you remember that we’re calculating a
standardised version of a sample mean, not a standardised version of a single observation, which
is what a z-score usually refers to). When we do so the z-score for our sample mean is

zX̄ “
X̄ ´ µ0

sepX̄q

or, equivalently

zX̄ “
X̄ ´ µ0

σ{
?
N

This z-score is our test statistic. The nice thing about using this as our test statistic is that like
all z-scores, it has a standard normal distribution:

zX̄ „ Normalp0, 1q

(again, see Section 4.5 if you’ve forgotten why this is true). In other words, regardless of
what scale the original data are on, the z-statistic itself always has the same interpretation:
it’s equal to the number of standard errors that separate the observed sample mean X̄ from
the population mean µ0 predicted by the null hypothesis. Better yet, regardless of what the
population parameters for the raw scores actually are, the 5% critical regions for the z-test are
always the same, as illustrated in Figure 11.3. And what this meant, way back in the days where
people did all their statistics by hand, is that someone could publish a table like this:

critical z value
desired α level two-sided test one-sided test

.1 1.644854 1.281552
.05 1.959964 1.644854
.01 2.575829 2.326348
.001 3.290527 3.090232

This, in turn, meant that researchers could calculate their z-statistic by hand and then look up
the critical value in a text book.

11.1.3 A worked example, by hand

Now, as I mentioned earlier, the z-test is almost never used in practice. It’s so rarely used in
real life that the basic installation of jamovi doesn’t have a built in function for it. However, the
test is so incredibly simple that it’s really easy to do one manually. Let’s go back to the data
from Dr Zeppo’s class. Having loaded the grades data, the first thing I need to do is calculate the
sample mean, which I’ve already done (72.3). We already have the known population standard
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−1.96 0 1.96

Two Sided Test

Value of z Statistic

0 1.64

One Sided Test

Value of z Statistic

(a) (b)

Figure 11.3: Rejection regions for the two-sided z-test (panel a) and the one-sided z-test (panel
b).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

deviation (σ “ 9.5), and the value of the population mean that the null hypothesis specifies
(µ0 “ 67.5), and we know the sample size (N=20).

Next, let’s calculate the (true) standard error of the mean (easily done with a calculator):

sem.true = sd.true / sqrt(N)

= 9.5 / sqrt(20)

= 2.124265

And finally, we calculate our z-score:

z.score = (sample.mean - mu.null) / sem.true

= (72.3 - 67.5) / 2.124265

= 2.259606

At this point, we would traditionally look up the value 2.26 in our table of critical values.
Our original hypothesis was two-sided (we didn’t really have any theory about whether psych
students would be better or worse at statistics than other students) so our hypothesis test is
two-sided (or two-tailed) also. Looking at the little table that I showed earlier, we can see that
2.26 is bigger than the critical value of 1.96 that would be required to be significant at α “ .05,
but smaller than the value of 2.58 that would be required to be significant at a level of α “ .01.
Therefore, we can conclude that we have a significant effect, which we might write up by saying
something like this:

With a mean grade of 73.2 in the sample of psychology students, and assuming a true
population standard deviation of 9.5, we can conclude that the psychology students
have significantly different statistics scores to the class average (z “ 2.26, N “ 20,
p ă .05).
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11.1.4 Assumptions of the z-test

As I’ve said before, all statistical tests make assumptions. Some tests make reasonable
assumptions, while other tests do not. The test I’ve just described, the one sample z-test, makes
three basic assumptions. These are:

• Normality. As usually described, the z-test assumes that the true population distribution
is normal.3 This is often a pretty reasonable assumption, and it’s also an assumption that
we can check if we feel worried about it (see Section 11.8).

• Independence. The second assumption of the test is that the observations in your data set
are not correlated with each other, or related to each other in some funny way. This isn’t
as easy to check statistically, it relies a bit on good experimental design. An obvious (and
stupid) example of something that violates this assumption is a data set where you “copy”
the same observation over and over again in your data file so that you end up with a massive
“sample size”, which consists of only one genuine observation. More realistically, you have
to ask yourself if it’s really plausible to imagine that each observation is a completely
random sample from the population that you’re interested in. In practice this assumption
is never met, but we try our best to design studies that minimise the problems of correlated
data.

• Known standard deviation. The third assumption of the z-test is that the true standard
deviation of the population is known to the researcher. This is just stupid. In no real
world data analysis problem do you know the standard deviation σ of some population
but are completely ignorant about the mean µ. In other words, this assumption is always
wrong.

In view of the stupidity of assuming that σ is known, let’s see if we can live without it. This
takes us out of the dreary domain of the z-test, and into the magical kingdom of the t-test, with
unicorns and fairies and leprechauns!

11.2

The one-sample t-test

After some thought, I decided that it might not be safe to assume that the psychology student
grades necessarily have the same standard deviation as the other students in Dr Zeppo’s class.
After all, if I’m entertaining the hypothesis that they don’t have the same mean, then why should
I believe that they absolutely have the same standard deviation? In view of this, I should really
stop assuming that I know the true value of σ. This violates the assumptions of my z-test, so

3Actually this is too strong. Strictly speaking the z test only requires that the sampling distribution of the
mean be normally distributed. If the population is normal then it necessarily follows that the sampling distribution
of the mean is also normal. However, as we saw when talking about the central limit theorem, it’s quite possible
(even commonplace) for the sampling distribution to be normal even if the population distribution itself is non-
normal. However, in light of the sheer ridiculousness of the assumption that the true standard deviation is known,
there really isn’t much point in going into details on this front!

- 247 -



in one sense I’m back to square one. However, it’s not like I’m completely bereft of options.
After all, I’ve still got my raw data, and those raw data give me an estimate of the population
standard deviation, which is 9.52. In other words, while I can’t say that I know that σ = 9.5, I
can say that σ̂ = 9.52.

Okay, cool. The obvious thing that you might think to do is run a z-test, but using the
estimated standard deviation of 9.52 instead of relying on my assumption that the true standard
deviation is 9.5. And you probably wouldn’t be surprised to hear that this would still give us a
significant result. This approach is close, but it’s not quite correct. Because we are now relying
on an estimate of the population standard deviation we need to make some adjustment for the
fact that we have some uncertainty about what the true population standard deviation actually
is. Maybe our data are just a fluke . . . maybe the true population standard deviation is 11,
for instance. But if that were actually true, and we ran the z-test assuming σ=11, then the
result would end up being non-significant. That’s a problem, and it’s one we’re going to have
to address.

µ = µ0

σ = ??

null hypothesis

value of X

µ ≠ µ0

σ = ??

alternative hypothesis

value of X

Figure 11.4: Graphical illustration of the null and alternative hypotheses assumed by the (two
sided) one sample t-test. Note the similarity to the z-test (Figure 11.2). The null hypothesis is
that the population mean µ is equal to some specified value µ0, and the alternative hypothesis
is that it is not. Like the z-test, we assume that the data are normally distributed, but we do
not assume that the population standard deviation σ is known in advance.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.2.1 Introducing the t-test

This ambiguity is annoying, and it was resolved in 1908 by a guy called William Sealy
Gosset (Student 1908), who was working as a chemist for the Guinness brewery at the time (see
Box 1987). Because Guinness took a dim view of its employees publishing statistical analysis
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Figure 11.5: The t distribution with 2 degrees of freedom (left) and 10 degrees of freedom
(right), with a standard normal distribution (i.e., mean 0 and std dev 1) plotted as dotted
lines for comparison purposes. Notice that the t distribution has heavier tails (leptokurtic:
higher kurtosis) than the normal distribution; this effect is quite exaggerated when the degrees
of freedom are very small, but negligible for larger values. In other words, for large df the t
distribution is essentially identical to a normal distribution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(apparently they felt it was a trade secret), he published the work under the pseudonym “A
Student” and, to this day, the full name of the t-test is actually Student’s t-test. The key
thing that Gosset figured out is how we should accommodate the fact that we aren’t completely
sure what the true standard deviation is.4 The answer is that it subtly changes the sampling
distribution. In the t-test our test statistic, now called a t-statistic, is calculated in exactly the
same way I mentioned above. If our null hypothesis is that the true mean is µ, but our sample
has mean X̄ and our estimate of the population standard deviation is σ̂, then our t statistic is:

t “
X̄ ´ µ

σ̂{
?
N

The only thing that has changed in the equation is that instead of using the known true value
σ, we use the estimate σ̂. And if this estimate has been constructed from N observations, then
the sampling distribution turns into a t-distribution with N ´1 degrees of freedom (df). The
t distribution is very similar to the normal distribution, but has “heavier” tails, as discussed
earlier in Section 7.6 and illustrated in Figure 11.5. Notice, though, that as df gets larger, the
t-distribution starts to look identical to the standard normal distribution. This is as it should
be: if you have a sample size of N = 70,000,000 then your “estimate” of the standard deviation
would be pretty much perfect, right? So, you should expect that for large N , the t-test would
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behave exactly the same way as a z-test. And that’s exactly what happens!

11.2.2 Doing the test in jamovi

As you might expect, the mechanics of the t-test are almost identical to the mechanics of the
z-test. So there’s not much point in going through the tedious exercise of showing you how to do
the calculations using low level commands. It’s pretty much identical to the calculations that we
did earlier, except that we use the estimated standard deviation and then we test our hypothesis
using the t distribution rather than the normal distribution. And so instead of going through
the calculations in tedious detail for a second time, I’ll jump straight to showing you how t-tests
are actually done. jamovi comes with a dedicated analysis for t-tests that is very flexible (it can
run lots of different kinds of t-tests). It’s pretty straightforward to use; all you need to do is
specify ‘Analyses’ - ‘T-Tests’ - ‘One Sample T-Test’, move the variable you are interested in (X)
across into the ‘Variables’ box, and type in the mean value for the null hypothesis (‘67.5’) in
the ‘Hypothesis’ - ‘Test value’ box. Easy enough. See Figure 11.6, which, amongst other things
that we will get to in a moment, gives you a t-test statistic = 2.25, with 19 degrees of freedom
and an associated p-value of 0.036.

Figure 11.6: jamovi does the one-sample t-test.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Also reported are two other things you might care about: the 95% confidence interval and
a measure of effect size (we’ll talk more about effect sizes later). So that seems straightforward
enough. Now what do we do with this output? Well, since we’re pretending that we actually
care about my toy example, we’re overjoyed to discover that the result is statistically significant

4Well, sort of. As I understand the history, Gosset only provided a partial solution; the general solution to the
problem was provided by Sir Ronald Fisher.
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(i.e. p value below .05). We could report the result by saying something like this:

With a mean grade of 72.3, the psychology students scored slightly higher than the
average grade of 67.5 (tp19q “ 2.25, p “ .036); the mean difference was 4.80 and the
95% confidence interval was from 0.34 to 9.26.

where tp19q is shorthand notation for a t-statistic that has 19 degrees of freedom. That said,
it’s often the case that people don’t report the confidence interval, or do so using a much more
compressed form than I’ve done here. For instance, it’s not uncommon to see the confidence
interval included as part of the stat block after reporting the mean difference, like this:

tp19q “ 2.25, p “ .036, CI95 “ r0.34, 9.26s

With that much jargon crammed into half a line, you know it must be really smart.5

11.2.3 Assumptions of the one sample t-test

Okay, so what assumptions does the one-sample t-test make? Well, since the t-test is basically
a z-test with the assumption of known standard deviation removed, you shouldn’t be surprised
to see that it makes the same assumptions as the z-test, minus the one about the known standard
deviation. That is

• Normality. We’re still assuming that the population distribution is normal6, and as noted
earlier, there are standard tools that you can use to check to see if this assumption is
met (Section 11.8), and other tests you can do in it’s place if this assumption is violated
(Section 11.9).

• Independence. Once again, we have to assume that the observations in our sample are
generated independently of one another. See the earlier discussion about the z-test for
specifics (Section 11.1.4).

Overall, these two assumptions aren’t terribly unreasonable, and as a consequence the one-
sample t-test is pretty widely used in practice as a way of comparing a sample mean against a
hypothesised population mean.

5More seriously, I tend to think the reverse is true. I get very suspicious of technical reports that fill their
results sections with nothing except the numbers. It might just be that I’m an arrogant jerk, but I often feel like
an author that makes no attempt to explain and interpret their analysis to the reader either doesn’t understand
it themselves, or is being a bit lazy. Your readers are smart, but not infinitely patient. Don’t annoy them if you
can help it.

6A technical comment. In the same way that we can weaken the assumptions of the z-test so that we’re
only talking about the sampling distribution, we can weaken the t-test assumptions so that we don’t have to
assume normality of the population. However, for the t-test it’s trickier to do this. As before, we can replace the
assumption of population normality with an assumption that the sampling distribution of X̄ is normal. However,
remember that we’re also relying on a sample estimate of the standard deviation, and so we also require the
sampling distribution of σ̂ to be chi-square. That makes things nastier, and this version is rarely used in practice.
Fortunately, if the population distribution is normal, then both of these two assumptions are met.
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11.3

The independent samples t-test (Student test)

Although the one sample t-test has its uses, it’s not the most typical example of a t-test7. A
much more common situation arises when you’ve got two different groups of observations. In
psychology, this tends to correspond to two different groups of participants, where each group
corresponds to a different condition in your study. For each person in the study you measure
some outcome variable of interest, and the research question that you’re asking is whether or
not the two groups have the same population mean. This is the situation that the independent
samples t-test is designed for.

11.3.1 The data

Suppose we have 33 students taking Dr Harpo’s statistics lectures, and Dr Harpo doesn’t grade
to a curve. Actually, Dr Harpo’s grading is a bit of a mystery, so we don’t really know anything
about what the average grade is for the class as a whole. There are two tutors for the class,
Anastasia and Bernadette. There are N1 “ 15 students in Anastasia’s tutorials, and N2 “

18 in Bernadette’s tutorials. The research question I’m interested in is whether Anastasia or
Bernadette is a better tutor, or if it doesn’t make much of a difference. Dr Harpo emails me the
course grades, in the harpo.csv file. As usual, I’ll load the file into jamovi and have a look at
what variables it contains - there are three variables, ID, grade and tutor. The grade variable
contains each student’s grade, but it is not imported into jamovi with the correct measurement
level attribute, so I need to change this so it is regarded as a continuous variable (see section 3.6).
The tutor variable is a factor that indicates who each student’s tutor was - either Anastasia or
Bernadette.

We can calculate means and standard deviations, using the ‘Exploration’ - ‘descriptives’
analysis, and here’s a nice little summary table:

mean std dev N

Anastasia’s students 74.53 9.00 15
Bernadette’s students 69.06 5.77 18

To give you a more detailed sense of what’s going on here, I’ve plotted histograms (not in
jamovi, but using R) showing the distribution of grades for both tutors (Figure 11.7), as well
as a simpler plot showing the means and corresponding confidence intervals for both groups of
students (Figure 11.8).

11.3.2 Introducing the test

The independent samples t-test comes in two different forms, Student’s and Welch’s. The
original Student t-test, which is the one I’ll describe in this section, is the simpler of the two but

7Although it is the simplest, which is why I started with it.
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Figure 11.7: Histograms showing the distribution of grades for students in Anastasia’s (panel a)
and in Bernadette’s (panel b) classes. Visually, these suggest that students in Anastasia’s class
may be getting slightly better grades on average, though they also seem a bit more variable.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 11.8: The plots show the mean grade for students in Anastasia’s and Bernadette’s tuto-
rials. Error bars depict 95% confidence intervals around the mean. Visually, it does look like
there’s a real difference between the groups, though it’s hard to say for sure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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relies on much more restrictive assumptions than the Welch t-test. Assuming for the moment
that you want to run a two-sided test, the goal is to determine whether two “independent
samples” of data are drawn from populations with the same mean (the null hypothesis) or
different means (the alternative hypothesis). When we say “independent” samples, what we
really mean here is that there’s no special relationship between observations in the two samples.
This probably doesn’t make a lot of sense right now, but it will be clearer when we come to
talk about the paired samples t-test later on. For now, let’s just point out that if we have
an experimental design where participants are randomly allocated to one of two groups, and
we want to compare the two groups’ mean performance on some outcome measure, then an
independent samples t-test (rather than a paired samples t-test) is what we’re after.

Okay, so let’s let µ1 denote the true population mean for group 1 (e.g., Anastasia’s students),
and µ2 will be the true population mean for group 2 (e.g., Bernadette’s students),8 and as usual
we’ll let X̄1 and X̄2 denote the observed sample means for both of these groups. Our null
hypothesis states that the two population means are identical (µ1 “ µ2) and the alternative to
this is that they are not (µ1 ‰ µ2). Written in mathematical-ese, this is:

H0 : µ1 “ µ2

H1 : µ1 ‰ µ2

To construct a hypothesis test that handles this scenario we start by noting that if the null
hypothesis is true, then the difference between the population means is exactly zero, µ1´µ2 “ 0.
As a consequence, a diagnostic test statistic will be based on the difference between the two
sample means. Because if the null hypothesis is true, then we’d expect X̄1 ´ X̄2 to be pretty
close to zero. However, just like we saw with our one-sample tests (i.e., the one-sample z-test
and the one-sample t-test) we have to be precise about exactly how close to zero this difference
should be. And the solution to the problem is more or less the same one. We calculate a
standard error estimate (SE), just like last time, and then divide the difference between means
by this estimate. So our t-statistic will be of the form:

t “
X̄1 ´ X̄2

SE

We just need to figure out what this standard error estimate actually is. This is a bit trickier
than was the case for either of the two tests we’ve looked at so far, so we need to go through it
a lot more carefully to understand how it works.

11.3.3 A “pooled estimate” of the standard deviation

In the original “Student t-test”, we make the assumption that the two groups have the same

8A funny question almost always pops up at this point: what the heck is the population being referred to
in this case? Is it the set of students actually taking Dr Harpo’s class (all 33 of them)? The set of people who
might take the class (an unknown number of them)? Or something else? Does it matter which of these we pick?
It’s traditional in an introductory behavioural stats class to mumble a lot at this point, but since I get asked
this question every year by my students, I’ll give a brief answer. Technically yes, it does matter. If you change
your definition of what the “real world” population actually is, then the sampling distribution of your observed
mean X̄ changes too. The t-test relies on an assumption that the observations are sampled at random from an
infinitely large population and, to the extent that real life isn’t like that, then the t-test can be wrong. In practice,
however, this isn’t usually a big deal. Even though the assumption is almost always wrong, it doesn’t lead to a
lot of pathological behaviour from the test, so we tend to just ignore it.
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Figure 11.9: Graphical illustration of the null and alternative hypotheses assumed by the Student
t-test. The null hypothesis assumes that both groups have the same mean µ, whereas the
alternative assumes that they have different means µ1 and µ2. Notice that it is assumed that
the population distributions are normal, and that, although the alternative hypothesis allows
the group to have different means, it assumes they have the same standard deviation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

population standard deviation. That is, regardless of whether the population means are the
same, we assume that the population standard deviations are identical, σ1 “ σ2. Since we’re
assuming that the two standard deviations are the same, we drop the subscripts and refer to
both of them as σ. How should we estimate this? How should we construct a single estimate
of a standard deviation when we have two samples? The answer is, basically, we average them.
Well, sort of. Actually, what we do is take a weighed average of the variance estimates, which
we use as our pooled estimate of the variance. The weight assigned to each sample is equal
to the number of observations in that sample, minus 1.

Mathematically, we can write this as

w1 “ N1 ´ 1
w2 “ N2 ´ 1

Now that we’ve assigned weights to each sample we calculate the pooled estimate of the
variance by taking the weighted average of the two variance estimates, σ̂2

1 and σ̂2
2

σ̂2
p “

w1σ̂
2
1 ` w2σ̂

2
2

w1 ` w2
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Finally, we convert the pooled variance estimate to a pooled standard deviation estimate, by
taking the square root.

σ̂p “

d

w1σ̂2
1 ` w2σ̂2

2

w1 ` w2

And if you mentally substitute w1 “ N1 ´ 1 and w2 “ N2 ´ 1 into this equation you get a
very ugly looking formula. A very ugly formula that actually seems to be the “standard” way
of describing the pooled standard deviation estimate. It’s not my favourite way of thinking
about pooled standard deviations, however. I prefer to think about it like this. Our data set
actually corresponds to a set of N observations which are sorted into two groups. So let’s
use the notation Xik to refer to the grade received by the i-th student in the k-th tutorial
group. That is, X11 is the grade received by the first student in Anastasia’s class, X21 is her
second student, and so on. And we have two separate group means X̄1 and X̄2, which we
could “generically” refer to using the notation X̄k, i.e., the mean grade for the k-th tutorial
group. So far, so good. Now, since every single student falls into one of the two tutorials, we
can describe their deviation from the group mean as the difference

Xik ´ X̄k

So why not just use these deviations (i.e., the extent to which each student’s grade differs
from the mean grade in their tutorial)? Remember, a variance is just the average of a bunch
of squared deviations, so let’s do that. Mathematically, we could write it like this

ř

ik

`

Xik ´ X̄k

˘2

N

where the notation “
ř

ik” is a lazy way of saying “calculate a sum by looking at all students in
all tutorials”, since each “ik” corresponds to one student.a But, as we saw in Chapter 8, cal-
culating the variance by dividing by N produces a biased estimate of the population variance.
And previously we needed to divide by N ´1 to fix this. However, as I mentioned at the time,
the reason why this bias exists is because the variance estimate relies on the sample mean, and
to the extent that the sample mean isn’t equal to the population mean it can systematically
bias our estimate of the variance. But this time we’re relying on two sample means! Does this
mean that we’ve got more bias? Yes, yes it does. And does this mean we now need to divide
by N ´ 2 instead of N ´ 1, in order to calculate our pooled variance estimate? Why, yes

σ̂2
p “

ř

ik

`

Xik ´ X̄k

˘2

N ´ 2

Oh, and if you take the square root of this then you get σ̂p, the pooled standard deviation
estimate. In other words, the pooled standard deviation calculation is nothing special. It’s
not terribly different to the regular standard deviation calculation.

aA more correct notation will be introduced in Chapter 13.
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11.3.4 Completing the test

Regardless of which way you want to think about it, we now have our pooled estimate of the
standard deviation. From now on, I’ll drop the silly p subscript, and just refer to this estimate
as σ̂. Great. Let’s now go back to thinking about the bloody hypothesis test, shall we? Our
whole reason for calculating this pooled estimate was that we knew it would be helpful when
calculating our standard error estimate. But standard error of what? In the one-sample t-test
it was the standard error of the sample mean, sepX̄q, and since sepX̄q “ σ{

?
N that’s what

the denominator of our t-statistic looked like. This time around, however, we have two sample
means. And what we’re interested in, specifically, is the the difference between the two X̄1´X̄2.
As a consequence, the standard error that we need to divide by is in fact the standard error
of the difference between means.

As long as the two variables really do have the same standard deviation, then our estimate for
the standard error is

sepX̄1 ´ X̄2q “ σ̂

c

1

N1
`

1

N2

and our t-statistic is therefore

t “
X̄1 ´ X̄2

sepX̄1 ´ X̄2q

Just as we saw with our one-sample test, the sampling distribution of this t-statistic is a t-
distribution (shocking, isn’t it?) as long as the null hypothesis is true and all of the assumptions
of the test are met. The degrees of freedom, however, is slightly different. As usual, we can
think of the degrees of freedom to be equal to the number of data points minus the number of
constraints. In this case, we have N observations (N1 in sample 1, and N2 in sample 2), and 2
constraints (the sample means). So the total degrees of freedom for this test are N ´ 2.

11.3.5 Doing the test in jamovi

Not surprisingly, you can run an independent samples t-test easily in jamovi. The outcome
variable for our test is the student grade, and the groups are defined in terms of the tutor for
each class. So you probably won’t be too surprised that all you have to do in jamovi is go
to the relevant analysis (‘Analyses’ - ‘T-Tests’ - ‘Independent Samples T-Test’) and move the
grade variable across to the ‘Dependent Variables’ box, and the tutor variable across into the
‘Grouping Variable’ box, as shown in Figure 11.10.

The output has a very familiar form. First, it tells you what test was run, and it tells you
the name of the dependent variable that you used. It then reports the test results. Just like last
time the test results consist of a t-statistic, the degrees of freedom, and the p-value. The final
section reports two things: it gives you a confidence interval and an effect size. I’ll talk about
effect sizes later. The confidence interval, however, I should talk about now.

It’s pretty important to be clear on what this confidence interval actually refers to. It is
a confidence interval for the difference between the group means. In our example, Anastasia’s
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Figure 11.10: Independent t-test in jamovi, with options checked for useful results

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

students had an average grade of 74.53, and Bernadette’s students had an average grade of 69.06,
so the difference between the two sample means is 5.48. But of course the difference between
population means might be bigger or smaller than this. The confidence interval reported in
Figure 11.10 tells you that there’s a if we replicated this study again and again, then 95% of the
time the true difference in means would lie between 0.20 and 10.76. Look back at Section 8.5
for a reminder about what confidence intervals mean.

In any case, the difference between the two groups is significant (just barely), so we might
write up the result using text like this:

The mean grade in Anastasia’s class was 74.5% (std dev = 9.0), whereas the mean
in Bernadette’s class was 69.1% (std dev = 5.8). A Student’s independent samples
t-test showed that this 5.4% difference was significant (tp31q “ 2.1, p ă .05, CI95 “

r0.2, 10.8s, d “ .74), suggesting that a genuine difference in learning outcomes has
occurred.

Notice that I’ve included the confidence interval and the effect size in the stat block. People
don’t always do this. At a bare minimum, you’d expect to see the t-statistic, the degrees of
freedom and the p value. So you should include something like this at a minimum: tp31q “ 2.1,
p ă .05. If statisticians had their way, everyone would also report the confidence interval and
probably the effect size measure too, because they are useful things to know. But real life doesn’t
always work the way statisticians want it to so you should make a judgment based on whether
you think it will help your readers and, if you’re writing a scientific paper, the editorial standard
for the journal in question. Some journals expect you to report effect sizes, others don’t. Within
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some scientific communities it is standard practice to report confidence intervals, in others it is
not. You’ll need to figure out what your audience expects. But, just for the sake of clarity, if
you’re taking my class, my default position is that it’s usually worth including both the effect
size and the confidence interval.

11.3.6 Positive and negative t values

Before moving on to talk about the assumptions of the t-test, there’s one additional point
I want to make about the use of t-tests in practice. The first one relates to the sign of the
t-statistic (that is, whether it is a positive number or a negative one). One very common
worry that students have when they start running their first t-test is that they often end up
with negative values for the t-statistic and don’t know how to interpret it. In fact, it’s not at
all uncommon for two people working independently to end up with results that are almost
identical, except that one person has a negative t values and the other one has a positive t value.
Assuming that you’re running a two-sided test then the p-values will be identical. On closer
inspection, the students will notice that the confidence intervals also have the opposite signs.
This is perfectly okay. Whenever this happens, what you’ll find is that the two versions of the
results arise from slightly different ways of running the t-test. What’s happening here is very
simple. The t-statistic that we calculate here is always of the form

t “
(mean 1)´ (mean 2)

(SE)

If “mean 1” is larger than “mean 2” the t statistic will be positive, whereas if “mean 2” is larger
then the t statistic will be negative. Similarly, the confidence interval that jamovi reports is the
confidence interval for the difference “(mean 1) minus (mean 2)”, which will be the reverse of
what you’d get if you were calculating the confidence interval for the difference “(mean 2) minus
(mean 1)”.

Okay, that’s pretty straightforward when you think about it, but now consider our t-test
comparing Anastasia’s class to Bernadette’s class. Which one should we call “mean 1” and
which one should we call “mean 2”. It’s arbitrary. However, you really do need to designate
one of them as “mean 1” and the other one as “mean 2”. Not surprisingly, the way that jamovi
handles this is also pretty arbitrary. In earlier versions of the book I used to try to explain
it, but after a while I gave up, because it’s not really all that important and to be honest I
can never remember myself. Whenever I get a significant t-test result, and I want to figure out
which mean is the larger one, I don’t try to figure it out by looking at the t-statistic. Why would
I bother doing that? It’s foolish. It’s easier just to look at the actual group means since the
jamovi output actually shows them!

Here’s the important thing. Because it really doesn’t matter what jamovi shows you, I
usually try to report the t-statistic in such a way that the numbers match up with the text.
Suppose that what I want to write in my report is “Anastasia’s class had higher grades than
Bernadette’s class”. The phrasing here implies that Anastasia’s group comes first, so it makes
sense to report the t-statistic as if Anastasia’s class corresponded to group 1. If so, I would write

Anastasia’s class had higher grades than Bernadette’s class (tp31q “ 2.1, p “ .04).
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(I wouldn’t actually underline the word “higher” in real life, I’m just doing it to emphasise the
point that “higher” corresponds to positive t values). On the other hand, suppose the phrasing
I wanted to use has Bernadette’s class listed first. If so, it makes more sense to treat her class
as group 1, and if so, the write up looks like this

Bernadette’s class had lower grades than Anastasia’s class (tp31q “ ´2.1, p “ .04).

Because I’m talking about one group having “lower” scores this time around, it is more sensible
to use the negative form of the t-statistic. It just makes it read more cleanly.

One last thing: please note that you can’t do this for other types of test statistics. It works
for t-tests, but it wouldn’t be meaningful for chi-square tests, F -tests or indeed for most of the
tests I talk about in this book. So don’t over-generalise this advice! I’m really just talking about
t-tests here and nothing else!

11.3.7 Assumptions of the test

As always, our hypothesis test relies on some assumptions. So what are they? For the
Student t-test there are three assumptions, some of which we saw previously in the context of
the one sample t-test (see Section 11.2.3):

• Normality. Like the one-sample t-test, it is assumed that the data are normally distributed.
Specifically, we assume that both groups are normally distributed. In Section 11.8 we’ll
discuss how to test for normality, and in Section 11.9 we’ll discuss possible solutions.

• Independence. Once again, it is assumed that the observations are independently sampled.
In the context of the Student test this has two aspects to it. Firstly, we assume that
the observations within each sample are independent of one another (exactly the same
as for the one-sample test). However, we also assume that there are no cross-sample
dependencies. If, for instance, it turns out that you included some participants in both
experimental conditions of your study (e.g., by accidentally allowing the same person to
sign up to different conditions), then there are some cross sample dependencies that you’d
need to take into account.

• Homogeneity of variance (also called “homoscedasticity”). The third assumption is that
the population standard deviation is the same in both groups. You can test this assumption
using the Levene test, which I’ll talk about later on in the book (Section 13.6.1). However,
there’s a very simple remedy for this assumption if you are worried, which I’ll talk about
in the next section.

11.4

The independent samples t-test (Welch test)

The biggest problem with using the Student test in practice is the third assumption listed in the
previous section. It assumes that both groups have the same standard deviation. This is rarely
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Figure 11.11: Graphical illustration of the null and alternative hypotheses assumed by the Welch
t-test. Like the Student test (Figure 11.9) we assume that both samples are drawn from a normal
population; but the alternative hypothesis no longer requires the two populations to have equal
variance.
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true in real life. If two samples don’t have the same means, why should we expect them to have
the same standard deviation? There’s really no reason to expect this assumption to be true.
We’ll talk a little bit about how you can check this assumption later on because it does crop
up in a few different places, not just the t-test. But right now I’ll talk about a different form of
the t-test (Welch 1947) that does not rely on this assumption. A graphical illustration of what
the Welch t test assumes about the data is shown in Figure 11.11, to provide a contrast with
the Student test version in Figure 11.9. I’ll admit it’s a bit odd to talk about the cure before
talking about the diagnosis, but as it happens the Welch test can be specified as one of the
‘Independent Samples T-Test’ options in jamovi, so this is probably the best place to discuss it.

The Welch test is very similar to the Student test. For example, the t-statistic that we use in
the Welch test is calculated in much the same way as it is for the Student test. That is, we take
the difference between the sample means and then divide it by some estimate of the standard
error of that difference

t “
X̄1 ´ X̄2

sepX̄1 ´ X̄2q

The main difference is that the standard error calculations are different. If the two populations
have different standard deviations, then it’s a complete nonsense to try to calculate a pooled
standard deviation estimate, because you’re averaging apples and oranges.9

9Well, I guess you can average apples and oranges, and what you end up with is a delicious fruit smoothie.
But no one really thinks that a fruit smoothie is a very good way to describe the original fruits, do they?
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But you can still estimate the standard error of the difference between sample means, it just
ends up looking different

sepX̄1 ´ X̄2q “

d

σ̂2
1

N1
`
σ̂2

2

N2

The reason why it’s calculated this way is beyond the scope of this book. What matters for
our purposes is that the t-statistic that comes out of the Welch t-test is actually somewhat
different to the one that comes from the Student t-test.

The second difference between Welch and Student is that the degrees of freedom are calcu-
lated in a very different way. In the Welch test, the “degrees of freedom ” doesn’t have to be
a whole number any more, and it doesn’t correspond all that closely to the “number of data
points minus the number of constraints” heuristic that I’ve been using up to this point.

The degrees of freedom are, in fact

df “
pσ̂2

1{N1 ` σ̂
2
2{N2q

2

pσ̂2
1{N1q

2{pN1 ´ 1q ` pσ̂2
2{N2q

2{pN2 ´ 1q

which is all pretty straightforward and obvious, right? Well, perhaps not. It doesn’t really
matter for our purposes. What matters is that you’ll see that the “df” value that pops out
of a Welch test tends to be a little bit smaller than the one used for the Student test, and it
doesn’t have to be a whole number.

11.4.1 Doing the Welch test in jamovi

If you tick the check box for the Welch test in the analysis we did above, then this is what
it gives you (Figure 11.12):

Figure 11.12: Results showing the Welch test alongside the default Student’s t-test in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The interpretation of this output should be fairly obvious. You read the output for the
Welch’s test in the same way that you would for the Student’s test. You’ve got your descriptive
statistics, the test results and some other information. So that’s all pretty easy.
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Except, except...our result isn’t significant anymore. When we ran the Student test we did
get a significant effect, but the Welch test on the same data set is not (tp23.02q “ 2.03, p “ .054).
What does this mean? Should we panic? Is the sky burning? Probably not. The fact that one
test is significant and the other isn’t doesn’t itself mean very much, especially since I kind of
rigged the data so that this would happen. As a general rule, it’s not a good idea to go out of
your way to try to interpret or explain the difference between a p-value of .049 and a p-value of
.051. If this sort of thing happens in real life, the difference in these p-values is almost certainly
due to chance. What does matter is that you take a little bit of care in thinking about what test
you use. The Student test and the Welch test have different strengths and weaknesses. If the
two populations really do have equal variances, then the Student test is slightly more powerful
(lower Type II error rate) than the Welch test. However, if they don’t have the same variances,
then the assumptions of the Student test are violated and you may not be able to trust it; you
might end up with a higher Type I error rate. So it’s a trade off. However, in real life I tend to
prefer the Welch test, because almost no-one actually believes that the population variances are
identical.

11.4.2 Assumptions of the test

The assumptions of the Welch test are very similar to those made by the Student t-test
(see Section 11.3.7), except that the Welch test does not assume homogeneity of variance. This
leaves only the assumption of normality and the assumption of independence. The specifics of
these assumptions are the same for the Welch test as for the Student test.

11.5

The paired-samples t-test

Regardless of whether we’re talking about the Student test or the Welch test, an independent
samples t-test is intended to be used in a situation where you have two samples that are, well,
independent of one another. This situation arises naturally when participants are assigned ran-
domly to one of two experimental conditions, but it provides a very poor approximation to other
sorts of research designs. In particular, a repeated measures design, in which each participant is
measured (with respect to the same outcome variable) in both experimental conditions, is not
suited for analysis using independent samples t-tests. For example, we might be interested in
whether listening to music reduces people’s working memory capacity. To that end, we could
measure each person’s working memory capacity in two conditions: with music, and without
music. In an experimental design such as this one,10 each participant appears in both groups.
This requires us to approach the problem in a different way, by using the paired samples
t-test.

10This design is very similar to the one in Section 10.7 that motivated the McNemar test. This should be no
surprise. Both are standard repeated measures designs involving two measurements. The only difference is that
this time our outcome variable is interval scale (working memory capacity) rather than a binary, nominal scale
variable (a yes-or-no question).
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11.5.1 The data

The data set that we’ll use this time comes from Dr Chico’s class.11 In her class students take
two major tests, one early in the semester and one later in the semester. To hear her tell it, she
runs a very hard class, one that most students find very challenging. But she argues that by
setting hard assessments students are encouraged to work harder. Her theory is that the first
test is a bit of a “wake up call” for students. When they realise how hard her class really is,
they’ll work harder for the second test and get a better mark. Is she right? To test this, let’s
import the chico.csv file into jamovi. This time jamovi does a good job during the import
of attributing measurement levels correctly. The chico data set contains three variables: an
id variable that identifies each student in the class, the grade\_test1 variable that records the
student grade for the first test, and the grade\_test2 variable that has the grades for the second
test.

If we look at the jamovi spreadsheet it does seem like the class is a hard one (most grades
are between 50% and 60%), but it does look like there’s an improvement from the first test to
the second one.

If we take a quick look at the descriptive statistics, in Figure 11.13, we see that this impression
seems to be supported. Across all 20 students the mean grade for the first test is 57%, but this
rises to 58% for the second test. Although, given that the standard deviations are 6.6% and 6.4%
respectively, it’s starting to feel like maybe the improvement is just illusory; maybe just random
variation. This impression is reinforced when you see the means and confidence intervals plotted
in Figure 11.14a. If we were to rely on this plot alone, looking at how wide those confidence
intervals are, we’d be tempted to think that the apparent improvement in student performance
is pure chance.

Nevertheless, this impression is wrong. To see why, take a look at the scatterplot of the
grades for test 1 against the grades for test 2, shown in Figure 11.14b. In this plot each dot
corresponds to the two grades for a given student. If their grade for test 1 (x co-ordinate) equals
their grade for test 2 (y co-ordinate), then the dot falls on the line. Points falling above the
line are the students that performed better on the second test. Critically, almost all of the data
points fall above the diagonal line: almost all of the students do seem to have improved their
grade, if only by a small amount. This suggests that we should be looking at the improvement
made by each student from one test to the next and treating that as our raw data. To do this,
we’ll need to create a new variable for the improvement that each student makes, and add it to
the chico data set. The easiest way to do this is to compute a new variable, with the expression
grade test2 - grade test1.

Once we have computed this new improvement variable we can draw a histogram showing
the distribution of these improvement scores, shown in Figure 11.14c. When we look at the
histogram, it’s very clear that there is a real improvement here. The vast majority of the
students scored higher on test 2 than on test 1, reflected in the fact that almost the entire
histogram is above zero.

11At this point we have Drs Harpo, Chico and Zeppo. No prizes for guessing who Dr Groucho is.
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Figure 11.13: Descriptives for the two grade test variables in the chico data set

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.5.2 What is the paired samples t-test?

In light of the previous exploration, let’s think about how to construct an appropriate t
test. One possibility would be to try to run an independent samples t-test using grade_test1

and grade_test2 as the variables of interest. However, this is clearly the wrong thing to do as
the independent samples t-test assumes that there is no particular relationship between the two
samples. Yet clearly that’s not true in this case because of the repeated measures structure in
the data. To use the language that I introduced in the last section, if we were to try to do an
independent samples t-test, we would be conflating the within subject differences (which is
what we’re interested in testing) with the between subject variability (which we are not).

The solution to the problem is obvious, I hope, since we already did all the hard work in
the previous section. Instead of running an independent samples t-test on grade_test1 and
grade_test2, we run a one-sample t-test on the within-subject difference variable, improvement.
To formalise this slightly, ifXi1 is the score that the i-th participant obtained on the first variable,
and Xi2 is the score that the same person obtained on the second one, then the difference score
is:

Di “ Xi1 ´Xi2
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Figure 11.14: Mean grade for test 1 and test 2, with associated 95% confidence intervals (panel
a). Scatterplot showing the individual grades for test 1 and test 2 (panel b). Histogram showing
the improvement made by each student in Dr Chico’s class (panel c). In panel c, notice that
almost the entire distribution is above zero: the vast majority of students did improve their
performance from the first test to the second one
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Notice that the difference scores is variable 1 minus variable 2 and not the other way around,
so if we want improvement to correspond to a positive valued difference, we actually want “test
2” to be our “variable 1”. Equally, we would say that µD “ µ1 ´ µ2 is the population mean for
this difference variable. So, to convert this to a hypothesis test, our null hypothesis is that this
mean difference is zero and the alternative hypothesis is that it is not

H0 : µD “ 0
H1 : µD ‰ 0

This is assuming we’re talking about a two-sided test here. This is more or less identical to
the way we described the hypotheses for the one-sample t-test. The only difference is that the
specific value that the null hypothesis predicts is 0. And so our t-statistic is defined in more or
less the same way too. If we let D̄ denote the mean of the difference scores, then

t “
D̄

sepD̄q

which is

t “
D̄

σ̂D{
?
N

where σ̂D is the standard deviation of the difference scores. Since this is just an ordinary,
one-sample t-test, with nothing special about it, the degrees of freedom are still N ´ 1. And
that’s it. The paired samples t-test really isn’t a new test at all. It’s a one-sample t-test, but
applied to the difference between two variables. It’s actually very simple. The only reason it
merits a discussion as long as the one we’ve just gone through is that you need to be able to
recognise when a paired samples test is appropriate, and to understand why it’s better than an
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independent samples t test.

11.5.3 Doing the test in jamovi

How do you do a paired samples t-test in jamovi? One possibility is to follow the process
I outlined above. That is, create a “difference” variable and then run a one sample t-test on
that. Since we’ve already created a variable called improvement, let’s do that and see what we
get, Figure 11.15.

Figure 11.15: Results showing a one sample t-test on paired difference scores

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The output shown in Figure 11.15 is (obviously) formatted exactly the same was as it was the
last time we used the ‘One Sample T-Test’ analysis (Section 11.2), and it confirms our intuition.
There’s an average improvement of 1.4% from test 1 to test 2, and this is significantly different
from 0 (tp19q “ 6.48, p ă .001).

However, suppose you’re lazy and you don’t want to go to all the effort of creating a new
variable. Or perhaps you just want to keep the difference between one-sample and paired-
samples tests clear in your head. If so, you can use the jamovi ‘Paired Samples T-Test’ analysis,
getting the results shown in Figure 11.16.

Figure 11.16: Results showing a paired sample t-test. Compare with Figure 11.15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The numbers are identical to those that come from the one sample test, which of course they
have to be given that the paired samples t-test is just a one sample test under the hood.
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11.6

One sided tests

When introducing the theory of null hypothesis tests, I mentioned that there are some situations
when it’s appropriate to specify a one-sided test (see Section 9.4.3). So far all of the t-tests have
been two-sided tests. For instance, when we specified a one sample t-test for the grades in Dr
Zeppo’s class the null hypothesis was that the true mean was 67.5%. The alternative hypothesis
was that the true mean was greater than or less than 67.5%. Suppose we were only interested in
finding out if the true mean is greater than 67.5%, and have no interest whatsoever in testing to
find out if the true mean is lower than 67.5%. If so, our null hypothesis would be that the true
mean is 67.5% or less, and the alternative hypothesis would be that the true mean is greater
than 67.5%. In jamovi, for the ‘One Sample T-Test’ analysis, you can specify this by clicking
on the ‘ą Test Value’ option, under ‘Hypothesis’. When you have done this, you will get the
results as shown in 11.17.

Figure 11.17: jamovi results showing a ‘One Sample T-Test’ where the actual hypothesis is one
sided, i.e. that the true mean is greater than 67.5%

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notice that there are a few changes from the output that we saw last time. Most important
is the fact that the actual hypothesis has changed, to reflect the different test. The second thing
to note is that although the t-statistic and degrees of freedom have not changed, the p-value
has. This is because the one-sided test has a different rejection region from the two-sided test.
If you’ve forgotten why this is and what it means, you may find it helpful to read back over
Chapter 9, and Section 9.4.3 in particular. The third thing to note is that the confidence interval
is different too: it now reports a “one-sided” confidence interval rather than a two-sided one. In
a two-sided confidence interval we’re trying to find numbers a and b such that we’re confident
that, if we were to repeat the study many times, then 95% of the time the mean would lie
between a and b. In a one-sided confidence interval, we’re trying to find a single number a such
that we’re confident that 95% of the time the true mean would be greater than a (or less than
a if you selected Measure 1 ¡ Measure 2 in the ‘Hypothesis’ section).

So that’s how to do a one-sided one sample t-test. However, all versions of the t-test can
be one-sided. For an independent samples t test, you could have a one-sided test if you’re only

- 268 -



interested in testing to see if group A has higher scores than group B, but have no interest in
finding out if group B has higher scores than group A. Let’s suppose that, for Dr Harpo’s class,
you wanted to see if Anastasia’s students had higher grades than Bernadette’s. For this analysis,
in the ‘Hypothesis’ options, specify that ‘Group 1 ą Group2’. You should get the results shown
in Figure 11.18.

Figure 11.18: jamovi results showing an ‘Independent Samples T-Test’ where the actual hypoth-
esis is one sided, i.e. that Anastasia’s students had higher grades than Bernadette’s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Again, the output changes in a predictable way. The definition of the alternative hypothesis
has changed, the p-value has changed, and it now reports a one-sided confidence interval rather
than a two-sided one.

What about the paired samples t-test? Suppose we wanted to test the hypothesis that grades
go up from test 1 to test 2 in Dr Zeppo’s class, and are not prepared to consider the idea that
the grades go down. In jamovi you would do this by specifying, under the ‘Hypotheses’ option,
that grade test2 (‘Measure 1’ in jamovi, because we copied this first into the paired variables
box) ą grade test1 (‘Measure 2’ in jamovi). You should get the results shown in Figure 11.19.

Figure 11.19: jamovi results showing a ‘Paired Samples T-Test’ where the actual hypothesis is
one sided, i.e. that grade test2 (‘Measure 1’) ą grade test1 (‘Measure 2’)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yet again, the output changes in a predictable way. The hypothesis has changed, the p-value
has changed, and the confidence interval is now one-sided.
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Table 11.1: A (very) rough guide to interpreting Cohen’s d. My personal recommendation is to
not use these blindly. The d statistic has a natural interpretation in and of itself. It re-describes
the difference in means as the number of standard deviations that separates those means. So
it’s generally a good idea to think about what that means in practical terms. In some contexts
a “small” effect could be of big practical importance. In other situations a “large” effect may
not be all that interesting.

d-value rough interpretation

about 0.2 “small” effect
about 0.5 “moderate” effect
about 0.8 “large” effect

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.7

Effect size

The most commonly used measure of effect size for a t-test is Cohen’s d (Cohen 1988). It’s
a very simple measure in principle, with quite a few wrinkles when you start digging into the
details. Cohen himself defined it primarily in the context of an independent samples t-test,
specifically the Student test. In that context, a natural way of defining the effect size is to
divide the difference between the means by an estimate of the standard deviation. In other
words, we’re looking to calculate something along the lines of this:

d “
(mean 1)´ (mean 2)

std dev

and he suggested a rough guide for interpreting d in Table 11.1. You’d think that this would be
pretty unambiguous, but it’s not. This is largely because Cohen wasn’t too specific on what he
thought should be used as the measure of the standard deviation (in his defence he was trying
to make a broader point in his book, not nitpick about tiny details). As discussed by McGrath
and Meyer (2006), there are several different versions in common usage, and each author tends
to adopt slightly different notation. For the sake of simplicity (as opposed to accuracy), I’ll use
d to refer to any statistic that you calculate from the sample, and use δ to refer to a theoretical
population effect. Obviously, that does mean that there are several different things all called d.

My suspicion is that the only time that you would want Cohen’s d is when you’re running a
t-test, and jamovi has an option to calculate the effect size for all the different flavours of t-test
it provides.

11.7.1 Cohen’s d from one sample

The simplest situation to consider is the one corresponding to a one-sample t-test. In this
case, this is the one sample mean X̄ and one (hypothesised) population mean µo to compare
it to. Not only that, there’s really only one sensible way to estimate the population standard

- 270 -



deviation. We just use our usual estimate σ̂. Therefore, we end up with the following as the
only way to calculate d

d “
X̄ ´ µ0

σ̂

When we look back at the results in Figure 11.6, the effect size value is Cohen’s d = 0.50.
Overall, then, the psychology students in Dr Zeppo’s class are achieving grades (mean = 72.3%)
that are about .5 standard deviations higher than the level that you’d expect (67.5%) if they
were performing at the same level as other students. Judged against Cohen’s rough guide, this
is a moderate effect size.

11.7.2 Cohen’s d from a Student’s t test

The majority of discussions of Cohen’s d focus on a situation that is analogous to Student’s
independent samples t test, and it’s in this context that the story becomes messier, since there
are several different versions of d that you might want to use in this situation. To understand
why there are multiple versions of d, it helps to take the time to write down a formula that
corresponds to the true population effect size δ. It’s pretty straightforward,

δ “
µ1 ´ µ2

σ

where, as usual, µ1 and µ2 are the population means corresponding to group 1 and group 2
respectively, and σ is the standard deviation (the same for both populations). The obvious way
to estimate δ is to do exactly the same thing that we did in the t-test itself, i.e., use the sample
means as the top line and a pooled standard deviation estimate for the bottom line

d “
X̄1 ´ X̄2

σ̂p

where σ̂p is the exact same pooled standard deviation measure that appears in the t-test. This is
the most commonly used version of Cohen’s d when applied to the outcome of a Student t-test,
and is the one provided in jamovi. It is sometimes referred to as Hedges’ g statistic (Hedges
1981).

However, there are other possibilities which I’ll briefly describe. Firstly, you may have reason
to want to use only one of the two groups as the basis for calculating the standard deviation.
This approach (often called Glass’ ∆, pronounced delta) only makes most sense when you have
good reason to treat one of the two groups as a purer reflection of “natural variation” than the
other. This can happen if, for instance, one of the two groups is a control group. Secondly, recall
that in the usual calculation of the pooled standard deviation we divide by N ´ 2 to correct
for the bias in the sample variance. In one version of Cohen’s d this correction is omitted, and
instead we divide by N . This version makes sense primarily when you’re trying to calculate the
effect size in the sample rather than estimating an effect size in the population. Finally, there
is a version based on Hedges and Olkin (1985), who point out there is a small bias in the usual
(pooled) estimation for Cohen’s d. Thus they introduce a small correction by multiplying the
usual value of d by pN ´ 3q{pN ´ 2.25q.

In any case, ignoring all those variations that you could make use of if you wanted, let’s have
a look at the default version in jamovi. In Figure 11.10 Cohen’s d = 0.74, indicating that the
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grade scores for students in Anastasia’s class are, on average, 0.74 standard deviations higher
than the grade scores for students in Bernadette’s class. For a Welch test, the estimated effect
size is the same (Figure 11.12).

11.7.3 Cohen’s d from a paired-samples test

Finally, what should we do for a paired samples t-test? In this case, the answer depends
on what it is you’re trying to do. jamovi assumes that you want to measure your effect sizes
relative to the distribution of difference scores, and the measure of d that you calculate is:

d “
D̄

σ̂D

where σ̂D is the estimate of the standard deviation of the differences. In Figure 11.16 Cohen’s d
= 1.45, indicating that the time 2 grade scores are, on average, 1.45 standard deviations higher
than the time 1 grade scores.

This is the version of Cohen’s d that gets reported by the jamovi ‘Paired Samples T-Test’
analysis. The only wrinkle is figuring out whether this is the measure you want or not. To
the extent that you care about the practical consequences of your research, you often want to
measure the effect size relative to the original variables, not the difference scores (e.g., the 1%
improvement in Dr Chico’s class over time is pretty small when measured against the amount
of between-student variation in grades), in which case you use the same versions of Cohen’s d
that you would use for a Student or Welch test. It’s not so straightforward to do this in jamovi;
essentially you have to change the structure of the data in the spreadsheet view so I won’t go
into that here12, but the Cohen’s d for this perspective is quite different: it is 0.22 which is quite
small when assessed on the scale of the original variables.

11.8

Checking the normality of a sample

All of the tests that we have discussed so far in this chapter have assumed that the data are nor-
mally distributed. This assumption is often quite reasonable, because the central limit theorem
(Section 8.3.3) does tend to ensure that many real world quantities are normally distributed.
Any time that you suspect that your variable is actually an average of lots of different things,
there’s a pretty good chance that it will be normally distributed, or at least close enough to
normal that you can get away with using t-tests. However, life doesn’t come with guarantees,
and besides there are lots of ways in which you can end up with variables that are highly non-
normal. For example, any time you think that your variable is actually the minimum of lots of
different things, there’s a very good chance it will end up quite skewed. In psychology, response
time (RT) data is a good example of this. If you suppose that there are lots of things that could
trigger a response from a human participant, then the actual response will occur the first time
one of these trigger events occurs.13 This means that RT data are systematically non-normal.
Okay, so if normality is assumed by all the tests, and is mostly but not always satisfied (at least

12If you are interested, you can look at how this was done in the chico2.omv file
13This is a massive oversimplification.
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approximately) by real world data, how can we check the normality of a sample? In this section
I discuss two methods: QQ plots and the Shapiro-Wilk test.

11.8.1 QQ plots
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Figure 11.20: Histogram (panel a) and normal QQ plot (panel b) of normal.data, a normally
distributed sample with 100 observations. The Shapiro-Wilk statistic associated with these data
is W “ .99, indicating that no significant departures from normality were detected (p “ .73).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One way to check whether a sample violates the normality assumption is to draw a “QQ
plot” (Quantile-Quantile plot). This allows you to visually check whether you’re seeing any
systematic violations. In a QQ plot, each observation is plotted as a single dot. The x co-
ordinate is the theoretical quantile that the observation should fall in if the data were normally
distributed (with mean and variance estimated from the sample), and on the y co-ordinate is
the actual quantile of the data within the sample. If the data are normal, the dots should form a
straight line. For instance, lets see what happens if we generate data by sampling from a normal
distribution, and then drawing a QQ plot. The results are shown in Figure 11.20. As you can
see, these data form a pretty straight line; which is no surprise given that we sampled them from
a normal distribution! In contrast, have a look at the two data sets shown in Figure 11.21. The
top panels show the histogram and a QQ plot for a data set that is highly skewed: the QQ plot
curves upwards. The lower panels show the same plots for a heavy tailed (i.e., high kurtosis)
data set: in this case the QQ plot flattens in the middle and curves sharply at either end.
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Skewed Data
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Heavy−Tailed Data
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Figure 11.21: In the top row, a histogram (panel a) and normal QQ plot (panel b) of the 100
observations in a skewed.data set. The skewness of the data here is 1.94, and is reflected in a QQ
plot that curves upwards. As a consequence, the Shapiro-Wilk statistic is W “ .80, reflecting
a significant departure from normality (p ă .001). The bottom row shows the same plots for a
heavy tailed data set, again consisting of 100 observations. In this case the heavy tails in the
data produce a high kurtosis (2.80), and cause the QQ plot to flatten in the middle, and curve
away sharply on either side. The resulting Shapiro-Wilk statistic is W “ .93, again reflecting
significant non-normality (p ă .001).
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11.8.2 Shapiro-Wilk tests

QQ plots provide a nice way to informally check the normality of your data, but sometimes
you’ll want to do something a bit more formal and the Shapiro-Wilk test (Shapiro and Wilk
1965) is probably what you’re looking for.14 As you’d expect, the null hypothesis being tested
is that a set of N observations is normally distributed.

The test statistic that it calculates is conventionally denoted as W , and it’s calculated as
follows. First, we sort the observations in order of increasing size, and let X1 be the smallest
value in the sample, X2 be the second smallest and so on. Then the value of W is given by

W “

´

řN
i“1 aiXi

¯2

řN
i“1pXi ´ X̄q2

where X̄ is the mean of the observations, and the ai values are ... mumble, mumble ...
something complicated that is a bit beyond the scope of an introductory text.

Because it’s a little hard to explain the maths behind the W statistic, a better idea is to
give a broad brush description of how it behaves. Unlike most of the test statistics that we’ll
encounter in this book, it’s actually small values of W that indicate departure from normality.
The W statistic has a maximum value of 1, which occurs when the data look “perfectly normal”.
The smaller the value of W the less normal the data are. However, the sampling distribution for
W , which is not one of the standard ones that I discussed in Chapter 7 and is in fact a complete
pain in the arse to work with, does depend on the sample size N . To give you a feel for what
these sampling distributions look like, I’ve plotted three of them in Figure 11.22. Notice that, as
the sample size starts to get large, the sampling distribution becomes very tightly clumped up
near W “ 1, and as a consequence, for larger samples W doesn’t have to be very much smaller
than 1 in order for the test to be significant.

To get the Shapiro-Wilk statistic in jamovi t-tests, check the option for ‘Normality’ listed
under ‘Assumptions’. In the randomly sampled data (N = 100) we used for the QQ plot, the
value for the Shapiro-Wilk normality test statistic was W = 0.99 with a p-value of 0.69. So, not
surprisingly, we have no evidence that these data depart from normality. When reporting the
results for a Shapiro-Wilk test, you should (as usual) make sure to include the test statistic W
and the p value, though given that the sampling distribution depends so heavily on N it would
probably be a politeness to include N as well.

11.8.3 Example

In the meantime, it’s probably worth showing you an example of what happens to the QQ

14Either that, or the Kolmogorov-Smirnov test, which is probably more traditional than the Shapiro-Wilk.
Although most things I’ve read seem to suggest Shapiro-Wilk is the better test of normality, the Kolomogorov-
Smirnov is a general purpose test of distributional equivalence that can be adapted to handle other kinds of
distribution tests. In jamovi the Shapiro-Wilk test is preferred.
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Figure 11.22: Sampling distribution of the Shapiro-Wilk W statistic, under the null hypothesis
that the data are normally distributed, for samples of size 10, 20 and 50. Note that small values
of W indicate departure from normality.
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plot and the Shapiro-Wilk test when the data turn out to be non-normal. For that, let’s look
at the distribution of our AFL winning margins data, which if you remember back to Chapter 4
didn’t look like they came from a normal distribution at all. Here’s what happens to the QQ
plot:
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And when we run the Shapiro-Wilk test on the AFL margins data, we get a value for the
Shapiro-Wilk normality test statistic of W = 0.94, and p-value = 9.481e-07. Clearly a significant
effect!

11.9

Testing non-normal data with Wilcoxon tests

Okay, suppose your data turn out to be pretty substantially non-normal, but you still want to
run something like a t-test? This situation occurs a lot in real life. For the AFL winning margins
data, for instance, the Shapiro-Wilk test made it very clear that the normality assumption is
violated. This is the situation where you want to use Wilcoxon tests.

Like the t-test, the Wilcoxon test comes in two forms, one-sample and two-sample, and
they’re used in more or less the exact same situations as the corresponding t-tests. Unlike the
t-test, the Wilcoxon test doesn’t assume normality, which is nice. In fact, they don’t make any
assumptions about what kind of distribution is involved. In statistical jargon, this makes them
nonparametric tests. While avoiding the normality assumption is nice, there’s a drawback:
the Wilcoxon test is usually less powerful than the t-test (i.e., higher Type II error rate). I won’t
discuss the Wilcoxon tests in as much detail as the t-tests, but I’ll give you a brief overview.
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11.9.1 Two sample Mann-Whitney U test

I’ll start by describing the Mann-Whitney U test, since it’s actually simpler than the
one sample version. Suppose we’re looking at the scores of 10 people on some test. Since my
imagination has now failed me completely, let’s pretend it’s a “test of awesomeness” and there
are two groups of people, “A” and “B”. I’m curious to know which group is more awesome. The
data are included in the file awesome.csv, and there are two variables apart from the usual ID
variable: scores and group.

As long as there are no ties (i.e., people with the exact same awesomeness score) then the
test that we want to do is surprisingly simple. All we have to do is construct a table that
compares every observation in group A against every observation in group B. Whenever the
group A datum is larger, we place a check mark in the table:

group B
14.5 10.4 12.4 11.7 13.0

6.4 . . . . .
10.7 . X . . .

group A 11.9 . X . X .
7.3 . . . . .

10.0 . . . . .

We then count up the number of checkmarks. This is our test statistic, W .15 The actual
sampling distribution for W is somewhat complicated, and I’ll skip the details. For our purposes,
it’s sufficient to note that the interpretation of W is qualitatively the same as the interpretation
of t or z. That is, if we want a two-sided test then we reject the null hypothesis when W is very
large or very small, but if we have a directional (i.e., one-sided) hypothesis then we only use one
or the other.

In jamovi, if we run an ‘Independent Samples T-Test’ with scores as the dependent variable.
and group as the grouping variable, and then under the options for ‘tests’ check the option for
‘Mann-Whitney U’, we will get results showing that U = 3 (i.e., the same number of checkmarks
as shown above), and a p-value = 0.05556.

11.9.2 One sample Wilcoxon test

What about the one sample Wilcoxon test (or equivalently, the paired samples Wilcoxon
test)? Suppose I’m interested in finding out whether taking a statistics class has any effect on
the happiness of students. My data is in the happiness.csv file. What I’ve measured here is the
happiness of each student before taking the class and after taking the class, and the change

score is the difference between the two. Just like we saw with the t-test, there’s no fundamental
difference between doing a paired-samples test using before and after, versus doing a one-
sample test using the change scores. As before, the simplest way to think about the test is
to construct a tabulation. The way to do it this time is to take those change scores that are

15Actually, there are two different versions of the test statistic that differ from each other by a constant value.
The version that I’ve described is the one that jamovi calculates.
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positive differences, and tabulate them against all the complete sample. What you end up with
is a table that looks like this:

all differences
-24 -14 -10 7 -6 -38 2 -35 -30 5

7 . . . X X . X . . X
positive differences 2 . . . . . . X . . .

5 . . . . . . X . . X

Counting up the tick marks this time we get a test statistic of W “ 7. As before, if our test
is two sided, then we reject the null hypothesis when W is very large or very small. As far as
running it in jamovi goes, it’s pretty much what you’d expect. For the one-sample version, you
specify the ‘Wilcoxon rank’ option under ‘Tests’ in the ‘One Sample T-Test’ analysis window.
This gives you Wilcoxon W = 7, p-value = 0.03711. As this shows, we have a significant effect.
Evidently, taking a statistics class does have an effect on your happiness. Switching to a paired
samples version of the test won’t give us a different answer, of course; see Figure 11.23.

Figure 11.23: jamovi screen showing results for one sample and paired sample Wilcoxon non-
parametric tests

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.10

Summary

• A one sample t-test is used to compare a single sample mean against a hypothesised value
for the population mean. (Section 11.2)
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• An independent samples t-test is used to compare the means of two groups, and tests the
null hypothesis that they have the same mean. It comes in two forms: the Student test
(Section 11.3) assumes that the groups have the same standard deviation, the Welch test
(Section 11.4) does not.

• A paired samples t-test is used when you have two scores from each person, and you want
to test the null hypothesis that the two scores have the same mean. It is equivalent to
taking the difference between the two scores for each person, and then running a one
sample t-test on the difference scores. (Section 11.5)

• One sided tests are perfectly legitimate as long as they are pre-planned. (Section 11.6)

• Effect size calculations for the difference between means can be calculated via the Cohen’s
d statistic. (Section 11.7).

• You can check the normality of a sample using QQ plots (not currently available in jamovi)
and the Shapiro-Wilk test. (Section 11.8)

• If your data are non-normal, you can use Mann-Whitney or Wilcoxon tests instead of
t-tests. (Section 11.9)
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12. Correlation and linear regression

The goal in this chapter is to introduce correlation and linear regression. These are the
standard tools that statisticians rely on when analysing the relationship between continuous
predictors and continuous outcomes.

12.1

Correlations

In this section we’ll talk about how to describe the relationships between variables in the data.
To do that, we want to talk mostly about the correlation between variables. But first, we need
some data.

12.1.1 The data

Table 12.1: Descriptive statistics for the parenthood data.

variable min max mean median std. dev IQR

Dan’s grumpiness 41 91 63.71 62 10.05 14
Dan’s hours slept 4.84 9.00 6.97 7.03 1.02 1.45

Dan’s son’s hours slept 3.25 12.07 8.05 7.95 2.07 3.21

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let’s turn to a topic close to every parent’s heart: sleep. The data set we’ll use is fictitious,
but based on real events. Suppose I’m curious to find out how much my infant son’s sleeping
habits affect my mood. Let’s say that I can rate my grumpiness very precisely, on a scale from
0 (not at all grumpy) to 100 (grumpy as a very, very grumpy old man or woman). And lets also
assume that I’ve been measuring my grumpiness, my sleeping patterns and my son’s sleeping
patterns for quite some time now. Let’s say, for 100 days. And, being a nerd, I’ve saved the
data as a file called parenthood.csv. If we load the data we can see that the file contains four
variables dan.sleep, baby.sleep, dan.grump and day. Note that when you first load this data set
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jamovi may not have guessed the data type for each variable correctly, in which case you should
fix it: dan.sleep, baby.sleep, dan.grump and day can be specified as continuous variables, and
ID is a nominal(integer) variable.1

Next, I’ll take a look at some basic descriptive statistics and, to give a graphical depiction
of what each of the three interesting variables looks like, Figure 12.1 plots histograms. One
thing to note: just because jamovi can calculate dozens of different statistics doesn’t mean you
should report all of them. If I were writing this up for a report, I’d probably pick out those
statistics that are of most interest to me (and to my readership), and then put them into a nice,
simple table like the one in Table 12.1.2 Notice that when I put it into a table, I gave everything
“human readable” names. This is always good practice. Notice also that I’m not getting enough
sleep. This isn’t good practice, but other parents tell me that it’s pretty standard.
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Figure 12.1: Histograms for the three interesting variables in the parenthood data set.
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12.1.2 The strength and direction of a relationship

We can draw scatterplots to give us a general sense of how closely related two variables are. Ide-
ally though, we might want to say a bit more about it than that. For instance, let’s compare the
relationship between dan.sleep and dan.grump (Figure 12.2, left) with that between baby.sleep

and dan.grump (Figure 12.2, right). When looking at these two plots side by side, it’s clear that
the relationship is qualitatively the same in both cases: more sleep equals less grump! However,
it’s also pretty obvious that the relationship between dan.sleep and dan.grump is stronger than
the relationship between baby.sleep and dan.grump. The plot on the left is “neater” than the
one on the right. What it feels like is that if you want to predict what my mood is, it’d help
you a little bit to know how many hours my son slept, but it’d be more helpful to know how
many hours I slept.

1I’ve noticed that in some versions of jamovi you can also specify an ‘ID’ variable type, but for our purposes
it does not matter how we specify the ID variable as we won’t be including it in any analyses.

2Actually, even that table is more than I’d bother with. In practice most people pick one measure of central
tendency, and one measure of variability only.
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Figure 12.2: Scatterplots showing the relationship between dan.sleep and dan.grump (left) and
the relationship between baby.sleep and dan.grump (right).
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In contrast, let’s consider the two scatterplots shown in Figure 12.3. If we compare the
scatterplot of “baby.sleep v dan.grump” (left) to the scatterplot of “‘baby.sleep v dan.sleep”
(right), the overall strength of the relationship is the same, but the direction is different. That
is, if my son sleeps more, I get more sleep (positive relationship, right hand side), but if he sleeps
more then I get less grumpy (negative relationship, left hand side).

12.1.3 The correlation coefficient

We can make these ideas a bit more explicit by introducing the idea of a correlation coef-
ficient (or, more specifically, Pearson’s correlation coefficient), which is traditionally denoted as
r. The correlation coefficient between two variables X and Y (sometimes denoted rXY ), which
we’ll define more precisely in the next section, is a measure that varies from ´1 to 1. When
r “ ´1 it means that we have a perfect negative relationship, and when r “ 1 it means we
have a perfect positive relationship. When r “ 0, there’s no relationship at all. If you look at
Figure 12.4, you can see several plots showing what different correlations look like.
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Figure 12.3: Scatterplots showing the relationship between baby.sleep and dan.grump (left), as
compared to the relationship between baby.sleep and dan.sleep (right).
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The formula for the Pearson’s correlation coefficient can be written in several different ways.
I think the simplest way to write down the formula is to break it into two steps. Firstly,
let’s introduce the idea of a covariance. The covariance between two variables X and Y is a
generalisation of the notion of the variance amd is a mathematically simple way of describing
the relationship between two variables that isn’t terribly informative to humans

CovpX,Y q “
1

N ´ 1

N
ÿ

i“1

`

Xi ´ X̄
˘ `

Yi ´ Ȳ
˘

Because we’re multiplying (i.e., taking the “product” of) a quantity that depends on X by
a quantity that depends on Y and then averaginga, you can think of the formula for the
covariance as an “average cross product” between X and Y .

The covariance has the nice property that, if X and Y are entirely unrelated, then the
covariance is exactly zero. If the relationship between them is positive (in the sense shown in
Figure 12.4) then the covariance is also positive, and if the relationship is negative then the
covariance is also negative. In other words, the covariance captures the basic qualitative idea
of correlation. Unfortunately, the raw magnitude of the covariance isn’t easy to interpret as
it depends on the units in which X and Y are expressed and, worse yet, the actual units that
the covariance itself is expressed in are really weird. For instance, if X refers to the dan.sleep

variable (units: hours) and Y refers to the dan.grump variable (units: grumps), then the units
for their covariance are “hours ˆ grumps”. And I have no freaking idea what that would even
mean.
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Figure 12.4: Illustration of the effect of varying the strength and direction of a correlation. In
the left hand column, the correlations are 0, .33, .66 and 1. In the right hand column, the
correlations are 0, -.33, -.66 and -1.
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The Pearson correlation coefficient r fixes this interpretation problem by standardising the
covariance, in pretty much the exact same way that the z-score standardises a raw score, by
dividing by the standard deviation. However, because we have two variables that contribute
to the covariance, the standardisation only works if we divide by both standard deviations.b

In other words, the correlation between X and Y can be written as follows:

rXY “
CovpX,Y q

σ̂X σ̂Y
aJust like we saw with the variance and the standard deviation, in practice we divide by N ´ 1 rather than

N .
bThis is an oversimplification, but it’ll do for our purposes.

By standardising the covariance, not only do we keep all of the nice properties of the co-
variance discussed earlier, but the actual values of r are on a meaningful scale: r “ 1 implies a
perfect positive relationship and r “ ´1 implies a perfect negative relationship. I’ll expand a
little more on this point later, in Section 12.1.5. But before I do, let’s look at how to calculate
correlations in jamovi.

12.1.4 Calculating correlations in jamovi

Calculating correlations in jamovi can be done by clicking on the ‘Regression’ - ‘Correlation
Matrix’ button. Transfer all four continuous variables across into the box on the right to get
the output in Figure 12.5.

12.1.5 Interpreting a correlation

Naturally, in real life you don’t see many correlations of 1. So how should you interpret a
correlation of, say, r “ .4? The honest answer is that it really depends on what you want to use
the data for, and on how strong the correlations in your field tend to be. A friend of mine in
engineering once argued that any correlation less than .95 is completely useless (I think he was
exaggerating, even for engineering). On the other hand, there are real cases, even in psychology,
where you should really expect correlations that strong. For instance, one of the benchmark
data sets used to test theories of how people judge similarities is so clean that any theory that
can’t achieve a correlation of at least .9 really isn’t deemed to be successful. However, when
looking for (say) elementary correlates of intelligence (e.g., inspection time, response time), if
you get a correlation above .3 you’re doing very very well. In short, the interpretation of a
correlation depends a lot on the context. That said, the rough guide in Table 12.2 is pretty
typical.

However, something that can never be stressed enough is that you should always look at the
scatterplot before attaching any interpretation to the data. A correlation might not mean what
you think it means. The classic illustration of this is “Anscombe’s Quartet” (Anscombe 1973),
a collection of four data sets. Each data set has two variables, an X and a Y . For all four data
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Figure 12.5: A jamovi screenshot showing correlations between variables in the parenthood.csv
file
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sets the mean value for X is 9 and the mean for Y is 7.5. The standard deviations for all X
variables are almost identical, as are those for the Y variables. And in each case the correlation
between X and Y is r “ 0.816. You can verify this yourself, since I happen to have saved it in
a file called anscombe.csv.

You’d think that these four data sets would look pretty similar to one another. They do not.
If we draw scatterplots of X against Y for all four variables, as shown in Figure 12.6, we see
that all four of these are spectacularly different to each other. The lesson here, which so very
many people seem to forget in real life, is “always graph your raw data” (Chapter 5).

12.1.6 Spearman’s rank correlations

The Pearson correlation coefficient is useful for a lot of things, but it does have shortcomings.
One issue in particular stands out: what it actually measures is the strength of the linear
relationship between two variables. In other words, what it gives you is a measure of the extent
to which the data all tend to fall on a single, perfectly straight line. Often, this is a pretty good
approximation to what we mean when we say “relationship”, and so the Pearson correlation is
a good thing to calculate. Sometimes though, it isn’t.

One very common situation where the Pearson correlation isn’t quite the right thing to use
arises when an increase in one variable X really is reflected in an increase in another variable
Y , but the nature of the relationship isn’t necessarily linear. An example of this might be the
relationship between effort and reward when studying for an exam. If you put zero effort (X)
into learning a subject then you should expect a grade of 0% (Y ). However, a little bit of effort
will cause a massive improvement. Just turning up to lectures means that you learn a fair bit,
and if you just turn up to classes and scribble a few things down your grade might rise to 35%,
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Table 12.2: A rough guide to interpreting correlations. Note that I say a rough guide. There
aren’t hard and fast rules for what counts as strong or weak relationships. It depends on the
context.

Correlation Strength Direction

-1.0 to -0.9 Very strong Negative
-0.9 to -0.7 Strong Negative
-0.7 to -0.4 Moderate Negative
-0.4 to -0.2 Weak Negative
-0.2 to 0 Negligible Negative

0 to 0.2 Negligible Positive
0.2 to 0.4 Weak Positive
0.4 to 0.7 Moderate Positive
0.7 to 0.9 Strong Positive
0.9 to 1.0 Very strong Positive

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

all without a lot of effort. However, you just don’t get the same effect at the other end of the
scale. As everyone knows, it takes a lot more effort to get a grade of 90% than it takes to get
a grade of 55%. What this means is that, if I’ve got data looking at study effort and grades,
there’s a pretty good chance that Pearson correlations will be misleading.

To illustrate, consider the data plotted in Figure 12.7, showing the relationship between
hours worked and grade received for 10 students taking some class. The curious thing about
this (highly fictitious) data set is that increasing your effort always increases your grade. It
might be by a lot or it might be by a little, but increasing effort will never decrease your grade.
If we run a standard Pearson correlation, it shows a strong relationship between hours worked
and grade received, with a correlation coefficient of 0.91. However, this doesn’t actually capture
the observation that increasing hours worked always increases the grade. There’s a sense here
in which we want to be able to say that the correlation is perfect but for a somewhat different
notion of what a “relationship” is. What we’re looking for is something that captures the fact
that there is a perfect ordinal relationship here. That is, if student 1 works more hours than
student 2, then we can guarantee that student 1 will get the better grade. That’s not what a
correlation of r “ .91 says at all.

How should we address this? Actually, it’s really easy. If we’re looking for ordinal relation-
ships all we have to do is treat the data as if it were ordinal scale! So, instead of measuring
effort in terms of “hours worked”, lets rank all 10 of our students in order of hours worked.
That is, student 1 did the least work out of anyone (2 hours) so they get the lowest rank (rank
= 1). Student 4 was the next laziest, putting in only 6 hours of work over the whole semester,
so they get the next lowest rank (rank = 2). Notice that I’m using “rank =1” to mean “low
rank”. Sometimes in everyday language we talk about “rank = 1” to mean “top rank” rather
than “bottom rank”. So be careful, you can rank “from smallest value to largest value” (i.e.,
small equals rank 1) or you can rank “from largest value to smallest value” (i.e., large equals
rank 1). In this case, I’m ranking from smallest to largest, but as it’s really easy to forget which
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Figure 12.6: Anscombe’s quartet. All four of these data sets have a Pearson correlation of
r “ .816, but they are qualitatively different from one another.
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way you set things up you have to put a bit of effort into remembering!

Okay, so let’s have a look at our students when we rank them from worst to best in terms
of effort and reward:
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Figure 12.7: The relationship between hours worked and grade received for a toy data set
consisting of only 10 students (each circle corresponds to one student). The dashed line through
the middle shows the linear relationship between the two variables. This produces a strong
Pearson correlation of r “ .91. However, the interesting thing to note here is that there’s actually
a perfect monotonic relationship between the two variables. In this toy example, increasing the
hours worked always increases the grade received, as illustrated by the solid line. This is reflected
in a Spearman correlation of ρ “ 1. With such a small data set, however, it’s an open question
as to which version better describes the actual relationship involved.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rank (hours worked) rank (grade received)

student 1 1 1
student 2 10 10
student 3 6 6
student 4 2 2
student 5 3 3
student 6 5 5
student 7 4 4
student 8 8 8
student 9 7 7
student 10 9 9

Hmm. These are identical. The student who put in the most effort got the best grade, the student
with the least effort got the worst grade, etc. As the table above shows, these two rankings are
identical, so if we now correlate them we get a perfect relationship, with a correlation of 1.0.
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What we’ve just re-invented is Spearman’s rank order correlation, usually denoted ρ
to distinguish it from the Pearson correlation r. We can calculate Spearman’s ρ using jamovi
simply by clicking the ‘Spearman’ check box in the ‘Correlation Matrix’ screen.

12.2

Scatterplots

Scatterplots are a simple but effective tool for visualising the relationship between two vari-
ables, like we saw with the figures in the section on correlation (Section 12.1). It’s this latter
application that we usually have in mind when we use the term “scatterplot”. In this kind of plot
each observation corresponds to one dot. The horizontal location of the dot plots the value of
the observation on one variable, and the vertical location displays its value on the other variable.
In many situations you don’t really have a clear opinions about what the causal relationship is
(e.g., does A cause B, or does B cause A, or does some other variable C control both A and B). If
that’s the case, it doesn’t really matter which variable you plot on the x-axis and which one you
plot on the y-axis. However, in many situations you do have a pretty strong idea which variable
you think is most likely to be causal, or at least you have some suspicions in that direction.
If so, then it’s conventional to plot the cause variable on the x-axis, and the effect variable on
the y-axis. With that in mind, let’s look at how to draw scatterplots in jamovi, using the same
parenthood data set (i.e. parenthood.csv) that I used when introducing correlations.

Suppose my goal is to draw a scatterplot displaying the relationship between the amount of
sleep that I get (dan.sleep) and how grumpy I am the next day (dan.grump). There are two
different ways in which we can use jamovi to get the plot that we’re after. The first way is to
use the ‘Plot’ option under the ‘Regression’ - ‘Correlation Matrix’ button, giving us the output
shown in Figure 12.8. Note that jamovi draws a line through the points, we’ll come onto this a
bit later in Section (12.3). Plotting a scatterplot in this way also allow you to specify ‘Densities
for variables’ and this option adds a density curve showing how the data in each variable is
distributed.

The second way do to it is to use one of the jamovi add-on modules. This module is called
‘scatr’ and you can install it by clicking on the large ‘+’ icon in the top right of the jamovi screen,
opening the jamovi library, scrolling down until you find ‘scatr’ and clicking ‘install’. When you
have done this, you will find a new ‘Scatterplot’ command available under the ‘Exploration’
button. This plot is a bit different than the first way, see Figure 12.9, but the important
information is the same.

12.2.1 More elaborate options

Often you will want to look at the relationships between several variables at once, using
a scatterplot matrix (in jamovi via the ‘Correlation Matrix’ - ‘Plot’ command). Just add
another variable, for example baby.sleep to the list of variables to be correlated, and jamovi
will create a scatterplot matrix for you, just like the one in Figure 12.10.
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Figure 12.8: Scatterplot via the ‘Correlation Matrix’ command in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.3

What is a linear regression model?

Stripped to its bare essentials, linear regression models are basically a slightly fancier version
of the Pearson correlation (Section 12.1), though as we’ll see regression models are much more
powerful tools.

Since the basic ideas in regression are closely tied to correlation, we’ll return to the
parenthood.csv file that we were using to illustrate how correlations work. Recall that, in this
data set we were trying to find out why Dan is so very grumpy all the time and our working
hypothesis was that I’m not getting enough sleep. We drew some scatterplots to help us examine
the relationship between the amount of sleep I get and my grumpiness the following day, as in
Figure 12.9, and as we saw previously this corresponds to a correlation of r “ ´.90, but what
we find ourselves secretly imagining is something that looks closer to Figure 12.11a. That is, we
mentally draw a straight line through the middle of the data. In statistics, this line that we’re
drawing is called a regression line. Notice that, since we’re not idiots, the regression line goes
through the middle of the data. We don’t find ourselves imagining anything like the rather silly
plot shown in Figure 12.11b.
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Figure 12.9: Scatterplot via the ‘scatr’ add-on module in jamovi
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This is not highly surprising. The line that I’ve drawn in Figure 12.11b doesn’t “fit” the
data very well, so it doesn’t make a lot of sense to propose it as a way of summarising the data,
right? This is a very simple observation to make, but it turns out to be very powerful when we
start trying to wrap just a little bit of maths around it. To do so, let’s start with a refresher of
some high school maths. The formula for a straight line is usually written like this

y “ a` bx

Or, at least, that’s what it was when I went to high school all those years ago. The two variables
are x and y, and we have two coefficients, a and b.3 The coefficient a represents the y-intercept of
the line, and coefficient b represents the slope of the line. Digging further back into our decaying
memories of high school (sorry, for some of us high school was a long time ago), we remember
that the intercept is interpreted as “the value of y that you get when x “ 0”. Similarly, a slope
of b means that if you increase the x-value by 1 unit, then the y-value goes up by b units, and
a negative slope means that the y-value would go down rather than up. Ah yes, it’s all coming
back to me now. Now that we’ve remembered that it should come as no surprise to discover that

3Also sometimes written as y “ mx ` c where m is the slope coefficient and c is the intercept (constant)
coefficient.
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Figure 12.10: A matrix of scatterplots produced using jamovi.
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Figure 12.11: Panel a shows the sleep-grumpiness scatterplot from Figure 12.9 with the best
fitting regression line drawn over the top. Not surprisingly, the line goes through the middle of
the data. In contrast, panel b shows the same data, but with a very poor choice of regression
line drawn over the top.
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we use the exact same formula for a regression line. If Y is the outcome variable (the DV) and
X is the predictor variable (the IV), then the formula that describes our regression is written
like this

Ŷi “ b0 ` b1Xi

Hmm. Looks like the same formula, but there’s some extra frilly bits in this version. Let’s make
sure we understand them. Firstly, notice that I’ve written Xi and Yi rather than just plain
old X and Y . This is because we want to remember that we’re dealing with actual data. In
this equation, Xi is the value of predictor variable for the ith observation (i.e., the number of
hours of sleep that I got on day i of my little study), and Yi is the corresponding value of the
outcome variable (i.e., my grumpiness on that day). And although I haven’t said so explicitly
in the equation, what we’re assuming is that this formula works for all observations in the data
set (i.e., for all i). Secondly, notice that I wrote Ŷi and not Yi. This is because we want to
make the distinction between the actual data Yi, and the estimate Ŷi (i.e., the prediction that
our regression line is making). Thirdly, I changed the letters used to describe the coefficients
from a and b to b0 and b1. That’s just the way that statisticians like to refer to the coefficients
in a regression model. I’ve no idea why they chose b, but that’s what they did. In any case b0
always refers to the intercept term, and b1 refers to the slope.

Excellent, excellent. Next, I can’t help but notice that, regardless of whether we’re talking
about the good regression line or the bad one, the data don’t fall perfectly on the line. Or, to
say it another way, the data Yi are not identical to the predictions of the regression model Ŷi.
Since statisticians love to attach letters, names and numbers to everything, let’s refer to the
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difference between the model prediction and that actual data point as a residual, and we’ll refer
to it as εi.

4 Written using mathematics, the residuals are defined as

εi “ Yi ´ Ŷi

which in turn means that we can write down the complete linear regression model as

Yi “ b0 ` b1Xi ` εi

12.4

Estimating a linear regression model
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Figure 12.12: A depiction of the residuals associated with the best fitting regression line (panel
a), and the residuals associated with a poor regression line (panel b). The residuals are much
smaller for the good regression line. Again, this is no surprise given that the good line is the
one that goes right through the middle of the data.
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Okay, now let’s redraw our pictures but this time I’ll add some lines to show the size of the
residual for all observations. When the regression line is good, our residuals (the lengths of the
solid black lines) all look pretty small, as shown in Figure 12.12a, but when the regression line
is a bad one the residuals are a lot larger, as you can see from looking at Figure 12.12b. Hmm.
Maybe what we “want” in a regression model is small residuals. Yes, that does seem to make
sense. In fact, I think I’ll go so far as to say that the “best fitting” regression line is the one
that has the smallest residuals. Or, better yet, since statisticians seem to like to take squares of
everything why not say that:

4The ε symbol is the Greek letter epsilon. It’s traditional to use εi or ei to denote a residual.
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The estimated regression coefficients, b̂0 and b̂1, are those that minimise the sum of
the squared residuals, which we could either write as

ř

ipYi ´ Ŷiq
2 or as

ř

i εi
2.

Yes, yes that sounds even better. And since I’ve indented it like that, it probably means that
this is the right answer. And since this is the right answer, it’s probably worth making a note
of the fact that our regression coefficients are estimates (we’re trying to guess the parameters
that describe a population!), which is why I’ve added the little hats, so that we get b̂0 and b̂1
rather than b0 and b1. Finally, I should also note that, since there’s actually more than one way
to estimate a regression model, the more technical name for this estimation process is ordinary
least squares (OLS) regression.

At this point, we now have a concrete definition for what counts as our “best” choice of
regression coefficients, b̂0 and b̂1. The natural question to ask next is, if our optimal regression
coefficients are those that minimise the sum squared residuals, how do we find these wonderful
numbers? The actual answer to this question is complicated and doesn’t help you understand
the logic of regression.5 This time I’m going to let you off the hook. Instead of showing you the
long and tedious way first and then “revealing” the wonderful shortcut that jamovi provides,
let’s cut straight to the chase and just use jamovi to do all the heavy lifting.

12.4.1 Linear regression in jamovi

To run my linear regression, open up the ‘Regression’ - ‘Linear Regression’ analysis in jamovi,
using the parenthood.csv data file. Then specify dan.grump as the ‘Dependent Variable’ and
dan.sleep as the variable entered in the ‘Covariates’ box. This gives the results shown in Figure
12.13, showing an intercept b̂0 “ 125.96 and the slope b̂1 “ ´8.94. In other words, the best-
fitting regression line that I plotted in Figure 12.11 has this formula:

Ŷi “ 125.96` p´8.94 Xiq

12.4.2 Interpreting the estimated model

The most important thing to be able to understand is how to interpret these coefficients.
Let’s start with b̂1, the slope. If we remember the definition of the slope, a regression coefficient
of b̂1 “ ´8.94 means that if I increase Xi by 1, then I’m decreasing Yi by 8.94. That is, each
additional hour of sleep that I gain will improve my mood, reducing my grumpiness by 8.94
grumpiness points. What about the intercept? Well, since b̂0 corresponds to “the expected
value of Yi when Xi equals 0”, it’s pretty straightforward. It implies that if I get zero hours of

5Or at least, I’m assuming that it doesn’t help most people. But on the off chance that someone reading this
is a proper kung fu master of linear algebra (and to be fair, I always have a few of these people in my intro stats
class), it will help you to know that the solution to the estimation problem turns out to be b̂ “ pX1Xq´1X1y,
where b̂ is a vector containing the estimated regression coefficients, X is the “design matrix” that contains the
predictor variables (plus an additional column containing all ones; strictly X is a matrix of the regressors, but I
haven’t discussed the distinction yet), and y is a vector containing the outcome variable. For everyone else, this
isn’t exactly helpful and can be downright scary. However, since quite a few things in linear regression can be
written in linear algebra terms, you’ll see a bunch of footnotes like this one in this chapter. If you can follow the
maths in them, great. If not, ignore it.
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Figure 12.13: A jamovi screenshot showing a simple linear regression analysis.
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sleep (Xi “ 0) then my grumpiness will go off the scale, to an insane value of (Yi “ 125.96).
Best to be avoided, I think.

12.5

Multiple linear regression

The simple linear regression model that we’ve discussed up to this point assumes that there’s a
single predictor variable that you’re interested in, in this case dan.sleep. In fact, up to this point
every statistical tool that we’ve talked about has assumed that your analysis uses one predictor
variable and one outcome variable. However, in many (perhaps most) research projects you
actually have multiple predictors that you want to examine. If so, it would be nice to be able to
extend the linear regression framework to be able to include multiple predictors. Perhaps some
kind of multiple regression model would be in order?

Multiple regression is conceptually very simple. All we do is add more terms to our regression
equation. Let’s suppose that we’ve got two variables that we’re interested in; perhaps we want to
use both dan.sleep and baby.sleep to predict the dan.grump variable. As before, we let Yi refer
to my grumpiness on the i-th day. But now we have two X variables: the first corresponding to
the amount of sleep I got and the second corresponding to the amount of sleep my son got. So
we’ll let Xi1 refer to the hours I slept on the i-th day and Xi2 refers to the hours that the baby
slept on that day. If so, then we can write our regression model like this:

Yi “ b0 ` b1Xi1 ` b2Xi2 ` εi

As before, εi is the residual associated with the i-th observation, εi “ Yi´ Ŷi. In this model, we
now have three coefficients that need to be estimated: b0 is the intercept, b1 is the coefficient
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associated with my sleep, and b2 is the coefficient associated with my son’s sleep. However,
although the number of coefficients that need to be estimated has changed, the basic idea of
how the estimation works is unchanged: our estimated coefficients b̂0, b̂1 and b̂2 are those that
minimise the sum squared residuals.

Figure 12.14: A 3D visualisation of a multiple regression model. There are two predictors in
the model, dan.sleep and baby.sleep and the outcome variable is dan.grump. Together, these
three variables form a 3D space. Each observation (dot) is a point in this space. In much the
same way that a simple linear regression model forms a line in 2D space, this multiple regression
model forms a plane in 3D space. When we estimate the regression coefficients what we’re trying
to do is find a plane that is as close to all the blue dots as possible.

12.5.1 Doing it in jamovi

Multiple regression in jamovi is no different to simple regression. All we have to do is
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add additional variables to the ‘Covariates’ box in jamovi. For example, if we want to use both
dan.sleep and baby.sleep as predictors in our attempt to explain why I’m so grumpy, then move
baby.sleep across into the ‘Covariates’ box alongside dan.sleep. By default, jamovi assumes
that the model should include an intercept. The coefficients we get this time are:

(Intercept) dan.sleep baby.sleep

125.97 -8.95 0.01

The coefficient associated with dan.sleep is quite large, suggesting that every hour of sleep I
lose makes me a lot grumpier. However, the coefficient for baby.sleep is very small, suggesting
that it doesn’t really matter how much sleep my son gets. What matters as far as my grumpiness
goes is how much sleep I get. To get a sense of what this multiple regression model looks like,
Figure 12.14 shows a 3D plot that plots all three variables, along with the regression model
itself.

12.5.2 Formula for the general case

The equation that I gave above shows you what a multiple regression model looks like
when you include two predictors. Not surprisingly, then, if you want more than two predictors
all you have to do is add more X terms and more b coefficients. In other words, if you have
K predictor variables in the model then the regression equation looks like this

Yi “ b0 `

˜

K
ÿ

k“1

bkXik

¸

` εi

12.6

Quantifying the fit of the regression model

So we now know how to estimate the coefficients of a linear regression model. The problem is,
we don’t yet know if this regression model is any good. For example, the regression.1 model
claims that every hour of sleep will improve my mood by quite a lot, but it might just be rubbish.
Remember, the regression model only produces a prediction Ŷi about what my mood is like, but
my actual mood is Yi. If these two are very close, then the regression model has done a good
job. If they are very different, then it has done a bad job.

12.6.1 The R2 value

Once again, let’s wrap a little bit of mathematics around this. Firstly, we’ve got the sum of the
squared residuals

SSres “
ÿ

i

pYi ´ Ŷiq
2
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which we would hope to be pretty small. Specifically, what we’d like is for it to be very small
in comparison to the total variability in the outcome variable

SStot “
ÿ

i

pYi ´ Ȳ q
2

While we’re here, let’s calculate these values ourselves, not by hand though. Let’s use something
like Excel or another standard spreadsheet programme. I have done this by opening up the
parenthood.csv file in Excel and saving it as parenthood rsquared.xls so that I can work on it.
The first thing to do is calculate the Ŷ values, and for the simple model that uses only a single
predictor we would do the following:

1. create a new column called ‘Y.pred’ using the formula ‘= 125.97 + (-8.94 * dan.sleep)’

Okay, now that we’ve got a variable which stores the regression model predictions for how
grumpy I will be on any given day, let’s calculate our sum of squared residuals. We would do
that using the following formula:

2. calculate the SS(resid) by creating a new column called ’(Y-Y.pred)^2’ using the formula
‘= (dan.grump - Y.pred)^2’.

3. Then, at the bottom of this column calculate the sum of these values,
i.e. ‘sum( ( Y-Y.pred)^2 ).

This should give you a value of ‘1838.722’. Wonderful. A big number that doesn’t mean
very much. Still, let’s forge boldly onwards anyway and calculate the total sum of squares as
well. That’s also pretty simple. Calculate the SS(tot) by:

4. At the bottom of the dan.grump column, calculate the mean value for dan.grump

(NB Excel uses the word ‘AVERAGE’ rather than ‘mean’ in its function).

5. Then create a new column, called ‘(Y - mean(Y))^2 )’ using the formula
‘= (dan.grump - AVERAGE(dan.grump))^2 ’.

6. Then, at the bottom of this column calculate the sum of these values,
i.e. ‘sum( (Y - mean(Y))^2 )’.

This should give you a value of ‘9998.59’. Hmm. Well, it’s a much bigger number than the
last one, so this does suggest that our regression model was making good predictions. But it’s
not very interpretable.

Perhaps we can fix this. What we’d like to do is to convert these two fairly meaningless
numbers into one number. A nice, interpretable number, which for no particular reason we’ll
call R2. What we would like is for the value of R2 to be equal to 1 if the regression model makes
no errors in predicting the data. In other words, if it turns out that the residual errors are zero.
That is, if SSres “ 0 then we expect R2 “ 1. Similarly, if the model is completely useless, we
would like R2 to be equal to 0. What do I mean by “useless”? Tempting as it is to demand
that the regression model move out of the house, cut its hair and get a real job, I’m probably
going to have to pick a more practical definition. In this case, all I mean is that the residual
sum of squares is no smaller than the total sum of squares, SSres “ SStot. Wait, why don’t we
do exactly that? The formula that provides us with our R2 value is pretty simple to write down,

R2 “ 1´
SSres
SStot
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and equally simple to calculate in Excel:

7. Calculate R.squared by typing into a blank cell the following:
‘= 1 - (SS(resid) / SS(tot) ) ’.

This gives a value for R2 of ‘0.8161018’. The R2 value, sometimes called the coefficient of
determination6 has a simple interpretation: it is the proportion of the variance in the outcome
variable that can be accounted for by the predictor. So, in this case the fact that we have
obtained R2 “ .816 means that the predictor (my.sleep) explains 81.6% of the variance in the
outcome (my.grump).

Naturally, you don’t actually need to type all these commands into Excel yourself if you
want to obtain the R2 value for your regression model. As we’ll see later on in Section 12.7.3,
all you need to do is specify this as an option in jamovi. However, let’s put that to one side for
the moment. There’s another property of R2 that I want to point out.

12.6.2 The relationship between regression and correlation

At this point we can revisit my earlier claim that regression, in this very simple form that
I’ve discussed so far, is basically the same thing as a correlation. Previously, we used the symbol
r to denote a Pearson correlation. Might there be some relationship between the value of the
correlation coefficient r and the R2 value from linear regression? Of course there is: the squared
correlation r2 is identical to the R2 value for a linear regression with only a single predictor.
In other words, running a Pearson correlation is more or less equivalent to running a linear
regression model that uses only one predictor variable.

12.6.3 The adjusted R2 value

One final thing to point out before moving on. It’s quite common for people to report
a slightly different measure of model performance, known as “adjusted R2”. The motivation
behind calculating the adjusted R2 value is the observation that adding more predictors into
the model will always cause the R2 value to increase (or at least not decrease).

The adjusted R2 value introduces a slight change to the calculation, as follows. For a regression
model with K predictors, fit to a data set containing N observations, the adjusted R2 is:

adj. R2 “ 1´

ˆ

SSres
SStot

ˆ
N ´ 1

N ´K ´ 1

˙

This adjustment is an attempt to take the degrees of freedom into account. The big advantage
of the adjusted R2 value is that when you add more predictors to the model, the adjusted R2

value will only increase if the new variables improve the model performance more than you’d
expect by chance. The big disadvantage is that the adjusted R2 value can’t be interpreted in
the elegant way that R2 can. R2 has a simple interpretation as the proportion of variance in the

6And by “sometimes” I mean “almost never”. In practice everyone just calls it “R-squared”.

- 302 -



outcome variable that is explained by the regression model. To my knowledge, no equivalent
interpretation exists for adjusted R2.

An obvious question then is whether you should report R2 or adjusted R2. This is probably
a matter of personal preference. If you care more about interpretability, then R2 is better. If
you care more about correcting for bias, then adjusted R2 is probably better. Speaking just
for myself, I prefer R2. My feeling is that it’s more important to be able to interpret your
measure of model performance. Besides, as we’ll see in Section 12.7, if you’re worried that the
improvement in R2 that you get by adding a predictor is just due to chance and not because
it’s a better model, well we’ve got hypothesis tests for that.

12.7

Hypothesis tests for regression models

So far we’ve talked about what a regression model is, how the coefficients of a regression model
are estimated, and how we quantify the performance of the model (the last of these, incidentally,
is basically our measure of effect size). The next thing we need to talk about is hypothesis tests.
There are two different (but related) kinds of hypothesis tests that we need to talk about: those
in which we test whether the regression model as a whole is performing significantly better than
a null model, and those in which we test whether a particular regression coefficient is significantly
different from zero.

12.7.1 Testing the model as a whole

Okay, suppose you’ve estimated your regression model. The first hypothesis test you might try
is the null hypothesis that there is no relationship between the predictors and the outcome, and
the alternative hypothesis that the data are distributed in exactly the way that the regression
model predicts.

Formally, our “null model” corresponds to the fairly trivial “regression” model in which we
include 0 predictors and only include the intercept term b0:

H0 : Yi “ b0 ` εi

If our regression model has K predictors, the “alternative model” is described using the usual
formula for a multiple regression model:

H1 : Yi “ b0 `

˜

K
ÿ

k“1

bkXik

¸

` εi

How can we test these two hypotheses against each other? The trick is to understand that
it’s possible to divide up the total variance SStot into the sum of the residual variance SSres
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and the regression model variance SSmod. I’ll skip over the technicalities, since we’ll get to
that later when we look at ANOVA in Chapter 13. But just note that

SSmod “ SStot ´ SSres

And we can convert the sums of squares into mean squares by dividing by the degrees of
freedom.

MSmod “
SSmod
dfmod

MSres “
SSres
dfres

So, how many degrees of freedom do we have? As you might expect the df associated with
the model is closely tied to the number of predictors that we’ve included. In fact, it turns out
that dfmod “ K. For the residuals the total degrees of freedom is dfres “ N ´K ´ 1.

Now that we’ve got our mean square values we can calculate an F -statistic like this

F “
MSmod
MSres

and the degrees of freedom associated with this are K and N ´K ´ 1.

We’ll see much more of the F statistic in Chapter 13, but for now just know that we can
interpret large F values as indicating that the null hypothesis is performing poorly in comparison
to the alternative hypothesis. In a moment I’ll show you how to do the test in jamovi the easy
way, but first let’s have a look at the tests for the individual regression coefficients.

12.7.2 Tests for individual coefficients

The F -test that we’ve just introduced is useful for checking that the model as a whole is
performing better than chance. If your regression model doesn’t produce a significant result for
the F -test then you probably don’t have a very good regression model (or, quite possibly, you
don’t have very good data). However, while failing this test is a pretty strong indicator that
the model has problems, passing the test (i.e., rejecting the null) doesn’t imply that the model
is good! Why is that, you might be wondering? The answer to that can be found by looking
at the coefficients for the multiple regression model we have already looked at in section 12.5
above, where the coefficients we got were:

(Intercept) dan.sleep baby.sleep

125.97 -8.95 0.01

I can’t help but notice that the estimated regression coefficient for the baby.sleep variable
is tiny (0.01), relative to the value that we get for dan.sleep (-8.95). Given that these two
variables are absolutely on the same scale (they’re both measured in “hours slept”), I find this
illuminating. In fact, I’m beginning to suspect that it’s really only the amount of sleep that I
get that matters in order to predict my grumpiness.
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We can re-use a hypothesis test that we discussed earlier, the t-test. The test that we’re
interested in has a null hypothesis that the true regression coefficient is zero (b “ 0), which is
to be tested against the alternative hypothesis that it isn’t (b ‰ 0). That is:

H0 : b “ 0
H1 : b ‰ 0

How can we test this? Well, if the central limit theorem is kind to us we might be able to guess
that the sampling distribution of b̂, the estimated regression coefficient, is a normal distribution
with mean centred on b. What that would mean is that if the null hypothesis were true, then
the sampling distribution of b̂ has mean zero and unknown standard deviation. Assuming that
we can come up with a good estimate for the standard error of the regression coefficient, sepb̂q,
then we’re in luck. That’s exactly the situation for which we introduced the one-sample t-test
way back in Chapter 11. So let’s define a t-statistic like this

t “
b̂

sepb̂q

I’ll skip over the reasons why, but our degrees of freedom in this case are df “ N ´ K ´ 1.
Irritatingly, the estimate of the standard error of the regression coefficient, sepb̂q, is not as easy
to calculate as the standard error of the mean that we used for the simpler t-tests in Chapter 11.
In fact, the formula is somewhat ugly, and not terribly helpful to look at.7 For our purposes it’s
sufficient to point out that the standard error of the estimated regression coefficient depends
on both the predictor and outcome variables, and it is somewhat sensitive to violations of the
homogeneity of variance assumption (discussed shortly).

In any case, this t-statistic can be interpreted in the same way as the t-statistics that we
discussed in Chapter 11. Assuming that you have a two-sided alternative (i.e., you don’t really
care if b ą 0 or b ă 0), then it’s the extreme values of t (i.e., a lot less than zero or a lot greater
than zero) that suggest that you should reject the null hypothesis.

12.7.3 Running the hypothesis tests in jamovi

To compute all of the statistics that we have talked about so far, all you need to do is make
sure the relevant options are checked in jamovi and then run the regression. If we do that, as in
Figure 12.15, we get a whole bunch of useful output.

The ‘Model Coefficients’ at the bottom of the jamovi analysis results shown in 12.15 provides
the coefficients of the regression model. Each row in this table refers to one of the coefficients in
the regression model. The first row is the intercept term, and the later ones look at each of the
predictors. The columns give you all of the relevant information. The first column is the actual
estimate of b (e.g., 125.97 for the intercept, and -8.95 for the dan.sleep predictor). The second
column is the standard error estimate σ̂b. The third and fourth columns provide the lower and

7For advanced readers only. The vector of residuals is ε “ y ´ Xb̂. For K predictors plus the intercept,
the estimated residual variance is σ̂2

“ ε1ε{pN ´K ´ 1q. The estimated covariance matrix of the coefficients is
σ̂2
pX1Xq´1, the main diagonal of which is sepb̂q, our estimated standard errors.
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Figure 12.15: A jamovi screenshot showing a multiple linear regression analysis, with some useful
options checked.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

upper values for the 95% confidence interval around the b estimate (more on this later). The
fifth column gives you the t-statistic, and it’s worth noticing that in this table t “ b̂{sepb̂q every
time. Finally, the last column gives you the actual p-value for each of these tests.8

The only thing that the coefficients table itself doesn’t list is the degrees of freedom used in
the t-test, which is always N ´K ´ 1 and is listed in the table at the top of the output, labelled
‘Model Fit Measures’. We can see from this table that the model performs significantly better
than you’d expect by chance (F p2, 97q “ 215.24, p ă .001), which isn’t all that surprising:
the R2 “ .81 value indicate that the regression model accounts for 81% of the variability in
the outcome measure (and 82% for the adjusted R2). However, when we look back up at the
t-tests for each of the individual coefficients, we have pretty strong evidence that the baby.sleep

variable has no significant effect. All the work in this model is being done by the dan.sleep

variable. Taken together, these results suggest that this regression model is actually the wrong
model for the data. You’d probably be better off dropping the baby.sleep predictor entirely. In

8Note that, although jamovi has done multiple tests here, it hasn’t done a Bonferroni correction or anything.
These are standard one-sample t-tests with a two-sided alternative. If you want to make corrections for multiple
tests, you need to do that yourself.
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other words, the simple regression model that we started with is the better model.

12.8

Regarding regression coefficients

Before moving on to discuss the assumptions underlying linear regression and what you can do to
check if they’re being met, there’s two more topics I want to briefly discuss, both of which relate
to the regression coefficients. The first thing to talk about is calculating confidence intervals
for the coefficients. After that, I’ll discuss the somewhat murky question of how to determine
which predictor is most important.

12.8.1 Confidence intervals for the coefficients

Like any population parameter, the regression coefficients b cannot be estimated with complete
precision from a sample of data; that’s part of why we need hypothesis tests. Given this, it’s
quite useful to be able to report confidence intervals that capture our uncertainty about the true
value of b. This is especially useful when the research question focuses heavily on an attempt to
find out how strongly variable X is related to variable Y , since in those situations the interest
is primarily in the regression weight b.

Fortunately, confidence intervals for the regression weights can be constructed in the usual
fashion

CIpbq “ b̂˘
´

tcrit ˆ sepb̂q
¯

where sepb̂q is the standard error of the regression coefficient, and tcrit is the relevant critical
value of the appropriate t distribution. For instance, if it’s a 95% confidence interval that we
want, then the critical value is the 97.5th quantile of a t distribution with N´K´1 degrees of
freedom. In other words, this is basically the same approach to calculating confidence intervals
that we’ve used throughout.

In jamovi we had already specified the ‘95% Confidence interval’ as shown if Figure 12.15,
although we could easily have chosen another value, say a ‘99% Confidence interval’ if that is
what we decided on.

12.8.2 Calculating standardised regression coefficients

One more thing that you might want to do is to calculate “standardised” regression coeffi-
cients, often denoted β. The rationale behind standardised coefficients goes like this. In a lot
of situations, your variables are on fundamentally different scales. Suppose, for example, my
regression model aims to predict people’s IQ scores using their educational attainment (number
of years of education) and their income as predictors. Obviously, educational attainment and
income are not on the same scales. The number of years of schooling might only vary by 10s of
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years, whereas income can vary by 10,000s of dollars (or more). The units of measurement have
a big influence on the regression coefficients. The b coefficients only make sense when interpreted
in light of the units, both of the predictor variables and the outcome variable. This makes it
very difficult to compare the coefficients of different predictors. Yet there are situations where
you really do want to make comparisons between different coefficients. Specifically, you might
want some kind of standard measure of which predictors have the strongest relationship to the
outcome. This is what standardised coefficients aim to do.

The basic idea is quite simple; the standardised coefficients are the coefficients that you would
have obtained if you’d converted all the variables to z-scores before running the regression.9 The
idea here is that, by converting all the predictors to z-scores, they all go into the regression on
the same scale, thereby removing the problem of having variables on different scales. Regardless
of what the original variables were, a β value of 1 means that an increase in the predictor of 1
standard deviation will produce a corresponding 1 standard deviation increase in the outcome
variable. Therefore, if variable A has a larger absolute value of β than variable B, it is deemed
to have a stronger relationship with the outcome. Or at least that’s the idea. It’s worth being
a little cautious here, since this does rely very heavily on the assumption that “a 1 standard
deviation change” is fundamentally the same kind of thing for all variables. It’s not always
obvious that this is true.

Leaving aside the interpretation issues, let’s look at how it’s calculated. What you could do
is standardise all the variables yourself and then run a regression, but there’s a much simpler
way to do it. As it turns out, the β coefficient for a predictor X and outcome Y has a very
simple formula, namely

βX “ bX ˆ
σX
σY

where σX is the standard deviation of the predictor, and σY is the standard deviation of the
outcome variable Y . This makes matters a lot simpler.

To make things even simpler, jamovi has an option that computes the β coefficients for you
using the ‘Standardized estimate’ checkbox in the ‘Model Coefficients’ options, see results in
Figure 12.16.

This clearly shows that the dan.sleep variable has a much stronger effect than the baby.sleep

variable. However, this is a perfect example of a situation where it would probably make sense
to use the original coefficients b rather than the standardised coefficients β. After all, my sleep
and the baby’s sleep are already on the same scale: number of hours slept. Why complicate
matters by converting these to z-scores?

9Strictly, you standardise all the regressors. That is, every “thing” that has a regression coefficient associated
with it in the model. For the regression models that I’ve talked about so far, each predictor variable maps onto
exactly one regressor, and vice versa. However, that’s not actually true in general and we’ll see some examples of
this in Chapter 14. But, for now we don’t need to care too much about this distinction.
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Figure 12.16: Standardised coefficients, with 95% confidence intervals, for multiple linear re-
gression

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.9

Assumptions of regression

The linear regression model that I’ve been discussing relies on several assumptions. In Sec-
tion 12.10 we’ll talk a lot more about how to check that these assumptions are being met, but
first let’s have a look at each of them.

• Normality. Like many of the models in statistics, basic simple or multiple linear regres-
sion relies on an assumption of normality. Specifically, it assumes that the residuals are
normally distributed. It’s actually okay if the predictors X and the outcome Y are non-
normal, so long as the residuals ε are normal. See Section 12.10.3.

• Linearity. A pretty fundamental assumption of the linear regression model is that the
relationship between X and Y actually is linear! Regardless of whether it’s a simple
regression or a multiple regression, we assume that the relationships involved are linear.

• Homogeneity of variance. Strictly speaking, the regression model assumes that each resid-
ual εi is generated from a normal distribution with mean 0, and (more importantly for
the current purposes) with a standard deviation σ that is the same for every single resid-
ual. In practice, it’s impossible to test the assumption that every residual is identically
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distributed. Instead, what we care about is that the standard deviation of the residual is
the same for all values of Ŷ , and (if we’re being especially paranoid) all values of every
predictor X in the model.

• Uncorrelated predictors. The idea here is that, in a multiple regression model, you don’t
want your predictors to be too strongly correlated with each other. This isn’t “technically”
an assumption of the regression model, but in practice it’s required. Predictors that are
too strongly correlated with each other (referred to as “collinearity”) can cause problems
when evaluating the model. See Section 12.10.4

• Residuals are independent of each other. This is really just a “catch all” assumption, to
the effect that “there’s nothing else funny going on in the residuals”. If there is something
weird (e.g., the residuals all depend heavily on some other unmeasured variable) going on,
it might screw things up.

• No “bad” outliers. Again, not actually a technical assumption of the model (or rather, it’s
sort of implied by all the others), but there is an implicit assumption that your regression
model isn’t being too strongly influenced by one or two anomalous data points because
this raises questions about the adequacy of the model and the trustworthiness of the data
in some cases. See Section 12.10.2.

12.10

Model checking

The main focus of this section is regression diagnostics, a term that refers to the art of
checking that the assumptions of your regression model have been met, figuring out how to fix
the model if the assumptions are violated, and generally to check that nothing “funny” is going
on. I refer to this as the “art” of model checking with good reason. It’s not easy, and while
there are a lot of fairly standardised tools that you can use to diagnose and maybe even cure the
problems that ail your model (if there are any, that is!), you really do need to exercise a certain
amount of judgement when doing this. It’s easy to get lost in all the details of checking this
thing or that thing, and it’s quite exhausting to try to remember what all the different things
are. This has the very nasty side effect that a lot of people get frustrated when trying to learn
all the tools, so instead they decide not to do any model checking. This is a bit of a worry!

In this section I describe several different things you can do to check that your regression
model is doing what it’s supposed to. It doesn’t cover the full space of things you could do, but
it’s still much more detailed than what I see a lot of people doing in practice, and even I don’t
usually cover all of this in my intro stats class either. However, I do think it’s important that
you get a sense of what tools are at your disposal, so I’ll try to introduce a bunch of them here.
Finally, I should note that this section draws quite heavily from the Fox and Weisberg (2011)
text, the book associated with the car package that is used to conduct regression analysis in R.
The car package is notable for providing some excellent tools for regression diagnostics, and the
book itself talks about them in an admirably clear fashion. I don’t want to sound too gushy
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about it, but I do think that Fox et al. (2011) is well worth reading, even if some of the advanced
diagnostic techniques are only available in R and not jamovi.

12.10.1 Three kinds of residuals

The majority of regression diagnostics revolve around looking at the residuals, and by now
you’ve probably formed a sufficiently pessimistic theory of statistics to be able to guess that,
precisely because of the fact that we care a lot about the residuals, there are several different
kinds of residual that we might consider. In particular, the following three kinds of residuals
are referred to in this section: “ordinary residuals”, “standardised residuals”, and “Studentised
residuals”. There is a fourth kind that you’ll see referred to in some of the Figures, and that’s
the “Pearson residual”. However, for the models that we’re talking about in this chapter the
Pearson residual is identical to the ordinary residual.

The first and simplest kind of residuals that we care about are ordinary residuals. These
are the actual raw residuals that I’ve been talking about throughout this chapter so far. The
ordinary residual is just the difference between the fitted value Ŷi and the observed value Yi.
I’ve been using the notation εi to refer to the i-th ordinary residual, and by gum I’m going to
stick to it. With this in mind, we have the very simple equation

εi “ Yi ´ Ŷi

This is of course what we saw earlier, and unless I specifically refer to some other kind of residual,
this is the one I’m talking about. So there’s nothing new here. I just wanted to repeat myself.
One drawback to using ordinary residuals is that they’re always on a different scale, depending
on what the outcome variable is and how good the regression model is. That is, unless you’ve
decided to run a regression model without an intercept term, the ordinary residuals will have
mean 0 but the variance is different for every regression. In a lot of contexts, especially where
you’re only interested in the pattern of the residuals and not their actual values, it’s convenient to
estimate the standardised residuals, which are normalised in such a way as to have standard
deviation 1.

The way we calculate these is to divide the ordinary residual by an estimate of the (population)
standard deviation of these residuals. For technical reasons, mumble mumble, the formula for
this is

ε1i “
εi

σ̂
?

1´ hi

where σ̂ in this context is the estimated population standard deviation of the ordinary residuals,
and hi is the “hat value” of the ith observation. I haven’t explained hat values to you yet (but
have no fear,a it’s coming shortly), so this won’t make a lot of sense. For now, it’s enough to
interpret the standardised residuals as if we’d converted the ordinary residuals to z-scores. In
fact, that is more or less the truth, it’s just that we’re being a bit fancier.

aOr have no hope, as the case may be.

The third kind of residuals are Studentised residuals (also called “jackknifed residuals”)
and they’re even fancier than standardised residuals. Again, the idea is to take the ordinary
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residual and divide it by some quantity in order to estimate some standardised notion of the
residual.

The formula for doing the calculations this time is subtly different

ε˚i “
εi

σ̂p´iq
?

1´ hi

Notice that our estimate of the standard deviation here is written σ̂p´iq. What this corresponds
to is the estimate of the residual standard deviation that you would have obtained if you just
deleted the ith observation from the data set. This sounds like the sort of thing that would be
a nightmare to calculate, since it seems to be saying that you have to run N new regression
models (even a modern computer might grumble a bit at that, especially if you’ve got a large
data set). Fortunately, some terribly clever person has shown that this standard deviation
estimate is actually given by the following equation:

σ̂p´iq “ σ̂

d

N ´K ´ 1´ ε1i
2

N ´K ´ 2

Isn’t that a pip?

Before moving on, I should point out that you don’t often need to obtain these residuals
yourself, even though they are at the heart of almost all regression diagnostics. Most of the time
the various options that provide the diagnostics, or assumption checks, will take care of these
calculations for you. Even so, it’s always nice to know how to actually get hold of these things
yourself in case you ever need to do something non-standard.

12.10.2 Three kinds of anomalous data

One danger that you can run into with linear regression models is that your analysis might
be disproportionately sensitive to a smallish number of “unusual” or “anomalous” observations.
I discussed this idea previously in Section 5.2.3 in the context of discussing the outliers that
get automatically identified by the boxplot option under ‘Exploration’ - ‘Descriptives’, but this
time we need to be much more precise. In the context of linear regression, there are three
conceptually distinct ways in which an observation might be called “anomalous”. All three are
interesting, but they have rather different implications for your analysis.

The first kind of unusual observation is an outlier. The definition of an outlier (in this
context) is an observation that is very different from what the regression model predicts. An
example is shown in Figure 12.17. In practice, we operationalise this concept by saying that an
outlier is an observation that has a very large Studentised residual, ε˚i . Outliers are interesting: a
big outlier might correspond to junk data, e.g., the variables might have been recorded incorrectly
in the data set, or some other defect may be detectable. Note that you shouldn’t throw an
observation away just because it’s an outlier. But the fact that it’s an outlier is often a cue to
look more closely at that case and try to find out why it’s so different.
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Figure 12.17: An illustration of outliers. The dotted lines plot the regression line that would have
been estimated without the anomalous observation included, and the corresponding residual
(i.e., the Studentised residual). The solid line shows the regression line with the anomalous
observation included. The outlier has an unusual value on the outcome (y axis location) but not
the predictor (x axis location), and lies a long way from the regression line.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The second way in which an observation can be unusual is if it has high leverage, which
happens when the observation is very different from all the other observations. This doesn’t
necessarily have to correspond to a large residual. If the observation happens to be unusual on
all variables in precisely the same way, it can actually lie very close to the regression line. An
example of this is shown in Figure 12.18. The leverage of an observation is operationalised in
terms of its hat value, usually written hi. The formula for the hat value is rather complicated10

but its interpretation is not: hi is a measure of the extent to which the i-th observation is “in
control” of where the regression line ends up going.

In general, if an observation lies far away from the other ones in terms of the predictor
variables, it will have a large hat value (as a rough guide, high leverage is when the hat value

10Again, for the linear algebra fanatics: the “hat matrix” is defined to be that matrix H that converts the
vector of observed values y into a vector of fitted values ŷ, such that ŷ “ Hy. The name comes from the fact
that this is the matrix that “puts a hat on y”. The hat value of the i-th observation is the i-th diagonal element
of this matrix (so technically I should be writing it as hii rather than hi). Oh, and in case you care, here’s how
it’s calculated: H “ XpX1Xq´1X1. Pretty, isn’t it?
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Figure 12.18: An illustration of high leverage points. The anomalous observation in this case is
unusual both in terms of the predictor (x axis) and the outcome (y axis), but this unusualness
is highly consistent with the pattern of correlations that exists among the other observations.
The observation falls very close to the regression line and does not distort it.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is more than 2-3 times the average; and note that the sum of the hat values is constrained to
be equal to K ` 1). High leverage points are also worth looking at in more detail, but they’re
much less likely to be a cause for concern unless they are also outliers.

This brings us to our third measure of unusualness, the influence of an observation. A high
influence observation is an outlier that has high leverage. That is, it is an observation that is
very different to all the other ones in some respect, and also lies a long way from the regression
line. This is illustrated in Figure 12.19. Notice the contrast to the previous two figures. Outliers
don’t move the regression line much and neither do high leverage points. But something that is
both an outlier and has high leverage, well that has a big effect on the regression line. That’s
why we call these points high influence, and it’s why they’re the biggest worry. We operationalise
influence in terms of a measure known as Cook’s distance.
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Di “
ε˚i

2

K ` 1
ˆ

hi
1´ hi

Notice that this is a multiplication of something that measures the outlier-ness of the obser-
vation (the bit on the left), and something that measures the leverage of the observation (the
bit on the right).

In order to have a large Cook’s distance an observation must be a fairly substantial outlier
and have high leverage. As a rough guide, Cook’s distance greater than 1 is often considered
large (that’s what I typically use as a quick and dirty rule).

In jamovi, information about Cook’s distance can be calculated by clicking on the ‘Cook’s
Distance’ checkbox in the ‘Assumption Checks’ - ‘Data Summary’ options. When you do this,
for the multiple regression model we have been using as an example in this chapter, you get the
results as shown in Figure 12.20.

You can see that, in this example, the mean Cook’s distance value is 0.01, and the range is
from 0.00000262 to 0.11, so this is some way off the rule of thumb figure mentioned above that
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Figure 12.19: An illustration of high influence points. In this case, the anomalous observation
is highly unusual on the predictor variable (x axis), and falls a long way from the regression
line. As a consequence, the regression line is highly distorted, even though (in this case) the
anomalous observation is entirely typical in terms of the outcome variable (y axis).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 12.20: jamovi output showing the table for the Cook’s distance statistics

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a Cook’s distance greater than 1 is considered large.

An obvious question to ask next is, if you do have large values of Cook’s distance what
should you do? As always, there’s no hard and fast rule. Probably the first thing to do is to
try running the regression with the outlier with the greatest Cook’s distance11 excluded and see
what happens to the model performance and to the regression coefficients. If they really are
substantially different, it’s time to start digging into your data set and your notes that you no
doubt were scribbling as your ran your study. Try to figure out why the point is so different.
If you start to become convinced that this one data point is badly distorting your results then
you might consider excluding it, but that’s less than ideal unless you have a solid explanation
for why this particular case is qualitatively different from the others and therefore deserves to
be handled separately.

12.10.3 Checking the normality of the residuals

Like many of the statistical tools we’ve discussed in this book, regression models rely on a
normality assumption. In this case, we assume that the residuals are normally distributed. The
first thing we can do is draw a QQ-plot via the ‘Assumption Checks’ - ‘Assumption Checks’ -
‘Q-Q plot of residuals’ option.

The output is shown in Figure 12.21, showing the standardised residuals plotted as a function
of their theoretical quantiles according to the regression model.

Another thing we should check is the relationship between the fitted values and the residuals
themselves. We can get jamovi to do this using the ‘Residuals Plots’ option, which provides
a scatterplot for each predictor variable, the outcome variable, and the fitted values against
residuals, see Figure 12.22. In these plots we are looking for a fairly uniform distribution of
‘dots’, with no clear bunching or patterning of the ‘dots’. Looking at these plots, there is
nothing particularly worrying as the dots are fairly evenly spread across the whole plot. There

11although currently there isn’t a very easy way to do this in jamovi, so a more powerful regression program
such as the car package in R would be better for this more advanced analysis
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Figure 12.21: Plot of the theoretical quantiles according to the model, against the quantiles of
the standardised residuals, produced in jamovi
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may be a little bit of non-uniformity in plot (b), but it is not a strong deviation and probably
not worth worrying about.

If we were worried, then in a lot of cases the solution to this problem (and many others) is
to transform one or more of the variables. We discussed the basics of variable transformation
in Sections 6.3 and 6.4, but I do want to make special note of one additional possibility that I
didn’t explain fully earlier: the Box-Cox transform. The Box-Cox function is a fairly simple one
and it’s very widely used.

fpx, λq “
xλ ´ 1

λ

for all values of λ except λ “ 0. When λ “ 0 we just take the natural logarithm (i.e., lnpxq).
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Figure 12.22: Residuals plots produced in jamovi
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You can calculate it using the BOXCOX function in the ‘Compute’ variables screen in jamovi.

12.10.4 Checking for collinearity

The last kind of regression diagnostic that I’m going to discuss in this chapter is the use
of variance inflation factors (VIFs), which are useful for determining whether or not the
predictors in your regression model are too highly correlated with each other. There is a variance
inflation factor associated with each predictor Xk in the model.

- 318 -



The formula for the k-th VIF is:

VIFk “
1

1´R2
p´kq

where R2
p´kq refers to R-squared value you would get if you ran a regression using Xk as the

outcome variable, and all the other X variables as the predictors. The idea here is that R2
p´kq

is a very good measure of the extent to which Xk is correlated with all the other variables in
the model.

The square root of the VIF is pretty interpretable. It tells you how much wider the confidence
interval for the corresponding coefficient bk is, relative to what you would have expected if the
predictors are all nice and uncorrelated with one another. If you’ve only got two predictors, the
VIF values are always going to be the same, as we can see if we click on the ‘Collinearity’ checkbox
in the ‘Regression’ - ‘Assumptions’ options in jamovi. For both dan.sleep and baby.sleep the
VIF is 1.65. And since the square root of 1.65 is 1.28, we see that the correlation between our
two predictors isn’t causing much of a problem.

To give a sense of how we could end up with a model that has bigger collinearity problems,
suppose I were to run a much less interesting regression model, in which I tried to predict the
day on which the data were collected, as a function of all the other variables in the data set. To
see why this would be a bit of a problem, let’s have a look at the correlation matrix for all four
variables:

dan.sleep baby.sleep dan.grump day

dan.sleep 1.00000000 0.62794934 -0.90338404 -0.09840768

baby.sleep 0.62794934 1.00000000 -0.56596373 -0.01043394

dan.grump -0.90338404 -0.56596373 1.00000000 0.07647926

day -0.09840768 -0.01043394 0.07647926 1.00000000

We have some fairly large correlations between some of our predictor variables! When we
run the regression model and look at the VIF values, we see that the collinearity is causing a
lot of uncertainty about the coefficients. First, run the regression, as in Figure 12.23 and you
can see from the VIF values that, yep, that’s some mighty fine collinearity there.

12.11

Model selection

One fairly major problem that remains is the problem of “model selection”. That is, if we have
a data set that contains several variables, which ones should we include as predictors, and which
ones should we not include? In other words, we have a problem of variable selection. In
general, model selection is a complex business but it’s made somewhat simpler if we restrict
ourselves to the problem of choosing a subset of the variables that ought to be included in the
model. Nevertheless, I’m not going to try covering even this reduced topic in a lot of detail.
Instead, I’ll talk about two broad principles that you need to think about, and then discuss one
concrete tool that jamovi provides to help you select a subset of variables to include in your
model. First, the two principles:
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Figure 12.23: Collinearity statistics for multiple regression, produced in jamovi
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• It’s nice to have an actual substantive basis for your choices. That is, in a lot of situations
you the researcher have good reasons to pick out a smallish number of possible regression
models that are of theoretical interest. These models will have a sensible interpretation
in the context of your field. Never discount the importance of this. Statistics serves the
scientific process, not the other way around.

• To the extent that your choices rely on statistical inference, there is a trade off between
simplicity and goodness of fit. As you add more predictors to the model you make it more
complex. Each predictor adds a new free parameter (i.e., a new regression coefficient), and
each new parameter increases the model’s capacity to “absorb” random variations. So the
goodness of fit (e.g., R2) continues to rise, sometimes trivially or by chance, as you add
more predictors no matter what. If you want your model to be able to generalise well to
new observations you need to avoid throwing in too many variables.

This latter principle is often referred to as Ockham’s razor and is often summarised in terms
of the following pithy saying: do not multiply entities beyond necessity. In this context, it means
don’t chuck in a bunch of largely irrelevant predictors just to boost your R2. Hmm. Yeah, the
original was better.

In any case, what we need is an actual mathematical criterion that will implement the
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qualitative principle behind Ockham’s razor in the context of selecting a regression model. As it
turns out there are several possibilities. The one that I’ll talk about is the Akaike information
criterion (AIC; Akaike 1974) simply because it’s available as an option in jamovi.

In the context of a linear regression model (and ignoring terms that don’t depend on the model
in any way!), the AIC for a model that has K predictor variables plus an intercept is

AIC “
SSres
σ̂2

` 2K

The smaller the AIC value, the better the model performance. If we ignore the low level
details it’s fairly obvious what the AIC does. On the left we have a term that increases as the
model predictions get worse; on the right we have a term that increases as the model complexity
increases. The best model is the one that fits the data well (low residuals, left hand side) using
as few predictors as possible (low K, right hand side). In short, this is a simple implementation
of Ockham’s razor.

AIC can be added to the ‘Model Fit Measures’ output Table when the ‘AIC’ checkbox is
clicked, and a rather clunky way of assessing different models is seeing if the ‘AIC’ value is lower if
you remove one or more of the predictors in the regression model. This is the only way currently
implemented in jamovi, but there are alternatives in other more powerful programmes, such
as R. These alternative methods can automate the process of selectively removing (or adding)
predictor variables to find the best AIC. Although these methods are not implemented in jamovi,
I will mention them briefly below just so you know about them.

12.11.1 Backward elimination

In backward elimination you start with the complete regression model, including all possible
predictors. Then, at each “step” we try all possible ways of removing one of the variables, and
whichever of these is best (in terms of lowest AIC value) is accepted. This becomes our new
regression model, and we then try all possible deletions from the new model, again choosing the
option with lowest AIC. This process continues until we end up with a model that has a lower
AIC value than any of the other possible models that you could produce by deleting one of its
predictors.

12.11.2 Forward selection

As an alternative, you can also try forward selection. This time around we start with
the smallest possible model as our start point, and only consider the possible additions to the
model. However, there’s one complication. You also need to specify what the largest possible
model you’re willing to entertain is.
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Although backward and forward selection can lead to the same conclusion, they don’t always.

12.11.3 A caveat

Automated variable selection methods are seductive things, especially when they’re bundled
up in (fairly) simple functions in powerful statistical programmes. They provide an element of
objectivity to your model selection, and that’s kind of nice. Unfortunately, they’re sometimes
used as an excuse for thoughtlessness. No longer do you have to think carefully about which
predictors to add to the model and what the theoretical basis for their inclusion might be.
Everything is solved by the magic of AIC. And if we start throwing around phrases like Ockham’s
razor, well it sounds like everything is wrapped up in a nice neat little package that no-one can
argue with.

Or, perhaps not. Firstly, there’s very little agreement on what counts as an appropriate
model selection criterion. When I was taught backward elimination as an undergraduate, we
used F -tests to do it, because that was the default method used by the software. I’ve described
using AIC, and since this is an introductory text that’s the only method I’ve described, but the
AIC is hardly the Word of the Gods of Statistics. It’s an approximation, derived under certain
assumptions, and it’s guaranteed to work only for large samples when those assumptions are
met. Alter those assumptions and you get a different criterion, like the BIC for instance (also
available in jamovi). Take a different approach again and you get the NML criterion. Decide
that you’re a Bayesian and you get model selection based on posterior odds ratios. Then there
are a bunch of regression specific tools that I haven’t mentioned. And so on. All of these
different methods have strengths and weaknesses, and some are easier to calculate than others
(AIC is probably the easiest of the lot, which might account for its popularity). Almost all
of them produce the same answers when the answer is “obvious” but there’s a fair amount of
disagreement when the model selection problem becomes hard.

What does this mean in practice? Well, you could go and spend several years teaching
yourself the theory of model selection, learning all the ins and outs of it so that you could finally
decide on what you personally think the right thing to do is. Speaking as someone who actually
did that, I wouldn’t recommend it. You’ll probably come out the other side even more confused
than when you started. A better strategy is to show a bit of common sense. If you’re staring
at the results of an automated backwards or forwards selection procedure, and the model that
makes sense is close to having the smallest AIC but is narrowly defeated by a model that doesn’t
make any sense, then trust your instincts. Statistical model selection is an inexact tool, and as
I said at the beginning, interpretability matters.

12.11.4 Comparing two regression models

An alternative to using automated model selection procedures is for the researcher to ex-
plicitly select two or more regression models to compare to each other. You can do this in
a few different ways, depending on what research question you’re trying to answer. Suppose
we want to know whether or not the amount of sleep that my son got has any relationship
to my grumpiness, over and above what we might expect from the amount of sleep that I
got. We also want to make sure that the day on which we took the measurement has no in-
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fluence on the relationship. That is, we’re interested in the relationship between baby.sleep

and dan.grump, and from that perspective dan.sleep and day are nuisance variable or covari-
ates that we want to control for. In this situation, what we would like to know is whether
dan.grump ~ dan.sleep + day + baby.sleep (which I’ll call Model 2, or M2) is a better regres-
sion model for these data than dan.grump ~ dan.sleep + day (which I’ll call Model 1, or M1).
There are two different ways we can compare these two models, one based on a model selection
criterion like AIC, and the other based on an explicit hypothesis test. I’ll show you the AIC
based approach first because it’s simpler, and follows naturally from discussion in the last sec-
tion. The first thing I need to do is actually run the two regressions, note the AIC for each one,
and then select the model with the smaller AIC value as it is judged to be the better model for
these data. Actually, don’t do this just yet. Read on because there is an easy way in jamovi to
get the AIC values for different models included in one table.12

A somewhat different approach to the problem comes out of the hypothesis testing frame-
work. Suppose you have two regression models, where one of them (Model 1) contains a subset
of the predictors from the other one (Model 2). That is, Model 2 contains all of the predictors
included in Model 1, plus one or more additional predictors. When this happens we say that
Model 1 is nested within Model 2, or possibly that Model 1 is a submodel of Model 2. Re-
gardless of the terminology, what this means is that we can think of Model 1 as a null hypothesis
and Model 2 as an alternative hypothesis. And in fact we can construct an F test for this in a
fairly straightforward fashion.

We can fit both models to the data and obtain a residual sum of squares for both models.

I’ll denote these as SS
p1q
res and SS

p2q
res respectively. The superscripting here just indicates which

model we’re talking about. Then our F statistic is

F “
pSS

p1q
res ´ SS

p1q
resq{k

pSS
p2q
resq{pN ´ p´ 1q

where N is the number of observations, p is the number of predictors in the full model (not
including the intercept), and k is the difference in the number of parameters between the two
models.a The degrees of freedom here are k and N´p´1. Note that it’s often more convenient
to think about the difference between those two SS values as a sum of squares in its own right.
That is

SS∆ “ SSp1qres ´ SSp2qres

The reason why this is helpful is that we can express SS∆ as a measure of the extent to which
the two models make different predictions about the the outcome variable. Specifically,

SS∆ “
ÿ

i

´

ŷ
p2q
i ´ ŷ

p1q
i

¯2

12While I’m on this topic I should point out that the empirical evidence suggests that BIC is a better criterion
than AIC. In most simulation studies that I’ve seen, BIC does a much better job of selecting the correct model.
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where ŷ
p1q
i is the fitted value for yi according to model M1 and ŷ

p2q
i is the fitted value for yi

according to model M2.

aIt’s worth noting in passing that this same F statistic can be used to test a much broader range of hypotheses
than those that I’m mentioning here. Very briefly, notice that the nested model M1 corresponds to the full
model M2 when we constrain some of the regression coefficients to zero. It is sometimes useful to construct
sub-models by placing other kinds of constraints on the regression coefficients. For instance, maybe two different
coefficients might have to sum to zero, or something like that. You can construct hypothesis tests for those
kind of constraints too, but it is somewhat more complicated and the sampling distribution for F can end up
being something known as the non-central F distribution, which is waaaaay beyond the scope of this book! All
I want to do is alert you to this possibility.

Figure 12.24: Model comparison in jamovi using the ‘Model Builder’ option
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Okay, so that’s the hypothesis test that we use to compare two regression models to one
another. Now, how do we do it in jamovi? The answer is to use the ‘Model Builder’ option
and specify the Model 1 predictors dan.sleep and day in ‘Block 1’ and then add the additional
predictor from Model 2 (baby.sleep) in ‘Block 2’, as in Figure 12.24. This shows, in the ‘Model
Comparisons’ Table, that for the comparisons between Model 1 and Model 2, F (1,96) = 0.00, p
= 0.954. Since we have p ą .05 we retain the null hypothesis (M1). This approach to regression,
in which we add all of our covariates into a null model, then add the variables of interest into
an alternative model, and then compare the two models in a hypothesis testing framework, is
often referred to as hierarchical regression.
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We can also use this ‘Model Comparison’ option to display a table that shows the AIC and
BIC for each model, making it easy to compare and identify which model has the lowest value,
as in Figure 12.24.

12.12

Summary

• Want to know how strong the relationship is between two variables? Calculate a correlation
(Section 12.1).

• Drawing scatterplots (Section 12.2).

• Basic ideas in linear regression and how regression models are estimated (Sections 12.3
and 12.4).

• Multiple linear regression (Section 12.5).

• Measuring the overall performance of a regression model using R2 (Section 12.6).

• Hypothesis tests for regression models (Section 12.7)

• Calculating confidence intervals for regression coefficients and standardised coefficients
(Section 12.8).

• The assumptions of regression (Section 12.9) and how to check them (Section 12.10).

• Selecting a regression model (Section 12.11).
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13. Comparing several means (one-way ANOVA)

This chapter introduces one of the most widely used tools in psychological statistics, known
as “the analysis of variance”, but usually referred to as ANOVA. The basic technique was
developed by Sir Ronald Fisher in the early 20th century and it is to him that we owe the rather
unfortunate terminology. The term ANOVA is a little misleading, in two respects. Firstly,
although the name of the technique refers to variances, ANOVA is concerned with investigating
differences in means. Secondly, there are several different things out there that are all referred
to as ANOVAs, some of which have only a very tenuous connection to one another. Later on
in the book we’ll encounter a range of different ANOVA methods that apply in quite different
situations, but for the purposes of this chapter we’ll only consider the simplest form of ANOVA,
in which we have several different groups of observations, and we’re interested in finding out
whether those groups differ in terms of some outcome variable of interest. This is the question
that is addressed by a one-way ANOVA.

The structure of this chapter is as follows: in Section 13.1 I’ll introduce a fictitious data
set that we’ll use as a running example throughout the chapter. After introducing the data,
I’ll describe the mechanics of how a one-way ANOVA actually works (Section 13.2) and then
focus on how you can run one in jamovi (Section 13.3). These two sections are the core of the
chapter. The remainder of the chapter discusses a range of important topics that inevitably
arise when running an ANOVA, namely how to calculate effect sizes (Section 13.4), post hoc
tests and corrections for multiple comparisons (Section 13.5) and the assumptions that ANOVA
relies upon (Section 13.6). We’ll also talk about how to check those assumptions and some of
the things you can do if the assumptions are violated (Sections 13.6.1 to 13.7). Then we’ll cover
repeated measures ANOVA in Sections 13.8 and 13.9. At the end of the chapter we’ll talk a
little about the relationship between ANOVA and other statistical tools (Section 13.10).

13.1

An illustrative data set

Suppose you’ve become involved in a clinical trial in which you are testing a new antidepressant
drug called Joyzepam. In order to construct a fair test of the drug’s effectiveness, the study
involves three separate drugs to be administered. One is a placebo, and the other is an existing
antidepressant / anti-anxiety drug called Anxifree. A collection of 18 participants with moderate
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to severe depression are recruited for your initial testing. Because the drugs are sometimes
administered in conjunction with psychological therapy, your study includes 9 people undergoing
cognitive behavioural therapy (CBT) and 9 who are not. Participants are randomly assigned
(doubly blinded, of course) a treatment, such that there are 3 CBT people and 3 no-therapy
people assigned to each of the 3 drugs. A psychologist assesses the mood of each person after a
3 month run with each drug, and the overall improvement in each person’s mood is assessed on
a scale ranging from ´5 to `5. With that as the study design, let’s now load up the data file in
clinicaltrial.csv. We can see that this data set contains the three variables drug, therapy
and mood.gain.

For the purposes of this chapter, what we’re really interested in is the effect of drug on
mood.gain. The first thing to do is calculate some descriptive statistics and draw some graphs.
In Chapter 4 we showed you how to do this, and some of the descriptive statistics we can
calculate in jamovi are shown in Figure 13.1.

Figure 13.1: Descriptives for mood gain, and box plots by drug administered

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As the plot makes clear, there is a larger improvement in mood for participants in the
Joyzepam group than for either the Anxifree group or the placebo group. The Anxifree group
shows a larger mood gain than the control group, but the difference isn’t as large. The question
that we want to answer is are these difference “real”, or are they just due to chance?
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13.2

How ANOVA works

In order to answer the question posed by our clinical trial data we’re going to run a one-way
ANOVA. I’m going to start by showing you how to do it the hard way, building the statistical
tool from the ground up and showing you how you could do it if you didn’t have access to any
of the cool built-in ANOVA functions in jamovi. And I hope you’ll read it carefully, try to do
it the long way once or twice to make sure you really understand how ANOVA works, and then
once you’ve grasped the concept never ever do it this way again.

The experimental design that I described in the previous section strongly suggests that we’re
interested in comparing the average mood change for the three different drugs. In that sense,
we’re talking about an analysis similar to the t-test (Chapter 11) but involving more than two
groups. If we let µP denote the population mean for the mood change induced by the placebo,
and let µA and µJ denote the corresponding means for our two drugs, Anxifree and Joyzepam,
then the (somewhat pessimistic) null hypothesis that we want to test is that all three population
means are identical. That is, neither of the two drugs is any more effective than a placebo. We
can write out this null hypothesis as:

H0 : it is true that µP “ µA “ µJ

As a consequence, our alternative hypothesis is that at least one of the three different treatments
is different from the others. It’s a bit tricky to write this mathematically, because (as we’ll
discuss) there are quite a few different ways in which the null hypothesis can be false. So for
now we’ll just write the alternative hypothesis like this:

H1 : it is not true that µP “ µA “ µJ

This null hypothesis is a lot trickier to test than any of the ones we’ve seen previously. How shall
we do it? A sensible guess would be to “do an ANOVA”, since that’s the title of the chapter, but
it’s not particularly clear why an “analysis of variances” will help us learn anything useful about
the means. In fact, this is one of the biggest conceptual difficulties that people have when first
encountering ANOVA. To see how this works, I find it most helpful to start by talking about
variances. In fact, what I’m going to do is start by playing some mathematical games with the
formula that describes the variance. That is, we’ll start out by playing around with variances
and it will turn out that this gives us a useful tool for investigating means.

13.2.1 Two formulas for the variance of Y

First, let’s start by introducing some notation. We’ll use G to refer to the total number of
groups. For our data set there are three drugs, so there are G “ 3 groups. Next, we’ll use N
to refer to the total sample size; there are a total of N “ 18 people in our data set. Similarly,
let’s use Nk to denote the number of people in the k-th group. In our fake clinical trial, the
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sample size is Nk “ 6 for all three groups.1 Finally, we’ll use Y to denote the outcome variable.
In our case, Y refers to mood change. Specifically, we’ll use Yik to refer to the mood change
experienced by the i-th member of the k-th group. Similarly, we’ll use Ȳ to be the average
mood change, taken across all 18 people in the experiment, and Ȳk to refer to the average mood
change experienced by the 6 people in group k.

Now that we’ve got our notation sorted out we can start writing down formulas. To start with,
let’s recall the formula for the variance that we used in Section 4.2, way back in those kinder
days when we were just doing descriptive statistics. The sample variance of Y is defined as
follows

VarpY q “
1

N

G
ÿ

k“1

Nk
ÿ

i“1

`

Yik ´ Ȳ
˘2

This formula looks pretty much identical to the formula for the variance in Section 4.2. The
only difference is that this time around I’ve got two summations here: I’m summing over
groups (i.e., values for k) and over the people within the groups (i.e., values for i). This is
purely a cosmetic detail. If I’d instead used the notation Yp to refer to the value of the outcome
variable for person p in the sample, then I’d only have a single summation. The only reason
that we have a double summation here is that I’ve classified people into groups, and then
assigned numbers to people within groups.

A concrete example might be useful here. Let’s consider this table, in which we have a total
of N “ 5 people sorted into G “ 2 groups. Arbitrarily, let’s say that the “cool” people are group
1 and the “uncool” people are group 2. It turns out that we have three cool people (N1 “ 3)
and two uncool people (N2 “ 2)

name person group group num. index in group grumpiness
p k i Yik or Yp

Ann 1 cool 1 1 20
Ben 2 cool 1 2 55
Cat 3 cool 1 3 21
Dan 4 uncool 2 1 91
Egg 5 uncool 2 2 22

Notice that I’ve constructed two different labelling schemes here. We have a “person” variable
p so it would be perfectly sensible to refer to Yp as the grumpiness of the p-th person in the
sample. For instance, the table shows that Dan is the fourth so we’d say p “ 4. So, when
talking about the grumpiness Y of this “Dan” person, whoever he might be, we could refer to
his grumpiness by saying that Yp “ 91, for person p “ 4 that is. However, that’s not the only
way we could refer to Dan. As an alternative we could note that Dan belongs to the “uncool”
group (k “ 2), and is in fact the first person listed in the uncool group (i “ 1). So it’s equally
valid to refer to Dan’s grumpiness by saying that Yik “ 91, where k “ 2 and i “ 1.

1When all groups have the same number of observations, the experimental design is said to be “balanced”.
Balance isn’t such a big deal for one-way ANOVA, which is the topic of this chapter. It becomes more important
when you start doing more complicated ANOVAs.
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In other words, each person p corresponds to a unique ik combination, and so the formula
that I gave above is actually identical to our original formula for the variance, which would be

VarpY q “
1

N

N
ÿ

p“1

`

Yp ´ Ȳ
˘2

In both formulas, all we’re doing is summing over all of the observations in the sample. Most
of the time we would just use the simpler Yp notation; the equation using Yp is clearly the
simpler of the two. However, when doing an ANOVA it’s important to keep track of which
participants belong in which groups, and we need to use the Yik notation to do this.

13.2.2 From variances to sums of squares

Okay, now that we’ve got a good grasp on how the variance is calculated, let’s define some-
thing called the total sum of squares, which is denoted SStot. This is very simple. Instead of
averaging the squared deviations, which is what we do when calculating the variance, we just
add them up.

So the formula for the total sum of squares is almost identical to the formula for the variance

SStot “
G
ÿ

k“1

Nk
ÿ

i“1

`

Yik ´ Ȳ
˘2

When we talk about analysing variances in the context of ANOVA, what we’re really doing is
working with the total sums of squares rather than the actual variance. One very nice thing
about the total sum of squares is that we can break it up into two different kinds of variation.

First, we can talk about the within-group sum of squares, in which we look to see how
different each individual person is from their own group mean

SSw “
G
ÿ

k“1

Nk
ÿ

i“1

`

Yik ´ Ȳk
˘2

where Ȳk is a group mean. In our example, Ȳk would be the average mood change experienced
by those people given the k-th drug. So, instead of comparing individuals to the average
of all people in the experiment, we’re only comparing them to those people in the the same
group. As a consequence, you’d expect the value of SSw to be smaller than the total sum of
squares, because it’s completely ignoring any group differences, i.e., whether the drugs will
have different effects on people’s moods.

Next, we can define a third notion of variation which captures only the differences between
groups. We do this by looking at the differences between the group means Ȳk and grand mean
Ȳ .
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group 1 group 2 group 3

Between−group variation

(i.e., differences among group means)

group 1 group 2 group 3

Within−group variation

(i.e., deviations from group means)

(a) (b)

Figure 13.2: Graphical illustration of “between groups” variation (panel a) and “within groups”
variation (panel b). On the left the arrows show the differences in the group means. On the
right the arrows highlight the variability within each group.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to quantify the extent of this variation, what we do is calculate the between-group
sum of squares

SSb “

G
ÿ

k“1

Nk
ÿ

i“1

`

Ȳk ´ Ȳ
˘2

“

G
ÿ

k“1

Nk

`

Ȳk ´ Ȳ
˘2

It’s not too difficult to show that the total variation among people in the experiment SStot is
actually the sum of the differences between the groups SSb and the variation inside the groups
SSw. That is,

SSw ` SSb “ SStot

Yay.

Okay, so what have we found out? We’ve discovered that the total variability associated with
the outcome variable (SStot) can be mathematically carved up into the sum of “the variation due
to the differences in the sample means for the different groups” (SSb) plus “all the rest of the
variation” (SSw)2. How does that help me find out whether the groups have different population
means? Um. Wait. Hold on a second. Now that I think about it, this is exactly what we were
looking for. If the null hypothesis is true then you’d expect all the sample means to be pretty
similar to each other, right? And that would imply that you’d expect SSb to be really small, or
at least you’d expect it to be a lot smaller than “the variation associated with everything else”,
SSw. Hmm. I detect a hypothesis test coming on.

2SSw is also referred to in an independent ANOVA as the error variance, or SSerror
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13.2.3 From sums of squares to the F -test

As we saw in the last section, the qualitative idea behind ANOVA is to compare the two
sums of squares values SSb and SSw to each other. If the between-group variation SSb is large
relative to the within-group variation SSw then we have reason to suspect that the population
means for the different groups aren’t identical to each other. In order to convert this into a
workable hypothesis test, there’s a little bit of “fiddling around” needed. What I’ll do is first
show you what we do to calculate our test statistic, the F ratio, and then try to give you a feel
for why we do it this way.

In order to convert our SS values into an F -ratio the first thing we need to calculate is the
degrees of freedom associated with the SSb and SSw values. As usual, the degrees of freedom
corresponds to the number of unique “data points” that contribute to a particular calculation,
minus the number of “constraints” that they need to satisfy. For the within-groups variability
what we’re calculating is the variation of the individual observations (N data points) around the
group means (G constraints). In contrast, for the between groups variability we’re interested
in the variation of the group means (G data points) around the grand mean (1 constraint).
Therefore, the degrees of freedom here are:

dfb “ G´ 1
dfw “ N ´G

Okay, that seems simple enough. What we do next is convert our summed squares value into a
“mean squares” value, which we do by dividing by the degrees of freedom:

MSb “
SSb
dfb

MSw “
SSw
dfw

Finally, we calculate the F -ratio by dividing the between-groups MS by the within-groups MS:

F “
MSb
MSw

At a very general level, the intuition behind the F statistic is straightforward. Bigger values of
F means that the between-groups variation is large relative to the within-groups variation. As
a consequence, the larger the value of F the more evidence we have against the null hypothesis.
But how large does F have to be in order to actually reject H0? In order to understand this,
you need a slightly deeper understanding of what ANOVA is and what the mean squares values
actually are.

The next section discusses that in a bit of detail, but for readers that aren’t interested in
the details of what the test is actually measuring I’ll cut to the chase. In order to complete our
hypothesis test we need to know the sampling distribution for F if the null hypothesis is true.
Not surprisingly, the sampling distribution for the F statistic under the null hypothesis is an F
distribution. If you recall our discussion of the F distribution in Chapter 7, the F distribution
has two parameters, corresponding to the two degrees of freedom involved. The first one df1 is
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Table 13.1: All of the key quantities involved in an ANOVA organised into a “standard” ANOVA
table. The formulas for all quantities (except the p-value which has a very ugly formula and
would be nightmarishly hard to calculate without a computer) are shown.

df sum of squares mean squares F -statistic p-value

between
groups

dfb “ G´ 1 SSb “

G
ÿ

k“1

NkpȲk ´ Ȳ q
2 MSb “

SSb

dfb
F “

MSb

MSw
[complicated]

within
groups

dfw “ N ´G SSw “

G
ÿ

k“1

Nk
ÿ

i“1

pYik ´ Ȳkq
2 MSw “

SSw

dfw
- -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the between groups degrees of freedom dfb, and the second one df2 is the within groups degrees
of freedom dfw.

A summary of all the key quantities involved in a one-way ANOVA, including the formulas
showing how they are calculated, is shown in Table 13.1.

13.2.4 The model for the data and the meaning of F

At a fundamental level ANOVA is a competition between two different statistical models,
H0 and H1. When I described the null and alternative hypotheses at the start of the section, I
was a little imprecise about what these models actually are. I’ll remedy that now, though you
probably won’t like me for doing so. If you recall, our null hypothesis was that all of the group
means are identical to one another. If so, then a natural way to think about the outcome
variable Yik is to describe individual scores in terms of a single population mean µ, plus the
deviation from that population mean. This deviation is usually denoted εik and is traditionally
called the error or residual associated with that observation. Be careful though. Just like we
saw with the word “significant”, the word “error” has a technical meaning in statistics that
isn’t quite the same as its everyday English definition. In everyday language, “error” implies
a mistake of some kind, but in statistics it doesn’t (or at least, not necessarily). With that
in mind, the word “residual” is a better term than the word “error”. In statistics both words
mean “leftover variability”, that is “stuff” that the model can’t explain.

In any case, here’s what the null hypothesis looks like when we write it as a statistical
model

Yik “ µ` εik

where we make the assumption (discussed later) that the residual values εik are normally
distributed, with mean 0 and a standard deviation σ that is the same for all groups. To use
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the notation that we introduced in Chapter 7 we would write this assumption like this

εik „ Normalp0, σ2q

What about the alternative hypothesis, H1? The only difference between the null hypoth-
esis and the alternative hypothesis is that we allow each group to have a different population
mean. So, if we let µk denote the population mean for the k-th group in our experiment, then
the statistical model corresponding to H1 is

Yik “ µk ` εik

where, once again, we assume that the error terms are normally distributed with mean 0 and
standard deviation σ. That is, the alternative hypothesis also assumes that ε „ Normalp0, σ2q

Okay, now that we’ve described the statistical models underpinning H0 and H1 in more
detail, it’s now pretty straightforward to say what the mean square values are measuring, and
what this means for the interpretation of F . I won’t bore you with the proof of this but it
turns out that the within-groups mean square, MSw, can be viewed as an estimator (in the
technical sense, Chapter 8) of the error variance σ2. The between-groups mean square MSb is
also an estimator, but what it estimates is the error variance plus a quantity that depends on
the true differences among the group means. If we call this quantity Q, then we can see that
the F -statistic is basicallya

F “
Q̂` σ̂2

σ̂2

where the true value Q “ 0 if the null hypothesis is true, and Q ą 0 if the alternative hypothesis
is true (e.g., Hays 1994, ch. 10). Therefore, at a bare minimum the F value must be larger
than 1 to have any chance of rejecting the null hypothesis. Note that this doesn’t mean that
it’s impossible to get an F -value less than 1. What it means is that if the null hypothesis is
true the sampling distribution of the F ratio has a mean of 1,b and so we need to see F -values
larger than 1 in order to safely reject the null.

To be a bit more precise about the sampling distribution, notice that if the null hypothesis
is true, both MSb and MSw are estimators of the variance of the residuals εik. If those residuals
are normally distributed, then you might suspect that the estimate of the variance of εik is chi-
square distributed, because (as discussed in Section 7.6) that’s what a chi-square distribution
is: it’s what you get when you square a bunch of normally-distributed things and add them
up. And since the F distribution is (again, by definition) what you get when you take the ratio
between two things that are χ2 distributed, we have our sampling distribution. Obviously, I’m
glossing over a whole lot of stuff when I say this, but in broad terms, this really is where our
sampling distribution comes from.

aIf you read ahead to Chapter 14 and look at how the “treatment effect” at level k of a factor is defined in
terms of the αk values (see Section 14.2), it turns out that Q refers to a weighted mean of the squared treatment
effects, Q “ p

řG
k“1Nkα

2
kq{pG´ 1q.

bOr, if we want to be sticklers for accuracy, 1` 2
df2´2

.
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13.2.5 A worked example

The previous discussion was fairly abstract and a little on the technical side, so I think
that at this point it might be useful to see a worked example. For that, let’s go back to the
clinical trial data that I introduced at the start of the chapter. The descriptive statistics that
we calculated at the beginning tell us our group means: an average mood gain of 0.45 for the
placebo, 0.72 for Anxifree, and 1.48 for Joyzepam. With that in mind, let’s party like it’s 1899 3

and start doing some pencil and paper calculations. I’ll only do this for the first 5 observations
because it’s not bloody 1899 and I’m very lazy. Let’s start by calculating SSw, the within-group
sums of squares. First, let’s draw up a nice table to help us with our calculations:

group outcome
k Yik

placebo 0.5
placebo 0.3
placebo 0.1
anxifree 0.6
anxifree 0.4

At this stage, the only thing I’ve included in the table is the raw data itself. That is, the
grouping variable (i.e., drug) and outcome variable (i.e. mood.gain) for each person. Note that
the outcome variable here corresponds to the Yik value in our equation previously. The next
step in the calculation is to write down, for each person in the study, the corresponding group
mean, Ȳk. This is slightly repetitive but not particularly difficult since we already calculated
those group means when doing our descriptive statistics:

group outcome group mean
k Yik Ȳk

placebo 0.5 0.45
placebo 0.3 0.45
placebo 0.1 0.45
anxifree 0.6 0.72
anxifree 0.4 0.72

Now that we’ve written those down, we need to calculate, again for every person, the deviation
from the corresponding group mean. That is, we want to subtract Yik ´ Ȳk. After we’ve done

3Or, to be precise, party like “it’s 1899 and we’ve got no friends and nothing better to do with our time than
do some calculations that wouldn’t have made any sense in 1899 because ANOVA didn’t exist until about the
1920s”.
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that, we need to square everything. When we do that, here’s what we get:

group outcome group mean dev. from group mean squared deviation
k Yik Ȳk Yik ´ Ȳk pYik ´ Ȳkq

2

placebo 0.5 0.45 0.05 0.0025
placebo 0.3 0.45 -0.15 0.0225
placebo 0.1 0.45 -0.35 0.1225
anxifree 0.6 0.72 -0.12 0.0136
anxifree 0.4 0.72 -0.32 0.1003

The last step is equally straightforward. In order to calculate the within-group sum of squares
we just add up the squared deviations across all observations:

SSw “ 0.0025` 0.0225` 0.1225` 0.0136` 0.1003
“ 0.2614

Of course, if we actually wanted to get the right answer we’d need to do this for all 18 observations
in the data set, not just the first five. We could continue with the pencil and paper calculations
if we wanted to, but it’s pretty tedious. Alternatively, it’s not too hard to do this in a dedicated
spreadsheet programme such as OpenOffice or Excel. Try and do it yourself. The one that I
did, in Excel, is in the file clinicaltrial anova.xls. When you do it you should end up with
a within-group sum of squares value of 1.39.

Okay. Now that we’ve calculated the within groups variation, SSw, it’s time to turn our
attention to the between-group sum of squares, SSb. The calculations for this case are very
similar. The main difference is that instead of calculating the differences between an observation
Yik and a group mean Ȳk for all of the observations, we calculate the differences between the
group means Ȳk and the grand mean Ȳ (in this case 0.88) for all of the groups.

group group mean grand mean deviation squared deviations
k Ȳk Ȳ Ȳk ´ Ȳ pȲk ´ Ȳ q

2

placebo 0.45 0.88 -0.43 0.19
anxifree 0.72 0.88 -0.16 0.03

joyzepam 1.48 0.88 0.60 0.36

However, for the between group calculations we need to multiply each of these squared deviations
by Nk, the number of observations in the group. We do this because every observation in the
group (all Nk of them) is associated with a between group difference. So if there are six people
in the placebo group and the placebo group mean differs from the grand mean by 0.19, then the
total between group variation associated with these six people is 6ˆ 0.19 “ 1.14. So we have to
extend our little table of calculations:

group ... squared deviations sample size weighted squared dev
k ... pȲk ´ Ȳ q

2 Nk NkpȲk ´ Ȳ q
2

placebo ... 0.19 6 1.14
anxifree ... 0.03 6 0.18

joyzepam ... 0.36 6 2.16

And so now our between group sum of squares is obtained by summing these “weighted squared
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deviations” over all three groups in the study:

SSb “ 1.14` 0.18` 2.16
“ 3.48

As you can see, the between group calculations are a lot shorter4. Now that we’ve calculated our
sums of squares values, SSb and SSw, the rest of the ANOVA is pretty painless. The next step
is to calculate the degrees of freedom. Since we have G “ 3 groups and N “ 18 observations in
total our degrees of freedom can be calculated by simple subtraction:

dfb “ G´ 1 “ 2
dfw “ N ´G “ 15

Next, since we’ve now calculated the values for the sums of squares and the degrees of freedom,
for both the within-groups variability and the between-groups variability, we can obtain the
mean square values by dividing one by the other:

MSb “
SSb
dfb

“
3.48

2
“ 1.74

MSw “
SSw
dfw

“
1.39

15
“ 0.09

We’re almost done. The mean square values can be used to calculate the F -value, which is the
test statistic that we’re interested in. We do this by dividing the between-groups MS value by
the within-groups MS value.

F “
MSb
MSw

“
1.74

0.09
“ 19.3

Woohooo! This is terribly exciting, yes? Now that we have our test statistic, the last step is to
find out whether the test itself gives us a significant result. As discussed in Chapter 9 back in
the “old days” what we’d do is open up a statistics textbook or flick to the back section which
would actually have a huge lookup table and we would find the threshold F value corresponding
to a particular value of alpha (the null hypothesis rejection region), e.g. 0.05, 0.01 or 0.001, for
2 and 15 degrees of freedom. Doing it this way would give us a threshold F value for an alpha of
0.001 of 11.34. As this is less than our calculated F value we say that p ă 0.001. But those were
the old days, and nowadays fancy stats software calculates the exact p-value for you. In fact,
the exact p-value is 0.000071. So, unless we’re being extremely conservative about our Type I
error rate, we’re pretty much guaranteed to reject the null hypothesis.

At this point, we’re basically done. Having completed our calculations, it’s traditional to
organise all these numbers into an ANOVA table like the one in Table 13.1. For our clinical trial
data, the ANOVA table would look like this:

df sum of squares mean squares F -statistic p-value

between groups 2 3.48 1.74 19.3 0.000071
within groups 15 1.39 0.09 - -

4In the Excel clinicaltrial anova.xls the value for SSb worked out to be very slightly different, 3.45, than
that shown in the text above (rounding errors!)
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These days, you’ll probably never have much reason to want to construct one of these tables
yourself, but you will find that almost all statistical software (jamovi included) tends to organise
the output of an ANOVA into a table like this, so it’s a good idea to get used to reading them.
However, although the software will output a full ANOVA table, there’s almost never a good
reason to include the whole table in your write up. A pretty standard way of reporting this
result would be to write something like this:

One-way ANOVA showed a significant effect of drug on mood gain (F p2, 15q “
19.3, p ă .001).

Sigh. So much work for one short sentence.

13.3

Running an ANOVA in jamovi

I’m pretty sure I know what you’re thinking after reading the last section, especially if you
followed my advice and did all of that by pencil and paper (i.e., in a spreadsheet) yourself. Doing
the ANOVA calculations yourself sucks. There’s quite a lot of calculations that we needed to
do along the way, and it would be tedious to have to do this over and over again every time you
wanted to do an ANOVA.

13.3.1 Using jamovi to specify your ANOVA

To make life easier for you, jamovi can do ANOVA..hurrah! Go to the ‘ANOVA’ - ‘ANOVA’
analysis, and move the mood.gain variable across so it is in the ‘Dependent Variable’ box, and
then move the drug variable across so it is in the ‘Fixed Factors’ box. This should give the
results as shown in Figure 13.3. 5 Note I have also checked the η2 checkbox, pronounced “eta”
squared, under the ‘Effect Size’ option and this is also shown on the results table. We will come
back to effect sizes a bit later.

The jamovi results table shows you the sums of squares values, the degrees of freedom, and
a couple of other quantities that we’re not really interested in right now. Notice, however, that
jamovi doesn’t use the names “between-group” and “within-group”. Instead, it tries to assign
more meaningful names. In our particular example, the between groups variance corresponds to
the effect that the drug has on the outcome variable, and the within groups variance corresponds
to the “leftover” variability so it calls that the residuals. If we compare these numbers to the
numbers that I calculated by hand in Section 13.2.5, you can see that they’re more or less the
same, apart from rounding errors. The between groups sums of squares is SSb “ 3.45, the within
groups sums of squares is SSw “ 1.39, and the degrees of freedom are 2 and 15 respectively. We
also get the F -value and the p-value and, again, these are more or less the same, give or take
rounding errors, to the numbers that we calculated ourselves when doing it the long and tedious
way.

5The jamovi results are more accurate than the ones in the text above, due to rounding errors.
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Figure 13.3: jamovi results table for ANOVA of mood gain by drug administered

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.4

Effect size

There’s a few different ways you could measure the effect size in an ANOVA, but the most
commonly used measures are η2 (eta squared) and partial η2. For a one way analysis of
variance they’re identical to each other, so for the moment I’ll just explain η2. The definition of
η2 is actually really simple

η2 “
SSb

SStot

That’s all it is. So when I look at the ANOVA table in Figure 13.3, I see that SSb “ 3.45 and
SStot “ 3.45` 1.39 “ 4.84. Thus we get an η2 value of

η2 “
3.45

4.84
“ 0.71

The interpretation of η2 is equally straightforward. It refers to the proportion of the variability
in the outcome variable (mood.gain) that can be explained in terms of the predictor (drug). A
value of η2 “ 0 means that there is no relationship at all between the two, whereas a value of
η2 “ 1 means that the relationship is perfect. Better yet, the η2 value is very closely related to
R2, as discussed previously in Section 12.6.1), and has an equivalent interpretation.

Although many statistics text books suggest η2 as the default effect size measure in ANOVA,
there’s an interesting blog post by Daniel Lakens suggesting that eta-squared is perhaps not
the best measure of effect size in real world data analysis, because it can be a biased estima-
tor (http://daniellakens.blogspot.com.au/2015/06/why-you-should-use-omega-square
d.html). Usefully, there is also an option in jamovi to specify omega-squared (ω2), which is less
biased, alongside eta-squared.

- 340 -

http://daniellakens.blogspot.com.au/2015/06/why-you-should-use-omega-squared.html
http://daniellakens.blogspot.com.au/2015/06/why-you-should-use-omega-squared.html


13.5

Multiple comparisons and post hoc tests

Any time you run an ANOVA with more than two groups and you end up with a significant
effect, the first thing you’ll probably want to ask is which groups are actually different from
one another. In our drugs example, our null hypothesis was that all three drugs (placebo,
Anxifree and Joyzepam) have the exact same effect on mood. But if you think about it, the
null hypothesis is actually claiming three different things all at once here. Specifically, it claims
that:

• Your competitor’s drug (Anxifree) is no better than a placebo (i.e., µA “ µP )

• Your drug (Joyzepam) is no better than a placebo (i.e., µJ “ µP )

• Anxifree and Joyzepam are equally effective (i.e., µJ “ µA)

If any one of those three claims is false, then the null hypothesis is also false. So, now that we’ve
rejected our null hypothesis, we’re thinking that at least one of those things isn’t true. But
which ones? All three of these propositions are of interest. Since you certainly want to know if
your new drug Joyzepam is better than a placebo, it would be nice to know how well it stacks
up against an existing commercial alternative (i.e., Anxifree). It would even be useful to check
the performance of Anxifree against the placebo. Even if Anxifree has already been extensively
tested against placebos by other researchers, it can still be very useful to check that your study
is producing similar results to earlier work.

When we characterise the null hypothesis in terms of these three distinct propositions, it
becomes clear that there are eight possible “states of the world” that we need to distinguish
between:

possibility: is µP “ µA? is µP “ µJ? is µA “ µJ? which hypothesis?

1 X X X null
2 X X alternative
3 X X alternative
4 X alternative
5 X X alternative
6 X alternative
7 X alternative
8 alternative

By rejecting the null hypothesis, we’ve decided that we don’t believe that #1 is the true state
of the world. The next question to ask is, which of the other seven possibilities do we think
is right? When faced with this situation, its usually helps to look at the data. For instance,
if we look at the plots in Figure 13.1, it’s tempting to conclude that Joyzepam is better than
the placebo and better than Anxifree, but there’s no real difference between Anxifree and the
placebo. However, if we want to get a clearer answer about this, it might help to run some tests.
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13.5.1 Running “pairwise” t-tests

How might we go about solving our problem? Given that we’ve got three separate pairs of
means (placebo versus Anxifree, placebo versus Joyzepam, and Anxifree versus Joyzepam) to
compare, what we could do is run three separate t-tests and see what happens. This is easy to
do in jamovi. Go to the ANOVA ‘Post Hoc Tests’ options, move the ‘drug’ variable across into
the active box on the right, and then click on the ‘No correction’ checkbox. This will produce
a neat table showing all the pairwise t-test comparisons amongst the three levels of the drug

variable, as in Figure 13.4.

Figure 13.4: Uncorrected pairwise t-tests as post hoc comparisons in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.5.2 Corrections for multiple testing

In the previous section I hinted that there’s a problem with just running lots and lots of
t-tests. The concern is that, when running these analyses, what we’re doing is going on a “fishing
expedition”. We’re running lots and lots of tests without much theoretical guidance in the hope
that some of them come up significant. This kind of theory-free search for group differences is
referred to as post hoc analysis (“post hoc” being Latin for “after this”).6

It’s okay to run post hoc analyses, but a lot of care is required. For instance, the analysis
that I ran in the previous section should be avoided, as each individual t-test is designed to
have a 5% Type I error rate (i.e., α “ .05) and I ran three of these tests. Imagine what would
have happened if my ANOVA involved 10 different groups, and I had decided to run 45 “post
hoc” t-tests to try to find out which ones were significantly different from each other, you’d
expect 2 or 3 of them to come up significant by chance alone. As we saw in Chapter 9, the
central organising principle behind null hypothesis testing is that we seek to control our Type
I error rate, but now that I’m running lots of t-tests at once in order to determine the source

6If you do have some theoretical basis for wanting to investigate some comparisons but not others, it’s a
different story. In those circumstances you’re not really running “post hoc” analyses at all, you’re making
“planned comparisons”. I do talk about this situation later in the book (Section 14.9), but for now I want to keep
things simple.
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of my ANOVA results, my actual Type I error rate across this whole family of tests has gotten
completely out of control.

The usual solution to this problem is to introduce an adjustment to the p-value, which aims
to control the total error rate across the family of tests (see Shaffer 1995). An adjustment of
this form, which is usually (but not always) applied because one is doing post hoc analysis, is
often referred to as a correction for multiple comparisons, though it is sometimes referred
to as “simultaneous inference”. In any case, there are quite a few different ways of doing this
adjustment. I’ll discuss a few of them in this section and in Section 14.8, but you should be
aware that there are many other methods out there (see, e.g., Hsu 1996).

13.5.3 Bonferroni corrections

The simplest of these adjustments is called the Bonferroni correction (Dunn 1961), and
it’s very very simple indeed. Suppose that my post hoc analysis consists of m separate tests,
and I want to ensure that the total probability of making any Type I errors at all is at most α.7

If so, then the Bonferroni correction just says “multiply all your raw p-values by m”. If we let
p denote the original p-value, and let p1j be the corrected value, then the Bonferroni correction
tells that:

p1j “ mˆ p

And therefore, if you’re using the Bonferroni correction, you would reject the null hypothesis if
p1j ă α. The logic behind this correction is very straightforward. We’re doing m different tests,
so if we arrange it so that each test has a Type I error rate of at most α{m, then the total Type
I error rate across these tests cannot be larger than α. That’s pretty simple, so much so that in
the original paper, the author writes,

The method given here is so simple and so general that I am sure it must have been
used before this. I do not find it, however, so can only conclude that perhaps its
very simplicity has kept statisticians from realizing that it is a very good method in
some situations (Dunn 1961, pp 52-53)

To use the Bonferroni correction in jamovi, just click on the ‘Bonferroni’ checkbox in the ‘Cor-
rection’ options, and you will see another column added to the ANOVA results table showing
the adjusted p-values for the Bonferroni correction (13.4). If we compare these three p-values to
those for the uncorrected, pairwise t-tests, it is clear that the only thing that jamovi has done
is multiply them by 3.

13.5.4 Holm corrections

Although the Bonferroni correction is the simplest adjustment out there, it’s not usually the
best one to use. One method that is often used instead is the Holm correction (Holm 1979).
The idea behind the Holm correction is to pretend that you’re doing the tests sequentially,

7It’s worth noting in passing that not all adjustment methods try to do this. What I’ve described here is an
approach for controlling “family wise Type I error rate”. However, there are other post hoc tests that seek to
control the “false discovery rate”, which is a somewhat different thing.
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starting with the smallest (raw) p-value and moving onto the largest one. For the j-th largest
of the p-values, the adjustment is either

p1j “ j ˆ pj

(i.e., the biggest p-value remains unchanged, the second biggest p-value is doubled, the third
biggest p-value is tripled, and so on), or

p1j “ p1j`1

whichever one is larger. This might sound a little confusing, so let’s go through it a little more
slowly. Here’s what the Holm correction does. First, you sort all of your p-values in order, from
smallest to largest. For the smallest p-value all you do is multiply it by m, and you’re done.
However, for all the other ones it’s a two-stage process. For instance, when you move to the
second smallest p value, you first multiply it by m´ 1. If this produces a number that is bigger
than the adjusted p-value that you got last time, then you keep it. But if it’s smaller than the
last one, then you copy the last p-value. To illustrate how this works, consider the table below,
which shows the calculations of a Holm correction for a collection of five p-values:

raw p rank j pˆ j Holm p

.001 5 .005 .005

.005 4 .020 .020

.019 3 .057 .057

.022 2 .044 .057

.103 1 .103 .103

Hopefully that makes things clear.

Although it’s a little harder to calculate, the Holm correction has some very nice properties.
It’s more powerful than Bonferroni (i.e., it has a lower Type II error rate) but, counter-intuitive
as it might seem, it has the same Type I error rate. As a consequence, in practice there’s
never any reason to use the simpler Bonferroni correction since it is always outperformed by the
slightly more elaborate Holm correction. Because of this, the Holm correction should be your
go to multiple comparison correction. Figure 13.4 also shows the Holm corrected p-values and,
as you can see, the biggest p-value (corresponding to the comparison between Anxifree and the
placebo) is unaltered. At a value of .15, it is exactly the same as the value we got originally when
we applied no correction at all. In contrast, the smallest p-value (Joyzepam versus placebo) has
been multiplied by three.

13.5.5 Writing up the post hoc test

Finally, having run the post hoc analysis to determine which groups are significantly different
to one another, you might write up the result like this:

Post hoc tests (using the Holm correction to adjust p) indicated that Joyzepam
produced a significantly larger mood change than both Anxifree (p “ .001) and the
placebo (p “ 9.0ˆ10´5). We found no evidence that Anxifree performed better than
the placebo (p “ .15).
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Or, if you don’t like the idea of reporting exact p-values, then you’d change those numbers to
p ă .01, p ă .001 and p ą .05 respectively. Either way, the key thing is that you indicate that
you used Holm’s correction to adjust the p-values. And of course, I’m assuming that elsewhere
in the write up you’ve included the relevant descriptive statistics (i.e., the group means and
standard deviations), since these p-values on their own aren’t terribly informative.

13.6

Assumptions of one-way ANOVA

Like any statistical test, analysis of variance relies on some assumptions about the data, specif-
ically the residuals. There are three key assumptions that you need to be aware of: normality,
homogeneity of variance and independence.

If you remember back to Section 13.2.4, which I hope you at least skimmed even if you didn’t
read the whole thing, I described the statistical models underpinning ANOVA in this way:

H0 : Yik “ µ` εik
H1 : Yik “ µk ` εik

In these equations µ refers to a single grand population mean which is the same for all groups,
and µk is the population mean for the k-th group. Up to this point we’ve been mostly interested
in whether our data are best described in terms of a single grand mean (the null hypothesis)
or in terms of different group-specific means (the alternative hypothesis). This makes sense,
of course, as that’s actually the important research question! However, all of our testing
procedures have, implicitly, relied on a specific assumption about the residuals, εik, namely
that

εik „ Normalp0, σ2q

None of the maths works properly without this bit. Or, to be precise, you can still do all
the calculations and you’ll end up with an F -statistic, but you have no guarantee that this
F -statistic actually measures what you think it’s measuring, and so any conclusions that you
might draw on the basis of the F test might be wrong.

So, how do we check whether the assumption about the residuals is accurate? Well, as I
indicated above, there are three distinct claims buried in this one statement, and we’ll consider
them separately.

• Homogeneity of variance. Notice that we’ve only got the one value for the population
standard deviation (i.e., σ), rather than allowing each group to have it’s own value (i.e.,
σk). This is referred to as the homogeneity of variance (sometimes called homoscedasticity)
assumption. ANOVA assumes that the population standard deviation is the same for all
groups. We’ll talk about this extensively in Section 13.6.1.

• Normality. The residuals are assumed to be normally distributed. As we saw in Sec-
tion 11.8, we can assess this by looking at QQ plots (or running a Shapiro-Wilk test. I’ll
talk about this more in an ANOVA context in Section 13.6.4.
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• Independence. The independence assumption is a little trickier. What it basically means
is that, knowing one residual tells you nothing about any other residual. All of the εik
values are assumed to have been generated without any “regard for” or “relationship to”
any of the other ones. There’s not an obvious or simple way to test for this, but there
are some situations that are clear violations of this. For instance, if you have a repeated-
measures design, where each participant in your study appears in more than one condition,
then independence doesn’t hold. There’s a special relationship between some observations,
namely those that correspond to the same person! When that happens, you need to use
something like repeated measures ANOVA (see Section 13.8).

13.6.1 Checking the homogeneity of variance assumption

To make the preliminary test on variances is rather like putting to sea in a rowing
boat to find out whether conditions are sufficiently calm for an ocean liner to leave
port!

– George Box (Box 1953)

There’s more than one way to skin a cat, as the saying goes, and more than one way to test
the homogeneity of variance assumption, too (though for some reason no-one made a saying out
of that). The most commonly used test for this that I’ve seen in the literature is the Levene
test (Levene 1960), and the closely related Brown-Forsythe test (Brown and Forsythe 1974).

Regardless of whether you’re doing the standard Levene test or the Brown-Forsythe test, the
test statistic, which is sometimes denoted F but also sometimes written as W , is calculated in
exactly the same way that the F -statistic for the regular ANOVA is calculated, just using a Zik
rather than Yik. With that in mind, we can go on to look at how to run the test in jamovi.

The Levene test is shockingly simple. Suppose we have our outcome variable Yik. All we do
is define a new variable, which I’ll call Zik, corresponding to the absolute deviation from the
group mean

Zik “
ˇ

ˇYik ´ Ȳk
ˇ

ˇ

Okay, what good does this do us? Well, let’s take a moment to think about what Zik actually
is and what we’re trying to test. The value of Zik is a measure of how the i-th observation
in the k-th group deviates from its group mean. And our null hypothesis is that all groups
have the same variance, i.e., the same overall deviations from the group means! So the null
hypothesis in a Levene test is that the population means of Z are identical for all groups.
Hmm. So what we need now is a statistical test of the null hypothesis that all group means
are identical. Where have we seen that before? Oh right, that’s what ANOVA is, and so all
that the Levene test does is run an ANOVA on the new variable Zik.

What about the Brown-Forsythe test? Does that do anything particularly different? Nope.
The only change from the Levene test is that it constructs the transformed variable Z in a
slightly different way, using deviations from the group medians rather than deviations from
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the group means. That is, for the Brown-Forsythe test

Zik “ |Yik ´mediankpY q|

where mediankpY q is the median for group k.

13.6.2 Running the Levene test in jamovi

Okay, so how do we run the Levene test? Simple really - under the ANOVA ‘Assumption
Checks’ option, just click on the ‘Homogeneity tests’ checkbox. If we look at the output, shown
in Figure 13.5, we see that the test is non-significant pF2,15 “ 1.45, p “ .266q, so it looks like the
homogeneity of variance assumption is fine. However, looks can be deceptive! If your sample size
is pretty big, then the Levene test could show up a significant effect (i.e. p ă .05) even when the
homogeneity of variance assumption is not violated to an extent which troubles the robustness
of ANOVA. This was the point George Box was making in the quote above. Similarly, if your
sample size is quite small, then the homogeneity of variance assumption might not be satisfied
and yet a Levene test could be non-significant (i.e. p ą .05). What this means is that, alongside
any statistical test of the assumption being met, you should always plot the standard deviation
around the means for each group / category in the analysis...just to see if they look fairly similar
(i.e. homogeneity of variance) or not.

Figure 13.5: Levene test output for one-way ANOVA in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.6.3 Removing the homogeneity of variance assumption

In our example, the homogeneity of variance assumption turned out to be a pretty safe one:
the Levene test came back non-significant (notwithstanding that we should also look at the plot
of standard deviations), so we probably don’t need to worry. However, in real life we aren’t
always that lucky. How do we save our ANOVA when the homogeneity of variance assumption
is violated? If you recall from our discussion of t-tests, we’ve seen this problem before. The
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Student t-test assumes equal variances, so the solution was to use the Welch t-test, which does
not. In fact, Welch (1951) also showed how we can solve this problem for ANOVA too (the
Welch one-way test). It’s implemented in jamovi using the One-Way ANOVA analysis. This is a
specific analysis approach just for one-way ANOVA, and to run the Welch one-way ANOVA for
our example, we would re-run the analysis as previously, but this time use the jamovi ANOVA -

One Way ANOVA analysis command, and check the option for Welch’s test (see Figure 13.6.

Figure 13.6: Welch’s test as part of the One Way ANOVA analysis in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To understand what’s happening here, let’s compare these numbers to what we got earlier in
Section 13.3 when we ran our original ANOVA. To save you the trouble of flicking back, this
is what we got last time: F p2, 15q “ 18.611, p “ .00009, also shown as the Fisher’s test in the
One-Way ANOVA shown in Figure 13.6.

Okay, so originally our ANOVA gave us the result F p2, 15q “ 18.6, whereas the Welch one-
way test gave us F p2, 9.49q “ 26.32. In other words, the Welch test has reduced the within-groups
degrees of freedom from 15 to 9.49, and the F -value has increased from 18.6 to 26.32.

13.6.4 Checking the normality assumption

Testing the normality assumption is relatively straightforward. We covered most of what
you need to know in Section 11.8. The only thing we really need to do is draw a QQ plot and,
in addition if it is available, run the Shapiro-Wilk test. The QQ plot is shown in Figure 13.7
and it looks pretty normal to me. If the Shapiro-Wilk test is not significant (i.e. p ą .05) then
this indicates that the assumption of normality is not violated. However, as with Levene’s test,
if the sample size is large then a significant Shapiro-Wilk test may in fact be a false positive,
where the assumption of normality is not violated in any substantive problematic sense for the
analysis. And, similarly, a very small sample can produce false negatives. That’s why a visual
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inspection of the QQ plot is important.

Alongside inspecting the QQ plot for any deviations from normality, the Shapiro-Wilk test
for our data does show a non-significant effect, with p “ 0.6053 (see Figure 13.6). This therefore
supports the QQ plot assessment; both checks find no indication that normality is violated.

13.7

Removing the normality assumption

Now that we’ve seen how to check for normality, we are led naturally to ask what we can do
to address violations of normality. In the context of a one-way ANOVA, the easiest solution
is probably to switch to a non-parametric test (i.e., one that doesn’t rely on any particular
assumption about the kind of distribution involved). We’ve seen non-parametric tests before, in
Chapter 11. When you only have two groups, the Mann-Whitney or the Wilcoxon test provides
the non-parametric alternative that you need. When you’ve got three or more groups, you can
use the Kruskal-Wallis rank sum test (Kruskal and Wallis 1952). So that’s the test we’ll
talk about next.

13.7.1 The logic behind the Kruskal-Wallis test

The Kruskal-Wallis test is surprisingly similar to ANOVA, in some ways. In ANOVA we started
with Yik, the value of the outcome variable for the ith person in the kth group. For the Kruskal-
Wallis test what we’ll do is rank order all of these Yik values and conduct our analysis on the
ranked data.

So let’s let Rik refer to the ranking given to the ith member of the kth group. Now, let’s
calculate R̄k, the average rank given to observations in the kth group

R̄k “
1

NK

ÿ

i

Rik

and let’s also calculate R̄, the grand mean rank

R̄ “
1

N

ÿ

i

ÿ

k

Rik

Now that we’ve done this, we can calculate the squared deviations from the grand mean rank
R̄. When we do this for the individual scores, i.e., if we calculate pRik ´ R̄q2, what we have
is a “nonparametric” measure of how far the ik-th observation deviates from the grand mean
rank. When we calculate the squared deviation of the group means from the grand means,
i.e., if we calculate pR̄k ´ R̄q2, then what we have is a nonparametric measure of how much
the group deviates from the grand mean rank. With this in mind, we’ll follow the same logic
that we did with ANOVA and define our ranked sums of squares measures, much like we did
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Figure 13.7: QQ plot produced from jamovi one way ANOVA options
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earlier. First, we have our “total ranked sums of squares”

RSStot “
ÿ

k

ÿ

i

pRik ´ R̄q
2

and we can define the “between groups ranked sums of squares” like this

RSSb “
ř

k

ř

ipR̄k ´ R̄q
2

“
ř

kNkpR̄k ´ R̄q
2

So, if the null hypothesis is true and there are no true group differences at all, you’d expect the
between group rank sums RSSb to be very small, much smaller than the total rank sums RSStot.
Qualitatively this is very much the same as what we found when we went about constructing
the ANOVA F -statistic, but for technical reasons the Kruskal-Wallis test statistic, usually
denoted K, is constructed in a slightly different way,

K “ pN ´ 1q ˆ
RSSb

RSStot

and if the null hypothesis is true, then the sampling distribution of K is approximately chi-
square with G´1 degrees of freedom (where G is the number of groups). The larger the value
of K, the less consistent the data are with the null hypothesis, so this is a one-sided test. We
reject H0 when K is sufficiently large.

13.7.2 Additional details

The description in the previous section illustrates the logic behind the Kruskal-Wallis test.
At a conceptual level, this is the right way to think about how the test works. However, from a
purely mathematical perspective it’s needlessly complicated. I won’t show you the derivation,
but you can use a bit of algebraic jiggery-pokerya to show that the equation for K can be
rewritten as

K “
12

NpN ´ 1q

ÿ

k

NkR̄
2
k ´ 3pN ` 1q

It’s this last equation that you sometimes see given for K. This is way easier to calculate than
the version I described in the previous section, but it’s just that it’s totally meaningless to
actual humans. It’s probably best to think of K the way I described it earlier, as an analogue
of ANOVA based on ranks. But keep in mind that the test statistic that gets calculated ends
up with a rather different look to it than the one we used for our original ANOVA.

But wait, there’s more! Dear lord, why is there always more? The story I’ve told so far
is only actually true when there are no ties in the raw data. That is, if there are no two
observations that have exactly the same value. If there are ties, then we have to introduce a
correction factor to these calculations. At this point I’m assuming that even the most diligent
reader has stopped caring (or at least formed the opinion that the tie-correction factor is
something that doesn’t require their immediate attention). So I’ll very quickly tell you how
it’s calculated, and omit the tedious details about why it’s done this way. Suppose we construct
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a frequency table for the raw data, and let fj be the number of observations that have the
j-th unique value. This might sound a bit abstract, so here’s a concrete example from the
frequency table of mood.gain from the clinicaltrials.csv data set:

0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1.1 1.2 1.3 1.4 1.7 1.8

1 1 2 1 1 2 1 1 1 1 2 2 1 1

Looking at this table, notice that the third entry in the frequency table has a value of 2. Since
this corresponds to a mood.gain of 0.3, this table is telling us that two people’s mood increased
by 0.3. More to the point, in the mathematical notation I introduced above, this is telling us
that f3 “ 2. Yay. So, now that we know this, the tie correction factor (TCF) is:

TCF “ 1´

ř

j fj
3 ´ fj

N3 ´N

The tie-corrected value of the Kruskal-Wallis statistic is obtained by dividing the value of K
by this quantity. It is this tie-corrected version that jamovi calculates. And at long last, we’re
actually finished with the theory of the Kruskal-Wallis test. I’m sure you’re all terribly relieved
that I’ve cured you of the existential anxiety that naturally arises when you realise that you
don’t know how to calculate the tie-correction factor for the Kruskal-Wallis test. Right?

aA technical term.

13.7.3 How to run the Kruskal-Wallis test in jamovi

Despite the horror that we’ve gone through in trying to understand what the Kruskal-
Wallis test actually does, it turns out that running the test is pretty painless, since jamovi has
an analysis as part of the ANOVA analysis set called ‘Non-Parametric’ - ‘One Way ANOVA
(Kruskall-Wallis)’ Most of the time you’ll have data like the clinicaltrial.csv data set, in
which you have your outcome variable mood.gain and a grouping variable drug. If so, you can
just go ahead and run the analysis in jamovi. What this gives us is a Kruskal-Wallis χ2 =
12.076, df = 2, p-value = 0.00239, as in Figure 13.8
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Figure 13.8: Kruskall-Wallis one-way non-parametric ANOVA in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.8

Repeated measures one-way ANOVA

The one-way repeated measures ANOVA test is a statistical method of testing for significant
differences between three or more groups where the same participants are used in each group
(or each participant is closely matched with participants in other experimental groups). For this
reason, there should always be an equal number of scores (data points) in each experimental
group. This type of design and analysis can also be called a ‘related ANOVA’ or a ‘within-
subjects ANOVA’.

The logic behind a repeated measures ANOVA is very similar to that of an independent
ANOVA (sometimes called a ‘between-subjects’ ANOVA). You’ll remember that earlier we
showed that in a between-subjects ANOVA total variability is partitioned into between-groups
variability (SSb) and within-groups variability (SSw), and after each is divided by the respective
degrees of freedom to give MSb and MSw (see Table 13.1) the F-ratio is calculated as:

F “
MSb
MSw

In a repeated measures ANOVA, the F-ratio is calculated in a similar way, but whereas in
an independent ANOVA the within-group variability (SSw) is used as the basis for the MSw
denominator, in a repeated measures ANOVA the SSw is partioned into two parts. As we are
using the same subjects in each group, we can remove the variability due to the individual
differences between subjects (referred to as SSsubjects) from the within-groups variability. We
won’t go into too much technical detail about how this is done, but essentially each subject
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becomes a level of a factor called subjects. The variability in this within-subjects factor is then
calculated in the same way as any between-subjects factor. And then we can subtract SSsubjects
from SSw to provide a smaller SSerror term:

Independent ANOVA: SSerror = SSw

Repeated Measures ANOVA: SSerror = SSw - SSsubjects

This change in SSerror term often leads to a more powerful statistical test, but this does
depend on whether the reduction in the SSerror more than compensates for the reduction in
degrees of freedom for the error term (as degrees of freedom go from (n - k)8 to (n - 1)(k - 1)
(remembering that there are more subjects in the independent ANOVA design).

13.8.1 Repeated measures ANOVA in jamovi

First, we need some data. Geschwind (1972) has suggested that the exact nature of a pa-
tient’s language deficit following a stroke can be used to diagnose the specific region of the brain
that has been damaged. A researcher is concerned with identifying the specific communica-
tion difficulties experienced by six patients suffering from Broca’s Aphasia (a language deficit
commonly experienced following a stroke).

Table 13.2: Number of attempts successfully completed on three experimental tasks.

Participant Speech Conceptual Syntax

1 8 7 6
2 7 8 6
3 9 5 3
4 5 4 5
5 6 6 2
6 8 7 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The patients were required to complete three word recognition tasks. On the first (speech
production) task, patients were required to repeat single words read out aloud by the researcher.
On the second (conceptual) task, designed to test word comprehension, patients were required
to match a series of pictures with their correct name. On the third (syntax) task, designed
to test knowledge of correct word order, patients were asked to reorder syntactically incorrect
sentences. Each patient completed all three tasks. The order in which patients attempted the
tasks was counterbalanced between participants. Each task consisted of a series of 10 attempts.
The number of attempts successfully completed by each patient are shown in Table 13.2. Enter
these data into jamovi ready for analysis (or take a short-cut and load up the broca.csv file).

8(n - k) : (number of subjects - number of groups)
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To perform a one-way related ANOVA in jamovi, open the one-way repeated measures
ANOVA dialogue box, as in Figure 13.9, via ANOVA - Repeated Measures ANOVA. Then:

• Enter a Repeated Measures Factor Name. This should be a label that you choose to
describe the conditions repeated by all participants. For example, to describe the speech,
conceptual and syntax tasks completed by all participants a suitable label would be ‘Task’.
Note that this new factor name represents the independent variable in the analysis.

• Add a third level in the Repeated Measures Factors text box, as there are three levels
representing the three tasks: speech, conceptual and syntax. Change the labels of the
levels accordingly.

• Then move each of the levels variables across to the Repeated Measures Cells text box.

• Finally, under the Assumption Checks option, tick the “Sphericity checks” text box.

jamovi output for a one-way repeated measures ANOVA is produced as shown in the Figures
13.10 to 13.13. The first output we should look at is Mauchly’s Test of Sphericity, which tests
the hypothesis that the variances of the differences between the conditions are equal (meaning
that the spread of difference scores between the study conditions is approximately the same).
In Figure 13.10, Mauchly’s test significance level is p “ .720. If Mauchly’s test is non-significant
(i.e. p ą .05, as is the case in this analysis) then it is reasonable to conclude that the variances
of the differences are not significantly different (i.e. they are roughly equal and sphericity can
be assumed.).

If, on the other hand, Mauchly’s test had been significant (p ă .05) then we would conclude
that there are significant differences between the variance of the differences, and the requirement
of sphericity has not been met. In this case, we should apply a correction to the F -value obtained
in the one-way related ANOVA analysis:

• If the Greenhouse-Geisser value in the “Tests of Sphericity” table is ą .75 then you should
use the Huynh-Feldt correction.

• But if the Greenhouse-Geisser value is ă .75, then you should use the Greenhouse-Geisser
correction.

Both these corrected F -values can be specified in the Sphericity Corrections check boxes
under the Assumption Checks options, and the corrected F -values are then shown in the results
table, as in Figure 13.11.

In our analysis, we saw that the significance of Mauchly’s Test of Sphericity was p “ .720
(i.e. p ą 0.05). So, this means we can assume that the requirement of sphericity has been
met so no correction to the F -value is needed. Therefore, we can use the ‘None’ Sphericity
Correction output values for the repeated measure ‘Task’: F “ 6.93, df “ 2, p “ .013, and
we can conclude that the number of tests successfully completed on each language task did
vary significantly depending on whether the task was speech, comprehension or syntax based
(F p2, 10q “ 6.93, p “ .013).

Post-hoc tests can also be specified in jamovi for repeated measures ANOVA in the same
way as for independent ANOVA. The results are shown in Figure 13.12. These indicate that
there is a significant difference between Speech and Syntax, but not between other levels.
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Figure 13.9: Repeated measures ANOVA dialogue box in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Descriptive statistics (marginal means) can be reviewed to help interpret the results, pro-
duced in the jamovi output as in Figure 13.13. Comparison of the mean number of trials
successfully completed by participants shows that Broca’s Aphasics perform reasonably well on
speech production (mean “ 7.17) and language comprehension (mean “ 6.17) tasks. However,
their performance was considerably worse on the syntax task (mean “ 4.33), with a significant
difference in post-hoc tests between Speech and Syntax task performance.
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Figure 13.10: One-way repeated measures ANOVA output: Mauchly’s Test of Sphericity

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 13.11: One-way repeated measures ANOVA output: Tests of Within-Subjects Effects

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 13.12: Post-hoc tests in repeated measures ANOVA in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 13.13: One-way repeated measures ANOVA output: Descriptive Statistics

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.9

The Friedman non-parametric repeated measures ANOVA test

The Friedman test is a non-parametric version of a repeated measures ANOVA and can be used
instead of the Kruskall-Wallis test when testing for differences between three or more groups
where the same participants are in each group, or each participant is closely matched with
participants in other conditions. If the dependent variable is ordinal, or if the assumption of
normality is not met, then the Friedman test can be used.

Figure 13.14: The ‘Repeated Measures ANOVA (Non-parametric)’ dialogue box in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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As with the Kruskall-Wallis test, the underlying mathematics is complicated, and won’t be
presented here. For the purpose of this book, it is sufficient to note that jamovi calculates the
tie-corrected version of the Friedman test, and in Figure 13.14 there is an example using the
Broca’s Aphasia data we have already looked at.

It’s pretty straightforward to run a Friedman test in jamovi. Just select Analyses - ANOVA

- Repeated Measures ANOVA (Non-parametric), as in Figure 13.14. Then highlight and transfer
the names of the repeated measures variables you wish to compare (Speech, Conceptual, Syntax)
into the ‘Measures:’ text box. To produce descriptive statistics (means and medians) for the
three repeated measures variables, click on the Descriptives button

The jamovi results show descriptive statistics, chi-square value, degrees of freedom, and the
p-value (Figure 13.14). Since the p-value is less than the level conventionally used to determine
significance (p ă .05), we can conclude that Broca’s Aphasics perform reasonably well on speech
production (median “ 7.5) and language comprehension (median “ 6.5) tasks. However, their
performance was considerably worse on the syntax task (median “ 4.5), with a significant
difference in post-hoc tests between Speech and Syntax task performance.

13.10

On the relationship between ANOVA and the Student t-test

There’s one last thing I want to point out before finishing. It’s something that a lot of people find
kind of surprising, but it’s worth knowing about. An ANOVA with two groups is identical to the
Student t-test. No, really. It’s not just that they are similar, but they are actually equivalent in
every meaningful way. I won’t try to prove that this is always true, but I will show you a single
concrete demonstration. Suppose that, instead of running an ANOVA on our mood.gain ~ drug

model, let’s instead do it using therapy as the predictor. If we run this ANOVA we get an
F -statistic of F p1, 16q “ 1.71, and a p-value = 0.21. Since we only have two groups, I didn’t
actually need to resort to an ANOVA, I could have just decided to run a Student t-test. So
let’s see what happens when I do that: I get a t-statistic of tp16q “ ´1.3068 and a p-value =
0.21. Curiously, the p-values are identical. Once again we obtain a value of p “ .21. But what
about the test statistic? Having run a t-test instead of an ANOVA, we get a somewhat different
answer, namely tp16q “ ´1.3068. However, there is a fairly straightforward relationship here. If
we square the t-statistic then we get the F -statistic from before: ´1.30682 “ 1.7077

13.11

Summary

There’s a fair bit covered in this chapter, but there’s still a lot missing. Most obviously, I haven’t
discussed how to run an ANOVA when you are interested in more than one grouping variable,
but that will be discussed in a lot of detail in Chapter 14. In terms of what we have discussed,
the key topics were:
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• The basic logic behind how ANOVA works (Section 13.2) and how to run one in jamovi
(Section 13.3).

• How to compute an effect size for an ANOVA (Section 13.4)

• Post-hoc analysis and corrections for multiple testing (Section 13.5).

• The assumptions made by ANOVA (Section 13.6).

• How to check the homogeneity of variance assumption (Section 13.6.1) and what to do if
it is violated (Section 13.6.3).

• How to check the normality assumption (Section 13.6.4) and what to do if it is violated
(Section 13.7).

• Repeated measures ANOVA (Section 13.8) and the non-parametric equivalent, the Fried-
man test (Section 13.9).

As with all of the chapters in this book, there are quite a few different sources that I’ve relied
upon, but the one stand-out text that I’ve been most heavily influenced by is Sahai and Ageel
(2000). It’s not a good book for beginners, but it’s an excellent book for more advanced readers
who are interested in understanding the mathematics behind ANOVA.
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14. Factorial ANOVA

Over the course of the last few chapters we have done quite a lot. We have looked at statistical
tests you can use when you have one nominal predictor variable with two groups (e.g. the t-test,
Chapter 11) or with three or more groups (e.g. one-way ANOVA, Chapter 13). The chapter on
regression (Chapter 12) introduced a powerful new idea, that is building statistical models with
multiple continuous predictor variables used to explain a single outcome variable. For instance,
a regression model could be used to predict the number of errors a student makes in a reading
comprehension test based on the number of hours they studied for the test and their score on a
standardised IQ test.

The goal in this chapter is to extend the idea of using multiple predictors into the ANOVA
framework. For instance, suppose we were interested in using the reading comprehension test
to measure student achievements in three different schools, and we suspect that girls and boys
are developing at different rates (and so would be expected to have different performance on
average). Each student is classified in two different ways: on the basis of their gender and on the
basis of their school. What we’d like to do is analyse the reading comprehension scores in terms
of both of these grouping variables. The tool for doing so is generically referred to as factorial
ANOVA. However, since we have two grouping variables, we sometimes refer to the analysis as
a two-way ANOVA, in contrast to the one-way ANOVAs that we ran in Chapter 13.

14.1

Factorial ANOVA 1: balanced designs, no interactions

When we discussed analysis of variance in Chapter 13, we assumed a fairly simple experimental
design. Each person is in one of several groups and we want to know whether these groups have
different mean scores on some outcome variable. In this section, I’ll discuss a broader class of
experimental designs known as factorial designs, in which we have more than one grouping
variable. I gave one example of how this kind of design might arise above. Another example
appears in Chapter 13 in which we were looking at the effect of different drugs on the mood.gain

experienced by each person. In that chapter we did find a significant effect of drug, but at the
end of the chapter we also ran an analysis to see if there was an effect of therapy. We didn’t
find one, but there’s something a bit worrying about trying to run two separate analyses trying
to predict the same outcome. Maybe there actually is an effect of therapy on mood gain, but
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we couldn’t find it because it was being “hidden” by the effect of drug? In other words, we’re
going to want to run a single analysis that includes both drug and therapy as predictors. For
this analysis each person is cross-classified by the drug they were given (a factor with 3 levels)
and what therapy they received (a factor with 2 levels). We refer to this as a 3 ˆ 2 factorial
design.

If we cross-tabulate drug by therapy, using the ‘Frequencies’ - ‘Contingency Tables’ analysis
in jamovi (see Section 6.1), we get the table shown in Figure 14.1

Figure 14.1: jamovi contingency table of drug by therapy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As you can see, not only do we have participants corresponding to all possible combinations
of the two factors, indicating that our design is completely crossed, it turns out that there are
an equal number of people in each group. In other words, we have a balanced design. In this
section I’ll talk about how to analyse data from balanced designs, since this is the simplest case.
The story for unbalanced designs is quite tedious, so we’ll put it to one side for the moment.

14.1.1 What hypotheses are we testing?

Like one-way ANOVA, factorial ANOVA is a tool for testing certain types of hypotheses
about population means. So a sensible place to start would be to be explicit about what our
hypotheses actually are. However, before we can even get to that point, it’s really useful to
have some clean and simple notation to describe the population means. Because of the fact that
observations are cross-classified in terms of two different factors, there are quite a lot of different
means that one might be interested in. To see this, let’s start by thinking about all the different
sample means that we can calculate for this kind of design. Firstly, there’s the obvious idea that
we might be interested in this list of group means:
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drug therapy mood.gain

placebo no.therapy 0.300000

anxifree no.therapy 0.400000

joyzepam no.therapy 1.466667

placebo CBT 0.600000

anxifree CBT 1.033333

joyzepam CBT 1.500000

Now, this output shows a list of the group means for all possible combinations of the two factors
(e.g., people who received the placebo and no therapy, people who received the placebo while
getting CBT, etc.). It is helpful to organise all these numbers, plus the marginal and grand
means, into a single table which looks like this:

no therapy CBT total

placebo 0.30 0.60 0.45
anxifree 0.40 1.03 0.72
joyzepam 1.47 1.50 1.48

total 0.72 1.04 0.88

Now, each of these different means is of course a sample statistic. It’s a quantity that pertains
to the specific observations that we’ve made during our study. What we want to make inferences
about are the corresponding population parameters. That is, the true means as they exist within
some broader population. Those population means can also be organised into a similar table,
but we’ll need a little mathematical notation to do so. As usual, I’ll use the symbol µ to denote a
population mean. However, because there are lots of different means, I’ll need to use subscripts
to distinguish between them.

Here’s how the notation works. Our table is defined in terms of two factors. Each row
corresponds to a different level of Factor A (in this case drug), and each column corresponds to
a different level of Factor B (in this case therapy). If we let R denote the number of rows in the
table, and C denote the number of columns, we can refer to this as an RˆC factorial ANOVA.
In this case R “ 3 and C “ 2. We’ll use lowercase letters to refer to specific rows and columns,
so µrc refers to the population mean associated with the rth level of Factor A (i.e. row number
r) and the cth level of Factor B (column number c).1 So the population means are now written
like this:

no therapy CBT total

placebo µ11 µ12

anxifree µ21 µ22

joyzepam µ31 µ32

total

Okay, what about the remaining entries? For instance, how should we describe the average
mood gain across the entire (hypothetical) population of people who might be given Joyzepam

1The nice thing about the subscript notation is that it generalises nicely. If our experiment had involved a
third factor, then we could just add a third subscript. In principle, the notation extends to as many factors as
you might care to include, but in this book we’ll rarely consider analyses involving more than two factors, and
never more than three.
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in an experiment like this, regardless of whether they were in CBT? We use the “dot” notation
to express this. In the case of Joyzepam, notice that we’re talking about the mean associated
with the third row in the table. That is, we’re averaging across two cell means (i.e., µ31 and
µ32). The result of this averaging is referred to as a marginal mean, and would be denoted
µ3. in this case. The marginal mean for CBT corresponds to the population mean associated
with the second column in the table, so we use the notation µ.2 to describe it. The grand mean
is denoted µ.. because it is the mean obtained by averaging (marginalising2) over both. So our
full table of population means can be written down like this:

no therapy CBT total

placebo µ11 µ12 µ1.

anxifree µ21 µ22 µ2.

joyzepam µ31 µ32 µ3.

total µ.1 µ.2 µ..

Now that we have this notation, it is straightforward to formulate and express some hy-
potheses. Let’s suppose that the goal is to find out two things. First, does the choice of drug
have any effect on mood? And second, does CBT have any effect on mood? These aren’t the
only hypotheses that we could formulate of course, and we’ll see a really important example of
a different kind of hypothesis in Section 14.2, but these are the two simplest hypotheses to test,
and so we’ll start there. Consider the first test. If the drug has no effect then we would expect
all of the row means to be identical, right? So that’s our null hypothesis. On the other hand,
if the drug does matter then we should expect these row means to be different. Formally, we
write down our null and alternative hypotheses in terms of the equality of marginal means:

Null hypothesis, H0: row means are the same, i.e., µ1. “ µ2. “ µ3.

Alternative hypothesis, H1: at least one row mean is different.

It’s worth noting that these are exactly the same statistical hypotheses that we formed when
we ran a one-way ANOVA on these data back in Chapter 13. Back then I used the notation
µP to refer to the mean mood gain for the placebo group, with µA and µJ corresponding to the
group means for the two drugs, and the null hypothesis was µP “ µA “ µJ . So we’re actually
talking about the same hypothesis, it’s just that the more complicated ANOVA requires more
careful notation due to the presence of multiple grouping variables, so we’re now referring to this
hypothesis as µ1. “ µ2. “ µ3.. However, as we’ll see shortly, although the hypothesis is identical
the test of that hypothesis is subtly different due to the fact that we’re now acknowledging the
existence of the second grouping variable.

Speaking of the other grouping variable, you won’t be surprised to discover that our second
hypothesis test is formulated the same way. However, since we’re talking about the psychological
therapy rather than drugs our null hypothesis now corresponds to the equality of the column
means:

2Technically, marginalising isn’t quite identical to a regular mean. It’s a weighted average where you take into
account the frequency of the different events that you’re averaging over. However, in a balanced design, all of
our cell frequencies are equal by definition so the two are equivalent. We’ll discuss unbalanced designs later, and
when we do so you’ll see that all of our calculations become a real headache. But let’s ignore this for now.
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Null hypothesis, H0: column means are the same, i.e., µ.1 “ µ.2
Alternative hypothesis, H1: column means are different, i.e., µ.1 ‰ µ.2

14.1.2 Running the analysis in jamovi

The null and alternative hypotheses that I described in the last section should seem awfully
familiar. They’re basically the same as the hypotheses that we were testing in our simpler one-
way ANOVAs in Chapter 13. So you’re probably expecting that the hypothesis tests that are used
in factorial ANOVA will be essentially the same as the F -test from Chapter 13. You’re expecting
to see references to sums of squares (SS), mean squares (MS), degrees of freedom (df), and finally
an F -statistic that we can convert into a p-value, right? Well, you’re absolutely and completely
right. So much so that I’m going to depart from my usual approach. Throughout this book, I’ve
generally taken the approach of describing the logic (and to an extent the mathematics) that
underpins a particular analysis first and only then introducing the analysis in jamovi. This time
I’m going to do it the other way around and show you how to do it in jamovi first. The reason
for doing this is that I want to highlight the similarities between the simple one-way ANOVA
tool that we discussed in Chapter 13, and the more complicated approach that we’re going to
use in this chapter.

If the data you’re trying to analyse correspond to a balanced factorial design then running
your analysis of variance is easy. To see how easy it is, let’s start by reproducing the original
analysis from Chapter 13. In case you’ve forgotten, for that analysis we were using only a single
factor (i.e., drug) to predict our outcome variable (i.e., mood.gain), and we got the results shown
in Figure 14.2.

Figure 14.2: jamovi one way anova of mood.gain by drug

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now, suppose I’m also curious to find out if therapy has a relationship to mood.gain. In light
of what we’ve seen from our discussion of multiple regression in Chapter 12, you probably won’t
be surprised that all we have to do is add therapy as a second ‘Fixed Factor’ in the analysis, see
Figure 14.3.

This output is pretty simple to read too. The first row of the table reports a between-group
sum of squares (SS) value associated with the drug factor, along with a corresponding between-
group df value. It also calculates a mean square value (MS), an F -statistic and a p-value. There
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Figure 14.3: jamovi two way anova of mood.gain by drug and therapy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is also a row corresponding to the therapy factor and a row corresponding to the residuals (i.e.,
the within groups variation).

Not only are all of the individual quantities pretty familiar, the relationships between these
different quantities has remained unchanged, just like we saw with the original one-way ANOVA.
Note that the mean square value is calculated by dividing SS by the corresponding df . That is,
it’s still true that

MS “
SS

df

regardless of whether we’re talking about drug, therapy or the residuals. To see this, let’s not
worry about how the sums of squares values are calculated. Instead, let’s take it on faith that
jamovi has calculated the SS values correctly, and try to verify that all the rest of the numbers
make sense. First, note that for the drug factor, we divide 3.45 by 2 and end up with a mean
square value of 1.73. For the therapy factor, there’s only 1 degree of freedom, so our calculations
are even simpler: dividing 0.47 (the SS value) by 1 gives us an answer of 0.47 (the MS value).

Turning to the F statistics and the p values, notice that we have two of each; one corre-
sponding to the drug factor and the other corresponding to the therapy factor. Regardless of
which one we’re talking about, the F statistic is calculated by dividing the mean square value
associated with the factor by the mean square value associated with the residuals. If we use
“A” as shorthand notation to refer to the first factor (factor A; in this case drug) and “R” as
shorthand notation to refer to the residuals, then the F statistic associated with factor A is
denoted FA, and is calculated as follows:

FA “
MSA
MSR

and an equivalent formula exists for factor B (i.e., therapy). Note that this use of “R” to refer
to residuals is a bit awkward, since we also used the letter R to refer to the number of rows in
the table, but I’m only going to use “R” to mean residuals in the context of SSR and MSR, so
hopefully this shouldn’t be confusing. Anyway, to apply this formula to the drugs factor we take
the mean square of 1.73 and divide it by the residual mean square value of 0.07, which gives
us an F -statistic of 26.15. The corresponding calculation for the therapy variable would be to
divide 0.47 by 0.07 which gives 7.08 as the F -statistic. Not surprisingly, of course, these are the
same values that jamovi has reported in the ANOVA table above.
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Also in the ANOVA table is the calculation of the p values. Once again, there is nothing
new here. For each of our two factors what we’re trying to do is test the null hypothesis that
there is no relationship between the factor and the outcome variable (I’ll be a bit more precise
about this later on). To that end, we’ve (apparently) followed a similar strategy to what we
did in the one way ANOVA and have calculated an F -statistic for each of these hypotheses. To
convert these to p values, all we need to do is note that the sampling distribution for the F
statistic under the null hypothesis (that the factor in question is irrelevant) is an F distribution.
Also note that the two degrees of freedom values are those corresponding to the factor and those
corresponding to the residuals. For the drug factor we’re talking about an F distribution with
2 and 14 degrees of freedom (I’ll discuss degrees of freedom in more detail later). In contrast,
for the therapy factor the sampling distribution is F with 1 and 14 degrees of freedom.

At this point, I hope you can see that the ANOVA table for this more complicated factorial
analysis should be read in much the same way as the ANOVA table for the simpler one way
analysis. In short, it’s telling us that the factorial ANOVA for our 3ˆ2 design found a significant
effect of drug (F2,14 “ 26.15, p ă .001) as well as a significant effect of therapy (F1,14 “ 7.08, p “
.02). Or, to use the more technically correct terminology, we would say that there are two main
effects of drug and therapy. At the moment, it probably seems a bit redundant to refer to these
as “main” effects, but it actually does make sense. Later on, we’re going to want to talk about
the possibility of “interactions” between the two factors, and so we generally make a distinction
between main effects and interaction effects.

14.1.3 How are the sum of squares calculated?

In the previous section I had two goals. Firstly, to show you that the jamovi method needed
to do factorial ANOVA is pretty much the same as what we used for a one way ANOVA. The
only difference is the addition of a second factor. Secondly, I wanted to show you what the
ANOVA table looks like in this case, so that you can see from the outset that the basic logic and
structure behind factorial ANOVA is the same as that which underpins one way ANOVA. Try to
hold onto that feeling. It’s genuinely true, insofar as factorial ANOVA is built in more or less the
same way as the simpler one-way ANOVA model. It’s just that this feeling of familiarity starts
to evaporate once you start digging into the details. Traditionally, this comforting sensation is
replaced by an urge to hurl abuse at the authors of statistics textbooks.

Okay, let’s start by looking at some of those details. The explanation that I gave in the last
section illustrates the fact that the hypothesis tests for the main effects (of drug and therapy in
this case) are F -tests, but what it doesn’t do is show you how the sum of squares (SS) values are
calculated. Nor does it tell you explicitly how to calculate degrees of freedom (df values) though
that’s a simple thing by comparison. Let’s assume for now that we have only two predictor
variables, Factor A and Factor B. If we use Y to refer to the outcome variable, then we would
use Yrci to refer to the outcome associated with the i-th member of group rc (i.e., level/row r
for Factor A and level/column c for Factor B). Thus, if we use Ȳ to refer to a sample mean, we
can use the same notation as before to refer to group means, marginal means and grand means.
That is, Ȳrc is the sample mean associated with the rth level of Factor A and the cth level of
Factor B, Ȳr.would be the marginal mean for the rth level of Factor A, Ȳ.c would be the marginal
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mean for the cth level of Factor B, and Ȳ.. is the grand mean. In other words, our sample means
can be organised into the same table as the population means. For our clinical trial data, that
table looks like this:

no therapy CBT total

placebo Ȳ11 Ȳ12 Ȳ1.

anxifree Ȳ21 Ȳ22 Ȳ2.

joyzepam Ȳ31 Ȳ32 Ȳ3.

total Ȳ.1 Ȳ.2 Ȳ..

And if we look at the sample means that I showed earlier, we have Ȳ11 “ 0.30, Ȳ12 “ 0.60 etc.
In our clinical trial example, the drugs factor has 3 levels and the therapy factor has 2 levels,
and so what we’re trying to run is a 3 ˆ 2 factorial ANOVA. However, we’ll be a little more
general and say that Factor A (the row factor) has R levels and Factor B (the column factor)
has C levels, and so what we’re runnning here is an Rˆ C factorial ANOVA.

Now that we’ve got our notation straight, we can compute the sum of squares values for each of
the two factors in a relatively familiar way. For Factor A, our between group sum of squares is
calculated by assessing the extent to which the (row) marginal means Ȳ1., Ȳ2. etc, are different
from the grand mean Ȳ... We do this in the same way that we did for one-way ANOVA:
calculate the sum of squared difference between the Ȳi. values and the Ȳ.. values. Specifically,
if there are N people in each group, then we calculate this

SSA “ pN ˆ Cq
R
ÿ

r“1

`

Ȳr. ´ Ȳ..
˘2

As with one-way ANOVA, the most interestinga part of this formula is the
`

Ȳr. ´ Ȳ..
˘2

bit,
which corresponds to the squared deviation associated with level r. All that this formula
does is calculate this squared deviation for all R levels of the factor, add them up, and then
multiply the result by N ˆ C. The reason for this last part is that there are multiple cells in
our design that have level r on Factor A. In fact, there are C of them, one corresponding to
each possible level of Factor B! For instance, in our example there are two different cells in the
design corresponding to the anxifree drug: one for people with no.therapy and one for the
CBT group. Not only that, within each of these cells there are N observations. So, if we want
to convert our SS value into a quantity that calculates the between-groups sum of squares on
a “per observation” basis, we have to multiply by N ˆC. The formula for factor B is of course
the same thing, just with some subscripts shuffled around

SSB “ pN ˆRq
C
ÿ

c“1

`

Ȳ.c ´ Ȳ..
˘2

Now that we have these formulas we can check them against the jamovi output from the
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earlier section. Once again, a dedicated spreadsheet programme is helpful for these sorts of
calculations, so please have a go yourself. You can also take a look at the version I did in
Excel in the file clinicaltrial factorialanova.xls.

First, let’s calculate the sum of squares associated with the main effect of drug. There
are a total of N “ 3 people in each group and C “ 2 different types of therapy. Or, to put
it another way, there are 3 ˆ 2 “ 6 people who received any particular drug. When we do
these calculations in a spreadsheet programme, we get a value of 3.45 for the sum of squares
associated with the main effect of drug. Not surprisingly, this is the same number that you
get when you look up the SS value for the drugs factor in the ANOVA table that I presented
earlier, in Figure 14.3.

We can repeat the same kind of calculation for the effect of therapy. Again there are
N “ 3 people in each group, but since there are R “ 3 different drugs, this time around
we note that there are 3 ˆ 3 “ 9 people who received CBT and an additional 9 people who
received the placebo. So our calculation in this case gives us a value of 0.47 for the sum of
squares associated with the main effect of therapy. Once again, we are not surprised to see
that our calculations are identical to the ANOVA output in Figure 14.3.

So that’s how you calculate the SS values for the two main effects. These SS values are
analogous to the between-group sum of squares values that we calculated when doing one-way
ANOVA in Chapter 13. However, it’s not a good idea to think of them as between-groups
SS values anymore, just because we have two different grouping variables and it’s easy to get
confused. In order to construct an F test, however, we also need to calculate the within-
groups sum of squares. In keeping with the terminology that we used in the regression chapter
(Chapter 12) and the terminology that jamovi uses when printing out the ANOVA table, I’ll
start referring to the within-groups SS value as the residual sum of squares SSR.

The easiest way to think about the residual SS values in this context, I think, is to think of
it as the leftover variation in the outcome variable after you take into account the differences
in the marginal means (i.e., after you remove SSA and SSB). What I mean by that is we can
start by calculating the total sum of squares, which I’ll label SST . The formula for this is
pretty much the same as it was for one-way ANOVA. We take the difference between each
observation Yrci and the grand mean Ȳ.., square the differences, and add them all up

SST “
R
ÿ

r“1

C
ÿ

c“1

N
ÿ

i“1

`

Yrci ´ Ȳ..
˘2

The “triple summation” here looks more complicated than it is. In the first two summations,
we’re summing across all levels of Factor A (i.e., over all possible rows r in our table) and
across all levels of Factor B (i.e., all possible columns c). Each rc combination corresponds to
a single group and each group contains N people, so we have to sum across all those people
(i.e., all i values) too. In other words, all we’re doing here is summing across all observations
in the data set (i.e., all possible rci combinations).

At this point, we know the total variability of the outcome variable SST , and we know
how much of that variability can be attributed to Factor A (SSA) and how much of it can be
attributed to Factor B (SSB). The residual sum of squares is thus defined to be the variability
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in Y that can’t be attributed to either of our two factors. In other words

SSR “ SST ´ pSSA ` SSBq

Of course, there is a formula that you can use to calculate the residual SS directly, but I think
that it makes more conceptual sense to think of it like this. The whole point of calling it a
residual is that it’s the leftover variation, and the formula above makes that clear. I should also
note that, in keeping with the terminology used in the regression chapter, it is commonplace
to refer to SSA ` SSB as the variance attributable to the “ANOVA model”, denoted SSM ,
and so we often say that the total sum of squares is equal to the model sum of squares plus
the residual sum of squares. Later on in this chapter we’ll see that this isn’t just a surface
similarity: ANOVA and regression are actually the same thing under the hood.

In any case, it’s probably worth taking a moment to check that we can calculate SSR
using this formula and verify that we do obtain the same answer that jamovi produces in
its ANOVA table. The calculations are pretty straightforward when done in a spreadsheet
(see the clinicaltrial factorialanova.xls file). We can calculate the total SS using the
formulas above (getting an answer of total SS = 4.85) and then the residual SS ( = 0.92). Yet
again, we get the same answer.

aEnglish translation: “least tedious”.

14.1.4 What are our degrees of freedom?

The degrees of freedom are calculated in much the same way as for one-way ANOVA. For
any given factor, the degrees of freedom is equal to the number of levels minus 1 (i.e., R´ 1 for
the row variable Factor A, and C ´ 1 for the column variable Factor B). So, for the drugs factor
we obtain df “ 2, and for the therapy factor we obtain df “ 1. Later on, when we discuss the
interpretation of ANOVA as a regression model (see Section 14.6), I’ll give a clearer statement of
how we arrive at this number. But for the moment we can use the simple definition of degrees of
freedom, namely that the degrees of freedom equals the number of quantities that are observed,
minus the number of constraints. So, for the drugs factor, we observe 3 separate group means,
but these are constrained by 1 grand mean, and therefore the degrees of freedom is 2. For the
residuals, the logic is similar, but not quite the same. The total number of observations in our
experiment is 18. The constraints correspond to 1 grand mean, the 2 additional group means
that the drug factor introduces, and the 1 additional group mean that the the therapy factor
introduces, and so our degrees of freedom is 14. As a formula, this is N ´ 1´pR´ 1q´ pC ´ 1q,
which simplifies to N ´R´ C ` 1.

14.1.5 Factorial ANOVA versus one-way ANOVAs

Now that we’ve seen how a factorial ANOVA works, it’s worth taking a moment to compare
it to the results of the one way analyses, because this will give us a really good sense of why it’s
a good idea to run the factorial ANOVA. In Chapter 13, I ran a one-way ANOVA that looked
to see if there are any differences between drugs, and a second one-way ANOVA to see if there
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were any differences between therapies. As we saw in Section 14.1.1, the null and alternative
hypotheses tested by the one-way ANOVAs are in fact identical to the hypotheses tested by
the factorial ANOVA. Looking even more carefully at the ANOVA tables, we can see that the
sum of squares associated with the factors are identical in the two different analyses (3.45 for
drug and 0.92 for therapy), as are the degrees of freedom (2 for drug, 1 for therapy). But they
don’t give the same answers! Most notably, when we ran the one-way ANOVA for therapy in
Section 13.10 we didn’t find a significant effect (the p-value was .21). However, when we look at
the main effect of therapy within the context of the two-way ANOVA, we do get a significant
effect (p “ .019). The two analyses are clearly not the same.

Why does that happen? The answer lies in understanding how the residuals are calculated.
Recall that the whole idea behind an F -test is to compare the variability that can be attributed
to a particular factor with the variability that cannot be accounted for (the residuals). If you
run a one-way ANOVA for therapy, and therefore ignore the effect of drug, the ANOVA will end
up dumping all of the drug-induced variability into the residuals! This has the effect of making
the data look more noisy than they really are, and the effect of therapy which is correctly found
to be significant in the two-way ANOVA now becomes non-significant. If we ignore something
that actually matters (e.g., drug) when trying to assess the contribution of something else (e.g.,
therapy) then our analysis will be distorted. Of course, it’s perfectly okay to ignore variables
that are genuinely irrelevant to the phenomenon of interest. If we had recorded the colour of
the walls, and that turned out to be a non-significant factor in a three-way ANOVA, it would be
perfectly okay to disregard it and just report the simpler two-way ANOVA that doesn’t include
this irrelevant factor. What you shouldn’t do is drop variables that actually make a difference!

14.1.6 What kinds of outcomes does this analysis capture?

The ANOVA model that we’ve been talking about so far covers a range of different patterns
that we might observe in our data. For instance, in a two-way ANOVA design there are four
possibilities: (a) only Factor A matters, (b) only Factor B matters, (c) both A and B matter,
and (d) neither A nor B matters. An example of each of these four possibilities is plotted in
Figure 14.4.

14.2

Factorial ANOVA 2: balanced designs, interactions allowed

The four patterns of data shown in Figure 14.4 are all quite realistic. There are a great many
data sets that produce exactly those patterns. However, they are not the whole story and the
ANOVA model that we have been talking about up to this point is not sufficient to fully account
for a table of group means. Why not? Well, so far we have the ability to talk about the idea
that drugs can influence mood, and therapy can influence mood, but no way of talking about
the possibility of an interaction between the two. An interaction between A and B is said to
occur whenever the effect of Factor A is different, depending on which level of Factor B we’re
talking about. Several examples of an interaction effect with the context of a 2ˆ2 ANOVA are
shown in Figure 14.5. To give a more concrete example, suppose that the operation of Anxifree
and Joyzepam is governed by quite different physiological mechanisms. One consequence of this
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Figure 14.4: The four different outcomes for a 2ˆ 2 ANOVA when no interactions are present.
In panel (a) we see a main effect of Factor A and no effect of Factor B. Panel (b) shows a main
effect of Factor B but no effect of Factor A. Panel (c) shows main effects of both Factor A and
Factor B. Finally, panel (d) shows no effect of either factor.
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Figure 14.5: Qualitatively different interactions for a 2ˆ 2 ANOVA
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is that while Joyzepam has more or less the same effect on mood regardless of whether one
is in therapy, Anxifree is actually much more effective when administered in conjunction with
CBT. The ANOVA that we developed in the previous section does not capture this idea. To
get some idea of whether an interaction is actually happening here, it helps to plot the various
group means. In jamovi this is done via the ANOVA ‘Estimated Marginal Means’ option -
just move drug and therapy across into the ‘Marginal Means’ box under ‘Term 1’. This should
look something like Figure 14.6. Our main concern relates to the fact that the two lines aren’t
parallel. The effect of CBT (difference between solid line and dotted line) when the drug is
Joyzepam (right side) appears to be near zero, even smaller than the effect of CBT when a
placebo is used (left side). However, when Anxifree is administered, the effect of CBT is larger
than the placebo (middle). Is this effect real, or is this just random variation due to chance?
Our original ANOVA cannot answer this question, because we make no allowances for the idea
that interactions even exist! In this section, we’ll fix this problem.

Figure 14.6: jamovi screen showing how to generate a descriptive interaction plot in ANOVA
using the clinical trial data

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14.2.1 What exactly is an interaction effect?

The key idea that we’re going to introduce in this section is that of an interaction effect. In the
ANOVA model we have looked at so far there are only two factors involved in our model (i.e.,
drug and therapy). But when we add an interaction we add a new component to the model:
the combination of drug and therapy. Intuitively, the idea behind an interaction effect is fairly
simple. It just means that the effect of Factor A is different, depending on which level of Factor
B we’re talking about. But what does that actually mean in terms of our data? The plot in
Figure 14.5 depicts several different patterns that, although quite different to each other, would
all count as an interaction effect. So it’s not entirely straightforward to translate this qualitative
idea into something mathematical that a statistician can work with.
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As a consequence, the way that the idea of an interaction effect is formalised in terms of null
and alternative hypotheses is slightly difficult, and I’m guessing that a lot of readers of this
book probably won’t be all that interested. Even so, I’ll try to give the basic idea here.

To start with, we need to be a little more explicit about our main effects. Consider the
main effect of Factor A (drug in our running example). We originally formulated this in terms
of the null hypothesis that the two marginal means µr. are all equal to each other. Obviously,
if all of these are equal to each other, then they must also be equal to the grand mean µ.. as
well, right? So what we can do is define the effect of Factor A at level r to be equal to the
difference between the marginal mean µr. and the grand mean µ... Let’s denote this effect by
αr, and note that

αr “ µr. ´ µ..

Now, by definition all of the αr values must sum to zero, for the same reason that the average
of the marginal means µr. must be the grand mean µ... We can similarly define the effect of
Factor B at level i to be the difference between the column marginal mean µ.c and the grand
mean µ..

βc “ µ.c ´ µ..

and once again, these βc values must sum to zero. The reason that statisticians sometimes like
to talk about the main effects in terms of these αr and βc values is that it allows them to be
precise about what it means to say that there is no interaction effect. If there is no interaction
at all, then these αr and βc values will perfectly describe the group means µrc. Specifically, it
means that

µrc “ µ.. ` αr ` βc

That is, there’s nothing special about the group means that you couldn’t predict perfectly by
knowing all the marginal means. And that’s our null hypothesis, right there. The alternative
hypothesis is that

µrc ‰ µ.. ` αr ` βc

for at least one group rc in our table. However, statisticians often like to write this slightly
differently. They’ll usually define the specific interaction associated with group rc to be some
number, awkwardly referred to as pαβqrc, and then they will say that the alternative hypothesis
is that

µrc “ µ.. ` αr ` βc ` pαβqrc

where pαβqrc is non-zero for at least one group. This notation is kind of ugly to look at, but it
is handy as we’ll see in the next section when discussing how to calculate the sum of squares.

14.2.2 Calculating sums of squares for the interaction

How should we calculate the sum of squares for the interaction terms, SSA:B? Well, first
off, it helps to notice how the previous section defined the interaction effect in terms of the
extent to which the actual group means differ from what you’d expect by just looking at the
marginal means. Of course, all of those formulas refer to population parameters rather than
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sample statistics, so we don’t actually know what they are. However, we can estimate them
by using sample means in place of population means. So for Factor A, a good way to estimate
the main effect at level r is as the difference between the sample marginal mean Ȳrc and the
sample grand mean Ȳ... That is, we would use this as our estimate of the effect

α̂r “ Ȳr. ´ Ȳ..

Similarly, our estimate of the main effect of Factor B at level c can be defined as follows

β̂c “ Ȳ.c ´ Ȳ..

Now, if you go back to the formulas that I used to describe the SS values for the two main
effects, you’ll notice that these effect terms are exactly the quantities that we were squaring and
summing! So, what’s the analog of this for interaction terms? The answer to this can be found
by first rearranging the formula for the group means µrc under the alternative hypothesis, so
that we get this

pαβqrc “ µrc ´ µ.. ´ αr ´ βc

“ µrc ´ µ.. ´ pµr. ´ µ..q ´ pµ.c ´ µ..q

“ µrc ´ µr. ´ µ.c ` µ..

So, once again if we substitute our sample statistics in place of the population means, we get
the following as our estimate of the interaction effect for group rc, which is

ˆpαβqrc “ Ȳrc ´ Ȳr. ´ Ȳ.c ` Ȳ..

Now all we have to do is sum all of these estimates across all R levels of Factor A and all C
levels of Factor B, and we obtain the following formula for the sum of squares associated with
the interaction as a whole

SSA:B “ N
R
ÿ

r“1

C
ÿ

c“1

`

Ȳrc ´ Ȳr. ´ Ȳ.c ` Ȳ..
˘2

where we multiply by N because there are N observations in each of the groups, and we want
our SS values to reflect the variation among observations accounted for by the interaction, not
the variation among groups.

Now that we have a formula for calculating SSA:B, it’s important to recognise that the
interaction term is part of the model (of course), so the total sum of squares associated with
the model, SSM , is now equal to the sum of the three relevant SS values, SSA ` SSB ` SSA:B.
The residual sum of squares SSR is still defined as the leftover variation, namely SST ´ SSM ,
but now that we have the interaction term this becomes

SSR “ SST ´ pSSA ` SSB ` SSA:Bq

As a consequence, the residual sum of squares SSR will be smaller than in our original ANOVA
that didn’t include interactions.
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14.2.3 Degrees of freedom for the interaction

Calculating the degrees of freedom for the interaction is, once again, slightly trickier than
the corresponding calculation for the main effects. To start with, let’s think about the ANOVA
model as a whole. Once we include interaction effects in the model we’re allowing every single
group to have a unique mean, µrc. For an R ˆ C factorial ANOVA, this means that there are
R ˆ C quantities of interest in the model and only the one constraint: all of the group means
need to average out to the grand mean. So the model as a whole needs to have pR ˆ Cq ´ 1
degrees of freedom. But the main effect of Factor A has R ´ 1 degrees of freedom, and the
main effect of Factor B has C ´ 1 degrees of freedom. This means that the degrees of freedom
associated with the interaction is

dfA:B “ pRˆ C ´ 1q ´ pR´ 1q ´ pC ´ 1q

“ RC ´R´ C ` 1

“ pR´ 1qpC ´ 1q

which is just the product of the degrees of freedom associated with the row factor and the column
factor.

What about the residual degrees of freedom? Because we’ve added interaction terms which
absorb some degrees of freedom, there are fewer residual degrees of freedom left over. Specifically,
note that if the model with interaction has a total of pRˆCq ´ 1, and there are N observations
in your data set that are constrained to satisfy 1 grand mean, your residual degrees of freedom
now become N ´ pRˆ Cq ´ 1` 1, or just N ´ pRˆ Cq.

14.2.4 Running the ANOVA in jamovi

Adding interaction terms to the ANOVA model in jamovi is straightforward. In fact it is
more than straightforward because it is the default option for ANOVA. This means that when
you specify an ANOVA with two factors, e.g. drug and therapy then the interaction component
- drug*therapy - is added automatically to the model3. When we run the ANOVA with the
interaction term included, then we get the results shown in Figure 14.7.

As it turns out, while we do have a significant main effect of drug (F2,12 “ 31.7, p ă .001)
and therapy type (F1,12 “ 8.6, p “ .013), there is no significant interaction between the two
(F2,12 “ 2.5, p “ 0.125).

14.2.5 Interpreting the results

There’s a couple of very important things to consider when interpreting the results of factorial
ANOVA. First, there’s the same issue that we had with one-way ANOVA, which is that if you
obtain a significant main effect of (say) drug, it doesn’t tell you anything about which drugs
are different to one another. To find that out, you need to run additional analyses. We’ll talk
about some analyses that you can run in Sections 14.7 and 14.8. The same is true for interaction

3You may have spotted this already when looking at the main effects analysis in jamovi that we described
earlier. For the purpose of the explanation in this book I removed the interaction component from the earlier
model to keep things clean and simple
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✻

Figure 14.7: Results for the full factorial model, including the interaction component
drug*therapy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

effects. Knowing that there’s a significant interaction doesn’t tell you anything about what kind
of interaction exists. Again, you’ll need to run additional analyses.

Secondly, there’s a very peculiar interpretation issue that arises when you obtain a significant
interaction effect but no corresponding main effect. This happens sometimes. For instance, in
the crossover interaction shown in Figure 14.5a, this is exactly what you’d find. In this case,
neither of the main effects would be significant, but the interaction effect would be. This is a
difficult situation to interpret, and people often get a bit confused about it. The general advice
that statisticians like to give in this situation is that you shouldn’t pay much attention to the
main effects when an interaction is present. The reason they say this is that, although the
tests of the main effects are perfectly valid from a mathematical point of view, when there is
a significant interaction effect the main effects rarely test interesting hypotheses. Recall from
Section 14.1.1 that the null hypothesis for a main effect is that the marginal means are equal
to each other, and that a marginal mean is formed by averaging across several different groups.
But if you have a significant interaction effect then you know that the groups that comprise the
marginal mean aren’t homogeneous, so it’s not really obvious why you would even care about
those marginal means.

Here’s what I mean. Again, let’s stick with a clinical example. Suppose that we had a
2ˆ 2 design comparing two different treatments for phobias (e.g., systematic desensitisation vs
flooding), and two different anxiety reducing drugs (e.g., Anxifree vs Joyzepam). Now, suppose
what we found was that Anxifree had no effect when desensitisation was the treatment, and
Joyzepam had no effect when flooding was the treatment. But both were pretty effective for the
other treatment. This is a classic crossover interaction, and what we’d find when running the
ANOVA is that there is no main effect of drug, but a significant interaction. Now, what does it
actually mean to say that there’s no main effect? Well, it means that if we average over the two
different psychological treatments, then the average effect of Anxifree and Joyzepam is the same.
But why would anyone care about that? When treating someone for phobias it is never the case
that a person can be treated using an “average” of flooding and desensitisation. That doesn’t
make a lot of sense. You either get one or the other. For one treatment one drug is effective,
and for the other treatment the other drug is effective. The interaction is the important thing
and the main effect is kind of irrelevant.
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This sort of thing happens a lot. The main effect are tests of marginal means, and when
an interaction is present we often find ourselves not being terribly interested in marginal means
because they imply averaging over things that the interaction tells us shouldn’t be averaged!
Of course, it’s not always the case that a main effect is meaningless when an interaction is
present. Often you can get a big main effect and a very small interaction, in which case you can
still say things like “drug A is generally more effective than drug B” (because there was a big
effect of drug), but you’d need to modify it a bit by adding that “the difference in effectiveness
was different for different psychological treatments”. In any case, the main point here is that
whenever you get a significant interaction you should stop and think about what the main effect
actually means in this context. Don’t automatically assume that the main effect is interesting.

14.3

Effect size

The effect size calculation for a factorial ANOVA is pretty similar to those used in one way
ANOVA (see Section 13.4). Specifically, we can use η2 (eta-squared) as a simple way to measure
how big the overall effect is for any particular term. As before, η2 is defined by dividing the sum
of squares associated with that term by the total sum of squares. For instance, to determine the
size of the main effect of Factor A, we would use the following formula:

η2
A “

SSA
SST

As before, this can be interpreted in much the same way as R2 in regression.4 It tells you the
proportion of variance in the outcome variable that can be accounted for by the main effect of
Factor A. It is therefore a number that ranges from 0 (no effect at all) to 1 (accounts for all
of the variability in the outcome). Moreover, the sum of all the η2 values, taken across all the
terms in the model, will sum to the the total R2 for the ANOVA model. If, for instance, the
ANOVA model fits perfectly (i.e., there is no within-groups variability at all!), the η2 values will
sum to 1. Of course, that rarely if ever happens in real life.

However, when doing a factorial ANOVA, there is a second measure of effect size that people
like to report, known as partial η2. The idea behind partial η2 (which is sometimes denoted

pη
2 or η2

p) is that, when measuring the effect size for a particular term (say, the main effect of
Factor A), you want to deliberately ignore the other effects in the model (e.g., the main effect of
Factor B). That is, you would pretend that the effect of all these other terms is zero, and then
calculate what the η2 value would have been. This is actually pretty easy to calculate. All you
have to do is remove the sum of squares associated with the other terms from the denominator.
In other words, if you want the partial η2 for the main effect of Factor A, the denominator is
just the sum of the SS values for Factor A and the residuals

partial η2
A “

SSA
SSA ` SSR

4This chapter seems to be setting a new record for the number of different things that the letter R can stand
for. So far we have R referring to the software package, the number of rows in our table of means, the residuals
in the model, and now the correlation coefficient in a regression. Sorry. We clearly don’t have enough letters in
the alphabet. However, I’ve tried pretty hard to be clear on which thing R is referring to in each case.
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This will always give you a larger number than η2, which the cynic in me suspects accounts
for the popularity of partial η2. And once again you get a number between 0 and 1, where 0
represents no effect. However, it’s slightly trickier to interpret what a large partial η2 value
means. In particular, you can’t actually compare the partial η2 values across terms! Suppose,
for instance, there is no within-groups variability at all: if so, SSR “ 0. What that means is
that every term has a partial η2 value of 1. But that doesn’t mean that all terms in your model
are equally important, or indeed that they are equally large. All it mean is that all terms in
your model have effect sizes that are large relative to the residual variation. It is not comparable
across terms.

To see what I mean by this, it’s useful to see a concrete example. First, let’s have a look at
the effect sizes for the original ANOVA without the interaction term, from Figure 14.3:

eta.sq partial.eta.sq

drug 0.71 0.79

therapy 0.10 0.34

Looking at the η2 values first, we see that drug accounts for 71% of the variance (i.e. η2 “

0.71) in mood.gain, whereas therapy only accounts for 10%. This leaves a total of 19% of the
variation unaccounted for (i.e., the residuals constitute 19% of the variation in the outcome).
Overall, this implies that we have a very large effect5 of drug and a modest effect of therapy.

Now let’s look at the partial η2 values, shown in Figure 14.3. Because the effect of therapy

isn’t all that large, controlling for it doesn’t make much of a difference, so the partial η2 for drug

doesn’t increase very much, and we obtain a value of pη
2 “ 0.79). In contrast, because the effect

of drug was very large, controlling for it makes a big difference, and so when we calculate the
partial η2 for therapy you can see that it rises to pη

2 “ 0.34. The question that we have to ask
ourselves is, what do these partial η2 values actually mean? The way I generally interpret the
partial η2 for the main effect of Factor A is to interpret it as a statement about a hypothetical
experiment in which only Factor A was being varied. So, even though in this experiment we
varied both A and B, we can easily imagine an experiment in which only Factor A was varied,
and the partial η2 statistic tells you how much of the variance in the outcome variable you
would expect to see accounted for in that experiment. However, it should be noted that this
interpretation, like many things associated with main effects, doesn’t make a lot of sense when
there is a large and significant interaction effect.

Speaking of interaction effects, here’s what we get when we calculate the effect sizes for the
model that includes the interaction term, as in Figure 14.7. As you can see, the η2 values for
the main effects don’t change, but the partial η2 values do:

eta.sq partial.eta.sq

drug 0.71 0.84

therapy 0.10 0.42

drug*therapy 0.06 0.29

5Implausibly large, I would think. The artificiality of this data set is really starting to show!
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14.3.1 Estimated group means

In many situations you will find yourself wanting to report estimates of all the group means
based on the results of your ANOVA, as well as confidence intervals associated with them. You
can use the ‘Estimated Marginal Means’ option in the jamovi ANOVA analysis to do this, as
in Figure 14.8. If the ANOVA that you have run is a saturated model (i.e., contains all
possible main effects and all possible interaction effects) then the estimates of the group means
are actually identical to the sample means, though the confidence intervals will use a pooled
estimate of the standard errors rather than use a separate one for each group.

Figure 14.8: jamovi screenshot showing the marginal means for the saturated model, i.e. in-
cluding the interaction component, with the clinicaltrial data set

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the output we see that the estimated mean mood gain for the placebo group with no
therapy was 0.300, with a 95% confidence interval from 0.006 to 0.594. Note that these are
not the same confidence intervals that you would get if you calculated them separately for
each group, because of the fact that the ANOVA model assumes homogeneity of variance and
therefore uses a pooled estimate of the standard deviation.

When the model doesn’t contain the interaction term, then the estimated group means will
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be different from the sample means. Instead of reporting the sample mean, jamovi will calculate
the value of the group means that would be expected on the basis of the marginal means (i.e.,
assuming no interaction). Using the notation we developed earlier, the estimate reported for
µrc, the mean for level r on the (row) Factor A and level c on the (column) Factor B would
be µ.. ` αr ` βc. If there are genuinely no interactions between the two factors, this is actually
a better estimate of the population mean than the raw sample mean would be. Removing
the interaction term from the model, via the ‘Model’ options in the jamovi ANOVA analysis,
provides the marginal means for the analysis shown in Figure 14.9.

Figure 14.9: jamovi screenshot showing the marginal means for the unsaturated model, i.e.
without the interaction component, with the clinicaltrial data set

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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14.4

Assumption checking

As with one-way ANOVA, the key assumptions of factorial ANOVA are homogeneity of variance
(all groups have the same standard deviation), normality of the residuals, and independence of
the observations. The first two are things we can check for. The third is something that you need
to assess yourself by asking if there are any special relationships between different observations,
for example repeated measures where the independent variable is time so there is a relationship
between the observations at time one and time two: observations at different time points are
from the same people. Additionally, if you aren’t using a saturated model (e.g., if you’ve omitted
the interaction terms) then you’re also assuming that the omitted terms aren’t important. Of
course, you can check this last one by running an ANOVA with the omitted terms included
and see if they’re significant, so that’s pretty easy. What about homogeneity of variance and
normality of the residuals? As it turns out, these are pretty easy to check. It’s no different to
the checks we did for a one-way ANOVA.

14.4.1 Homogeneity of variance

As mentioned in Section 13.6.1 it’s a good idea to visually inspect a plot of the standard devia-
tions compared across different groups / categories, and also see if the Levene test is consistent
with the visual inspection. The theory behind the Levene test was discussed in Section 13.6.1, so
I won’t discuss it again. This test expects that you have a saturated model (i.e., including all of
the relevant terms), because the test is primarily concerned with the within-group variance, and
it doesn’t really make a lot of sense to calculate this any way other than with respect to the full
model. The Levene test can be specified under the ANOVA ‘Assumption Checks’ - ‘Homogeneity
Tests’ option in jamovi, with the result shown as in Figure 14.10. The fact that the Levene test
is non-significant means that, providing it is consistent with a visual inspection of the plot of
standard deviations, we can safely assume that the homogeneity of variance assumption is not
violated.

14.4.2 Normality of residuals

As with one-way ANOVA we can test for the normality of residuals in a straightforward fashion
(see Section 13.6.4). Primarily though, it’s generally a good idea to examine the residuals
graphically using a QQ plot. See Figure 14.10.
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Figure 14.10: Checking assumptions in an ANOVA model

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14.5

Analysis of Covariance (ANCOVA)

A variation in ANOVA is when you have an additional continuous variable that you think might
be related to the dependent variable. This additional variable can be added to the analysis as
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a covariate, in the aptly named analysis of covariance (ANCOVA).

In ANCOVA the values of the dependent variable are “adjusted” for the influence of the
covariate, and then the “adjusted” score means are tested between groups in the usual way. This
technique can increase the precision of an experiment, and therefore provide a more “powerful”
test of the equality of group means in the dependent variable. How does ANCOVA do this?
Well, although the covariate itself is typically not of any experimental interest, adjustment for the
covariate can decrease the estimate of experimental error and thus, by reducing error variance,
precision is increased. This means that an inappropriate failure to reject the null hypothesis
(false negative or type II error) is less likely.

Despite this advantage, ANCOVA runs the risk of undoing real differences between groups,
and this should be avoided. Look at Figure 14.11, for example, which shows a plot of Statistics
anxiety against age and shows two distinct groups – students who have either an Arts or Science
background or preference. ANCOVA with age as a covariate might lead to the conclusion that
statistics anxiety does not differ in the two groups. Would this conclusion be reasonable –
probably not because the ages of the two groups do not overlap and analysis of variance has
essentially “extrapolated into a region with no data” (Everitt 1996, p. 68).

Figure 14.11: Plot of Statistics anxiety against age for two distinct groups

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Clearly, careful thought needs to be given to an analysis of covariance with distinct groups.
This applies to both one-way and factorial designs, as ANCOVA can be used with both.

14.5.1 Running ANCOVA in jamovi

A health psychologist was interested in the effect of routine cycling and stress on happiness
levels, with age as a covariate. You can find the dataset in the file ancova.csv. Open this file
in jamovi and then, to undertake an ANCOVA, select Analyses - ANOVA - ANCOVA to open the
ANCOVA analysis window (Figure 14.12). Highlight the dependent variable ‘happiness’ and
transfer it into the ‘Dependent Variable’ text box. Highlight the independent variables ‘stress’
and ‘commute’ and transfer them into the ‘Fixed Factors’ text box. Highlight the covariate
‘age’ and transfer it into the ‘Covariates’ text box. Then Click on Estimated Marginal Means
to bring up the plots and tables options.

Figure 14.12: The jamovi ANCOVA analysis window

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An ANCOVA table showing Tests of Between-Subjects Effects is produced in the jamovi
results window (Figure 14.13). The F value for the covariate ‘age’ is significant at p “ .023,
suggesting that age is an important predictor of the dependent variable, happiness. When
we look at the estimated marginal mean scores (Figure 14.14), adjustments have been made
(compared to an analysis without the covariate) because of the inclusion of the covariate ‘age’ in
this ANCOVA. A plot (Figure 14.15) is a good way of visualising and interpreting the significant
effects.

The F value for the main effect ‘stress’ (52.61) has an associated probability of p ă .001.
The F value for the main effect ‘commute’ (42.33) has an associated probability of p ă .001.
Since both of these are less than the probability that is typically used to decide if a statistical
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result is significant (p ă .05) we can conclude that there was a significant main effect of stress
(F p1, 15q “ 52.61, p ă .001) and a significant main effect of commuting method (F p1, 15q “
42.33, p ă .001). A significant interaction between stress and commuting method was also found
(F p1, 15q “ 14.15, p “ .002).

Figure 14.13: jamovi ANCOVA output for happiness as a function of stress and commuting
method, with age as a covariate
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Figure 14.14: Table of mean happiness level as a function of stress and commuting method
(adjusted for the covariate age) with 95% confidence intervals
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In Figure 14.15 we can see the adjusted, marginal, mean happiness scores when age is a
covariate in an ANCOVA. In this analysis there is a significant interaction effect, whereby
people with low stress who cycle to work are happier than people with low stress who drive and
people with high stress whether they cycle or drive to work. There is also a significant main
effect of stress – people with low stress are happier than those with high stress. And there is also
a significant main effect of commuting behaviour – people who cycle are happier, on average,
than those who drive to work.

One thing to be aware of is that, if you are thinking of including a covariate in your ANOVA,
there is an additional assumption: the relationship between the covariate and the dependent
variable should be similar for all levels of the independent variable. This can be checked by
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Figure 14.15: Plot of mean happiness level as a function of stress and commuting method

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

adding an interaction term between the covariate and each independent variable in the jamovi
Model - Model terms option. If the interaction effect is not significant it can be removed. If it is
significant then a different and more advanced statistical technique might be appropriate (which
is beyond the scope of this book so you might want to consult a friendly statistician).

14.6

ANOVA as a linear model

One of the most important things to understand about ANOVA and regression is that they’re
basically the same thing. On the surface of it, you maybe wouldn’t think this is true. After all,
the way that I’ve described them so far suggests that ANOVA is primarily concerned with testing
for group differences, and regression is primarily concerned with understanding the correlations
between variables. And, as far as it goes that’s perfectly true. But when you look under the
hood, so to speak, the underlying mechanics of ANOVA and regression are awfully similar. In
fact, if you think about it, you’ve already seen evidence of this. ANOVA and regression both
rely heavily on sums of squares (SS), both make use of F tests, and so on. Looking back, it’s
hard to escape the feeling that Chapters 12 and 13 were a bit repetitive.

The reason for this is that ANOVA and regression are both kinds of linear models. In the
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case of regression, this is kind of obvious. The regression equation that we use to define the
relationship between predictors and outcomes is the equation for a straight line, so it’s quite
obviously a linear model, with the equation

Yp “ b0 ` b1X1p ` b2X2p ` εp

where Yp is the outcome value for the p-th observation (e.g., p-th person), X1p is the value of
the first predictor for the p-th observation, X2p is the value of the second predictor for the p-th
observation, the b0, b1, and b2 terms are our regression coefficients, and εp is the p-th residual.
If we ignore the residuals εp and just focus on the regression line itself, we get the following
formula:

Ŷp “ b0 ` b1X1p ` b2X2p

where Ŷp is the value of Y that the regression line predicts for person p, as opposed to the
actually-observed value Yp. The thing that isn’t immediately obvious is that we can write
ANOVA as a linear model as well. However, it’s actually pretty straightforward to do this.
Let’s start with a really simple example, rewriting a 2ˆ 2 factorial ANOVA as a linear model.

14.6.1 Some data

To make things concrete, let’s suppose that our outcome variable is the grade that a student
receives in my class, a ratio-scale variable corresponding to a mark from 0% to 100%. There are
two predictor variables of interest: whether or not the student turned up to lectures (the attend

variable) and whether or not the student actually read the textbook (the reading variable). We’ll
say that attend = 1 if the student attended class, and attend = 0 if they did not. Similarly,
we’ll say that reading = 1 if the student read the textbook, and reading = 0 if they did not.

Okay, so far that’s simple enough. The next thing we need to do is to wrap some maths
around this (sorry!). For the purposes of this example, let Yp denote the grade of the p-th
student in the class. This is not quite the same notation that we used earlier in this chapter.
Previously, we’ve used the notation Yrci to refer to the i-th person in the r-th group for predictor
1 (the row factor) and the c-th group for predictor 2 (the column factor). This extended notation
was really handy for describing how the SS values are calculated, but it’s a pain in the current
context, so I’ll switch notation here. Now, the Yp notation is visually simpler than Yrci, but it
has the shortcoming that it doesn’t actually keep track of the group memberships! That is, if
I told you that Y0,0,3 “ 35, you’d immediately know that we’re talking about a student (the
3rd such student, in fact) who didn’t attend the lectures (i.e., attend = 0) and didn’t read the
textbook (i.e. reading = 0), and who ended up failing the class (grade = 35). But if I tell you
that Yp “ 35, all you know is that the p-th student didn’t get a good grade. We’ve lost some key
information here. Of course, it doesn’t take a lot of thought to figure out how to fix this. What
we’ll do instead is introduce two new variables X1p and X2p that keep track of this information.
In the case of our hypothetical student, we know that X1p “ 0 (i.e., attend = 0) and X2p “ 0
(i.e., reading = 0). So the data might look like this:
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person, p grade, Yp attendance, X1p reading, X2p

1 90 1 1
2 87 1 1
3 75 0 1
4 60 1 0
5 35 0 0
6 50 0 0
7 65 1 0
8 70 0 1

This isn’t anything particularly special, of course. It’s exactly the format in which we expect
to see our data! See the data file rtfm.csv. We can use the jamovi ‘Descriptives’ analysis
to confirm that this data set corresponds to a balanced design, with 2 observations for each
combination of attend and reading. In the same way we can also calculate the mean grade for
each combination. This is shown in Figure 14.16. Looking at the mean scores, one gets the
strong impression that reading the text and attending the class both matter a lot.

Figure 14.16: jamovi descriptives for the rtfm data set
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14.6.2 ANOVA with binary factors as a regression model

Okay, let’s get back to talking about the mathematics. We now have our data expressed in
terms of three numeric variables: the continuous variable Y and the two binary variables X1

and X2. What I want you to recognise is that our 2ˆ2 factorial ANOVA is exactly equivalent
to the regression model

Yp “ b0 ` b1X1p ` b2X2p ` εp

This is, of course, the exact same equation that I used earlier to describe a two-predictor re-
gression model! The only difference is that X1 and X2 are now binary variables (i.e., values can
only be 0 or 1), whereas in a regression analysis we expect that X1 and X2 will be continuous.
There’s a couple of ways I could try to convince you of this. One possibility would be to do
a lengthy mathematical exercise proving that the two are identical. However, I’m going to go
out on a limb and guess that most of the readership of this book will find that annoying rather
than helpful. Instead, I’ll explain the basic ideas and then rely on jamovi to show that ANOVA
analyses and regression analyses aren’t just similar, they’re identical for all intents and purposes.
Let’s start by running this as an ANOVA. To do this, we’ll use the rtfm data set, and Figure
14.17 shows what we get when we run the analysis in jamovi.

Figure 14.17: ANOVA of the rtfm.csv data set in jamovi, without the interaction term
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So, by reading the key numbers off the ANOVA table and the mean scores that we presented
earlier, we can see that the students obtained a higher grade if they attended class pF1,5 “

21.6, p “ .0056q and if they read the textbook pF1,5 “ 52.3, p “ .0008q. Let’s make a note of
those p-values and those F statistics.

Now let’s think about the same analysis from a linear regression perspective. In the rtfm

data set, we have encoded attend and reading as if they were numeric predictors. In this case,
this is perfectly acceptable. There really is a sense in which a student who turns up to class
(i.e. attend = 1) has in fact done “more attendance” than a student who does not (i.e. attend

= 0). So it’s not at all unreasonable to include it as a predictor in a regression model. It’s a
little unusual, because the predictor only takes on two possible values, but it doesn’t violate any
of the assumptions of linear regression. And it’s easy to interpret. If the regression coefficient
for attend is greater than 0 it means that students that attend lectures get higher grades. If
it’s less than zero then students attending lectures get lower grades. The same is true for our
reading variable.
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Wait a second though. Why is this true? It’s something that is intuitively obvious to everyone
who has taken a few stats classes and is comfortable with the maths, but it isn’t clear to everyone
else at first pass. To see why this is true, it helps to look closely at a few specific students. Let’s
start by considering the 6th and 7th students in our data set (i.e. p “ 6 and p “ 7). Neither one
has read the textbook, so in both cases we can set reading = 0. Or, to say the same thing in
our mathematical notation, we observe X2,6 “ 0 and X2,7 “ 0. However, student number 7 did
turn up to lectures (i.e., attend = 1, X1,7 “ 1) whereas student number 6 did not (i.e., attend
= 0, X1,6 “ 0). Now let’s look at what happens when we insert these numbers into the general
formula for our regression line. For student number 6, the regression predicts that

Ŷ6 “ b0 ` b1X1,6 ` b2X2,6

“ b0 ` pb1 ˆ 0q ` pb2 ˆ 0q

“ b0

So we’re expecting that this student will obtain a grade corresponding to the value of the
intercept term b0. What about student 7? This time when we insert the numbers into the
formula for the regression line, we obtain the following

Ŷ7 “ b0 ` b1X1,7 ` b2X2,7

“ b0 ` pb1 ˆ 1q ` pb2 ˆ 0q

“ b0 ` b1

Because this student attended class, the predicted grade is equal to the intercept term b0 plus the
coefficient associated with the attend variable, b1. So, if b1 is greater than zero, we’re expecting
that the students who turn up to lectures will get higher grades than those students who don’t.
If this coefficient is negative we’re expecting the opposite: students who turn up at class end
up performing much worse. In fact, we can push this a little bit further. What about student
number 1, who turned up to class (X1,1 “ 1) and read the textbook (X2,1 “ 1)? If we plug these
numbers into the regression we get

Ŷ1 “ b0 ` b1X1,1 ` b2X2,1

“ b0 ` pb1 ˆ 1q ` pb2 ˆ 1q

“ b0 ` b1 ` b2

So if we assume that attending class helps you get a good grade (i.e., b1 ą 0) and if we assume
that reading the textbook also helps you get a good grade (i.e., b2 ą 0), then our expectation is
that student 1 will get a grade that that is higher than student 6 and student 7.

And at this point you won’t be at all suprised to learn that the regression model predicts
that student 3, who read the book but didn’t attend lectures, will obtain a grade of b2 ` b0.
I won’t bore you with yet another regression formula. Instead, what I’ll do is show you the
following table of expected grades:

read textbook?
no yes

attended? no b0 b0 ` b2
yes b0 ` b1 b0 ` b1 ` b2

- 392 -



As you can see, the intercept term b0 acts like a kind of “baseline” grade that you would expect
from those students who don’t take the time to attend class or read the textbook. Similarly, b1
represents the boost that you’re expected to get if you come to class, and b2 represents the boost
that comes from reading the textbook. In fact, if this were an ANOVA you might very well
want to characterise b1 as the main effect of attendance, and b2 as the main effect of reading!
In fact, for a simple 2ˆ 2 ANOVA that’s exactly how it plays out.

Okay, now that we’re really starting to see why ANOVA and regression are basically the same
thing, let’s actually run our regression using the rtfm data and the jamovi regression analysis
to convince ourselves that this is really true. Running the regression in the usual way gives the
results shown in Figure 14.18.

Figure 14.18: Regression analysis of the rtfm.csv data set in jamovi, without the interaction
term
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There’s a few interesting things to note here. First, notice that the intercept term is 43.5
which is close to the “group” mean of 42.5 observed for those two students who didn’t read the
text or attend class. Second, notice that we have the regression coefficient of b1 “ 18.0 for the
attendance variable, suggesting that those students that attended class scored 18% higher than
those who didn’t. So our expectation would be that those students who turned up to class but
didn’t read the textbook would obtain a grade of b0 ` b1, which is equal to 43.5` 18.0 “ 61.5.
You can verify for yourself that the same thing happens when we look at the students that read
the textbook.

Actually, we can push a little further in establishing the equivalence of our ANOVA and our
regression. Look at the p-values associated with the attend variable and the reading variable
in the regression output. They’re identical to the ones we encountered earlier when running the
ANOVA. This might seem a little surprising, since the test used when running our regression
model calculates a t-statistic and the ANOVA calculates an F -statistic. However, if you can
remember all the way back to Chapter 7, I mentioned that there’s a relationship between the
t-distribution and the F -distribution. If you have some quantity that is distributed according
to a t-distribution with k degrees of freedom and you square it, then this new squared quantity
follows an F -distribution whose degrees of freedom are 1 and k. We can check this with respect
to the t statistics in our regression model. For the attend variable we get a t value of 4.65. If
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we square this number we end up with 21.6, which matches the corresponding F statistic in our
ANOVA.

Finally, one last thing you should know. Because jamovi understands the fact that ANOVA
and regression are both examples of linear models, it lets you extract the classic ANOVA table
from your regression model using the ‘Linear Regression’ - ‘Model Coefficients’ - ‘Omnibus Test’
- ‘ANOVA Test’, and this will give you the table shown in Figure 14.19.

Figure 14.19: Omnibus ANOVA Test results from the jamovi regression analysis
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14.6.3 How to encode non binary factors as contrasts

At this point, I’ve shown you how we can view a 2ˆ 2 ANOVA into a linear model. And it’s
pretty easy to see how this generalises to a 2 ˆ 2 ˆ 2 ANOVA or a 2 ˆ 2 ˆ 2 ˆ 2 ANOVA. It’s
the same thing, really. You just add a new binary variable for each of your factors. Where it
begins to get trickier is when we consider factors that have more than two levels. Consider, for
instance, the 3 ˆ 2 ANOVA that we ran earlier in this chapter using the clinicaltrial.csv

data. How can we convert the three-level drug factor into a numerical form that is appropriate
for a regression?

The answer to this question is pretty simple, actually. All we have to do is realise that
a three-level factor can be redescribed as two binary variables. Suppose, for instance, I were
to create a new binary variable called druganxifree. Whenever the drug variable is equal to
"anxifree" we set druganxifree = 1. Otherwise, we set druganxifree = 0. This variable sets
up a contrast, in this case between anxifree and the other two drugs. By itself, of course, the
druganxifree contrast isn’t enough to fully capture all of the information in our drug variable.
We need a second contrast, one that allows us to distinguish between joyzepam and the placebo.
To do this, we can create a second binary contrast, called drugjoyzepam, which equals 1 if the
drug is joyzepam and 0 if it is not. Taken together, these two contrasts allows us to perfectly
discriminate between all three possible drugs. The table below illustrates this:
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drug druganxifree drugjoyzepam

"placebo" 0 0
"anxifree" 1 0
"joyzepam" 0 1

If the drug administered to a patient is a placebo then both of the two contrast variables will
equal 0. If the drug is Anxifree then the druganxifree variable will equal 1, and drugjoyzepam

will be 0. The reverse is true for Joyzepam: drugjoyzepam is 1 and druganxifree is 0.

Creating contrast variables is not too difficult to do using the jamovi compute new variable
command. For example, to create the druganxifree variable, write this logical expression in the
compute new variable formula box: IF(drug == ’anxifree’, 1, 0)’. Similarly, to create the new
variable drugjoyzepam use this logical expression: IF(drug == ’joyzepam’, 1, 0). Likewise for
CBTtherapy: IF(therapy == ’CBT’, 1, 0). You can see these new variables, and the corresponding
logical expressions, in the jamovi data file clinicaltrial2.omv.

We have now recoded our three-level factor in terms of two binary variables, and we’ve
already seen that ANOVA and regression behave the same way for binary variables. However,
there are some additional complexities that arise in this case, which we’ll discuss in the next
section.

14.6.4 The equivalence between ANOVA and regression for non-binary factors

Now we have two different versions of the same data set. Our original data in which the drug

variable from the clinicaltrial.csv file is expressed as a single three-level factor, and the
expanded data clinicaltrial2.omv in which it is expanded into two binary contrasts. Once
again, the thing that we want to demonstrate is that our original 3 ˆ 2 factorial ANOVA is
equivalent to a regression model applied to the contrast variables. Let’s start by re-running the
ANOVA, with results shown in Figure 14.20.

Figure 14.20: jamovi ANOVA results, without interaction component
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Obviously, there are no surprises here. That’s the exact same ANOVA that we ran earlier.
Next, let’s run a regression using druganxifree, drugjoyzepam and CBTtherapy as the predictors.
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The results are shown in Figure 14.21.

Figure 14.21: jamovi regression results, with contrast variables druganxifree and drugjoyzepam
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Hmm. This isn’t the same output that we got last time. Not surprisingly, the regression
output prints out the results for each of the three predictors separately, just like it did every
other time we conducted a regression analysis. On the one hand we can see that the p-value
for the CBTtherapy variable is exactly the same as the one for the therapy factor in our original
ANOVA, so we can be reassured that the regression model is doing the same thing as the
ANOVA did. On the other hand, this regression model is testing the druganxifree contrast
and the drugjoyzepam contrast separately, as if they were two completely unrelated variables.
It’s not surprising of course, because the poor regression analysis has no way of knowing that
drugjoyzepam and druganxifree are actually the two different contrasts that we used to encode
our three-level drug factor. As far as it knows, drugjoyzepam and druganxifree are no more
related to one another than drugjoyzepam and therapyCBT. However, you and I know better. At
this stage we’re not at all interested in determining whether these two contrasts are individually
significant. We just want to know if there’s an “overall” effect of drug. That is, what we want
jamovi to do is to run some kind of “model comparison” test, one in which the two “drug-
related” contrasts are lumped together for the purpose of the test. Sound familiar? All we need
to do is specify our null model, which in this case would include the CBTtherapy predictor, and
omit both of the drug-related variables, as in Figure 14.22.

Ah, that’s better. Our F -statistic is 26.15, the degrees of freedom are 2 and 14, and the
p-value is 0.00002. The numbers are identical to the ones we obtained for the main effect of drug
in our original ANOVA. Once again we see that ANOVA and regression are essentially the same.
They are both linear models, and the underlying statistical machinery for ANOVA is identical
to the machinery used in regression. The importance of this fact should not be understated.
Throughout the rest of this chapter we’re going to rely heavily on this idea.

Although we went through all the faff of computing new variables in jamovi for the contrasts
druganxifree and drugjoyzepam, just to show that ANOVA and regression are essentially the
same, in the jamovi linear regression analysis there is actually a nifty shortcut to get these
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Figure 14.22: Model comparison in jamovi regression, null model 1 vs. contrasts model 2
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Figure 14.23: Regression analysis with factors and contrasts in jamovi, including omnibus
ANOVA test results
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contrasts, see Figure 14.23. What jamovi is doing here is allowing you to enter the predictor
variables that are factors as, wait for it...factors! Smart, eh. You can also specify which group
to use as the reference level, via the ‘Reference Levels’ option. We’ve changed this to ‘placebo’
and ‘no.therapy’, respectively, because this makes most sense.

If you also click on the ‘ANOVA’ test checkbox under the ‘Model Coefficients’ - ‘Omnibus
Test’ option, we see that the F -statistic is 26.15, the degrees of freedom are 2 and 14, and the
p-value is 0.00002 (Figure 14.23). The numbers are identical to the ones we obtained for the
main effect of drug in our original ANOVA. Once again, we see that ANOVA and regression are
essentially the same. They are both linear models, and the underlying statistical machinery for
ANOVA is identical to the machinery used in regression.

14.6.5 Degrees of freedom as parameter counting!

At long last, I can finally give a definition of degrees of freedom that I am happy with.
Degrees of freedom are defined in terms of the number of parameters that have to be esti-
mated in a model. For a regression model or an ANOVA, the number of parameters corre-
sponds to the number of regression coefficients (i.e. b-values), including the intercept. Keep-
ing in mind that any F -test is always a comparison between two models and the first df is
the difference in the number of parameters. For example, in the model comparison above,
the null model (mood.gain ~ therapyCBT) has two parameters: there’s one regression coeffi-
cient for the therapyCBT variable, and a second one for the intercept. The alternative model
(mood.gain ~ druganxifree + drugjoyzepam + therapyCBT) has four parameters: one regression
coefficient for each of the three contrasts, and one more for the intercept. So the degrees of
freedom associated with the difference between these two models is df1 “ 4´ 2 “ 2.

What about the case when there doesn’t seem to be a null model? For instance, you might
be thinking of the F -test that shows up when you select ‘F Test‘ under the ‘Linear Regression’
- ‘Model Fit’ options. I originally described that as a test of the regression model as a whole.
However, that is still a comparison between two models. The null model is the trivial model
that only includes 1 regression coefficient, for the intercept term. The alternative model contains
K ` 1 regression coefficients, one for each of the K predictor variables and one more for the
intercept. So the df value that you see in this F test is equal to df1 “ K ` 1´ 1 “ K.

What about the second df value that appears in the F -test? This always refers to the degrees
of freedom associated with the residuals. It is possible to think of this in terms of parameters
too, but in a slightly counter-intuitive way. Think of it like this. Suppose that the total number
of observations across the study as a whole is N . If you wanted to perfectly describe each of
these N values, you need to do so using, well... N numbers. When you build a regression model,
what you’re really doing is specifying that some of the numbers need to perfectly describe the
data. If your model has K predictors and an intercept, then you’ve specified K ` 1 numbers.
So, without bothering to figure out exactly how this would be done, how many more numbers do
you think are going to be needed to transform a K`1 parameter regression model into a perfect
re-description of the raw data? If you found yourself thinking that pK ` 1q ` pN ´K ´ 1q “ N ,
and so the answer would have to be N ´K ´ 1, well done! That’s exactly right. In principle
you can imagine an absurdly complicated regression model that includes a parameter for every
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single data point, and it would of course provide a perfect description of the data. This model
would contain N parameters in total, but we’re interested in the difference between the number
of parameters required to describe this full model (i.e. N) and the number of parameters used
by the simpler regression model that you’re actually interested in (i.e., K`1), and so the second
degrees of freedom in the F test is df2 “ N ´K ´ 1, where K is the number of predictors (in
a regression model) or the number of contrasts (in an ANOVA). In the example I gave above,
there are N “ 18 observations in the data set and K ` 1 “ 4 regression coefficients associated
with the ANOVA model, so the degrees of freedom for the residuals is df2 “ 18´ 4 “ 14.

14.7

Different ways to specify contrasts

In the previous section, I showed you a method for converting a factor into a collection of
contrasts. In the method I showed you we specify a set of binary variables in which we defined
a table like this one:

drug druganxifree drugjoyzepam

"placebo" 0 0
"anxifree" 1 0
"joyzepam" 0 1

Each row in the table corresponds to one of the factor levels, and each column corresponds to one
of the contrasts. This table, which always has one more row than columns, has a special name.
It is called a contrast matrix. However, there are lots of different ways to specify a contrast
matrix. In this section I discuss a few of the standard contrast matrices that statisticians use and
how you can use them in jamovi. If you’re planning to read the section on unbalanced ANOVA
later on (Section 14.10), it’s worth reading this section carefully. If not, you can get away with
skimming it, because the choice of contrasts doesn’t matter much for balanced designs.

14.7.1 Treatment contrasts

In the particular kind of contrasts that I’ve described above, one level of the factor is special,
and acts as a kind of “baseline” category (i.e., placebo in our example), against which the other
two are defined. The name for these kinds of contrasts is treatment contrasts, also known as
“dummy coding”. In this contrast each level of the factor is compared to a base reference level,
and the base reference level is the value of the intercept.

The name reflects the fact that these contrasts are quite natural and sensible when one of
the categories in your factor really is special because it actually does represent a baseline. That
makes sense in our clinical trial example. The placebo condition corresponds to the situation
where you don’t give people any real drugs, and so it’s special. The other two conditions are
defined in relation to the placebo. In one case you replace the placebo with Anxifree, and in the
other case your replace it with Joyzepam.

The table shown above is a matrix of treatment contrasts for a factor that has 3 levels. But
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suppose I want a matrix of treatment contrasts for a factor with 5 levels? You would set this
out like this:

Level 2 3 4 5

1 0 0 0 0

2 1 0 0 0

3 0 1 0 0

4 0 0 1 0

5 0 0 0 1

In this example, the first contrast is level 2 compared with level 1, the second contrast is level
3 compared with level 1, and so on. Notice that, by default, the first level of the factor is
always treated as the baseline category (i.e., it’s the one that has all zeros and doesn’t have an
explicit contrast associated with it). In jamovi you can change which category is the first level
of the factor by manipulating the order of the levels of the variable shown in the ‘Data Variable’
window (double click on the name of the variable in the spreadsheet column to bring up the
‘Data Variable’ view.

14.7.2 Helmert contrasts

Treatment contrasts are useful for a lot of situations. However, they make most sense in the
situation when there really is a baseline category, and you want to assess all the other groups in
relation to that one. In other situations, however, no such baseline category exists, and it may
make more sense to compare each group to the mean of the other groups. This is where we meet
Helmert contrasts, generated by the ‘helmert’ option in the jamovi ‘ANOVA’ - ‘Contrasts’
selection box. The idea behind Helmert contrasts is to compare each group to the mean of the
“previous” ones. That is, the first contrast represents the difference between group 2 and group
1, the second contrast represents the difference between group 3 and the mean of groups 1 and
2, and so on. This translates to a contrast matrix that looks like this for a factor with five levels:

1 -1 -1 -1 -1

2 1 -1 -1 -1

3 0 2 -1 -1

4 0 0 3 -1

5 0 0 0 4

One useful thing about Helmert contrasts is that every contrast sums to zero (i.e., all the columns
sum to zero). This has the consequence that, when we interpret the ANOVA as a regression, the
intercept term corresponds to the grand mean µ.. if we are using Helmert contrasts. Compare
this to treatment contrasts, in which the intercept term corresponds to the group mean for the
baseline category. This property can be very useful in some situations. It doesn’t matter very
much if you have a balanced design, which we’ve been assuming so far, but it will turn out to be
important later when we consider unbalanced designs in Section 14.10. In fact, the main reason
why I’ve even bothered to include this section is that contrasts become important if you want
to understand unbalanced ANOVA.
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14.7.3 Sum to zero contrasts

The third option that I should briefly mention are “sum to zero” contrasts, called “Simple”
contrasts in jamovi, which are used to construct pairwise comparisons between groups. Specif-
ically, each contrast encodes the difference between one of the groups and a baseline category,
which in this case corresponds to the first group:

1 -1 -1 -1 -1

2 1 0 0 0

3 0 1 0 0

4 0 0 1 0

5 0 0 0 1

Much like Helmert contrasts, we see that each column sums to zero, which means that the
intercept term corresponds to the grand mean when ANOVA is treated as a regression model.
When interpreting these contrasts, the thing to recognise is that each of these contrasts is a
pairwise comparison between group 1 and one of the other four groups. Specifically, contrast
1 corresponds to a “group 2 minus group 1” comparison, contrast 2 corresponds to a “group 3
minus group 1” comparison, and so on.6

14.7.4 Optional contrasts in jamovi

jamovi also comes with a variety of options that can generate different kinds of contrasts in
ANOVA. These can be found in the ‘Contrasts’ option in the main ANOVA analysis window,
where the following contrast types are listed:

6What’s the difference between treatment and simple contrasts, I hear you ask? Well, as a basic example
consider a gender main effect, with m=0 and f=1. The coefficient corresponding to the treatment contrast will
measure the difference in mean between females and males, and the intercept would be the mean of the males.
However, with a simple contrast, i.e., m=-1 and f=1, the intercept is the average of the means and the main effect
is the difference of each group mean from the intercept.
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Contrast type

Deviation Compares the mean of each level (except a reference cate-
gory) to the mean of all of the levels (grand mean)

Simple Like the treatment contrasts, the simple contrast compares
the mean of each level to the mean of a specified level. This
type of contrast is useful when there is a control group. By
default the first category is the reference. However, with a
simple contrast the intercept is the grand mean of all the
levels of the factors.

Difference Compares the mean of each level (except the first) to the
mean of previous levels. (Sometimes called reverse Helmert
contrasts)

Helmert Compares the mean of each level of the factor (except the
last) to the mean of subsequent levels

Repeated Compares the mean of each level (except the last) to the
mean of the subsequent level

Polynomial Compares the linear effect and quadratic effect. The first
degree of freedom contains the linear effect across all cat-
egories; the second degree of freedom, the quadratic effect.
These contrasts are often used to estimate polynomial trends

14.8

Post hoc tests

Time to switch to a different topic. Rather than pre-planned comparisons that you have tested
using contrasts, let’s suppose you’ve done your ANOVA and it turns out that you obtained some
significant effects. Because of the fact that the F -tests are “omnibus” tests that only really test
the null hypothesis that there are no differences among groups, obtaining a significant effect
doesn’t tell you which groups are different to which other ones. We discussed this issue back in
Chapter 13, and in that chapter our solution was to run t-tests for all possible pairs of groups,
making corrections for multiple comparisons (e.g., Bonferroni, Holm) to control the Type I error
rate across all comparisons. The methods that we used back in Chapter 13 have the advantage
of being relatively simple and being the kind of tools that you can use in a lot of different
situations where you’re testing multiple hypotheses, but they’re not necessarily the best choices
if you’re interested in doing efficient post hoc testing in an ANOVA context. There are actually
quite a lot of different methods for performing multiple comparisons in the statistics literature
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(Hsu 1996), and it would be beyond the scope of an introductory text like this one to discuss
all of them in any detail.

That being said, there’s one tool that I do want to draw your attention to, namely Tukey’s
“Honestly Significant Difference”, or Tukey’s HSD for short. For once, I’ll spare you the
formulas and just stick to the qualitative ideas. The basic idea in Tukey’s HSD is to examine all
relevant pairwise comparisons between groups, and it’s only really appropriate to use Tukey’s
HSD if it is pairwise differences that you’re interested in.7 For instance, earlier we conducted a
factorial ANOVA using the clinicaltrial.csv data set, and where we specified a main effect
for drug and a main effect of therapy we would be interested in the following four comparisons:

• The difference in mood gain for people given Anxifree versus people given the placebo.

• The difference in mood gain for people given Joyzepam versus people given the placebo.

• The difference in mood gain for people given Anxifree versus people given Joyzepam.

• The difference in mood gain for people treated with CBT and people given no therapy.

For any one of these comparisons, we’re interested in the true difference between (population)
group means. Tukey’s HSD constructs simultaneous confidence intervals for all four of these
comparisons. What we mean by 95% “simultaneous” confidence interval is that, if we were to
repeat this study many times, then in 95% of the study results the confidence intervals would
contain the relevant true value. Moreover, we can use these confidence intervals to calculate an
adjusted p value for any specific comparison.

The TukeyHSD function in jamovi is pretty easy to use. You simply specify the ANOVA model
term that you want to run the post hoc tests for. For example, if we were looking to run post
hoc tests for the main effects but not the interaction, we would open up the ‘Post Hoc Tests’
option in the ANOVA analysis screen, move the drug and therapy variables across to the box on
the right, and then select the ‘Tukey’ checkbox in the list of possible post hoc corrections that
could be applied. This, along with the corresponding results table, is shown in Figure 14.24

The output shown in the ‘Post Hoc Tests’ results table is (I hope) pretty straightforward.
The first comparison, for example, is the Anxifree versus placebo difference, and the first part
of the output indicates that the observed difference in group means is .27. The next number is
the standard error for the difference, from which we could calculate the 95% confidence interval
if we wanted, though jamovi does not currently provide this option. Then there is a column
with the degrees of freedom, a column with the t-value, and finally a column with the p-value.
For the first comparison the adjusted p-value is .21. In contrast, if you look at the next line,
we see that the observed difference between joyzepam and the placebo is 1.03, and this result is
significant pp ă .001q.

So far, so good. What about the situation where your model includes interaction terms? For
instance, the default option in jamovi is to allow for the possibility that there is an interaction
between drug and therapy. If that’s the case, the number of pairwise comparisons that we need

7If, for instance, you actually find yourself interested to know if Group A is significantly different from the
mean of Group B and Group C, then you need to use a different tool (e.g., Scheffe’s method, which is more
conservative, and beyond the scope of this book). However, in most cases you probably are interested in pairwise
group differences, so Tukey’s HSD is a pretty useful thing to know about.
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Figure 14.24: Tukey HSD post hoc test in jamovi factorial ANOVA, without an interaction term

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

to consider starts to increase. As before, we need to consider the three comparisons that are
relevant to the main effect of drug and the one comparison that is relevant to the main effect of
therapy. But, if we want to consider the possibility of a significant interaction (and try to find
the group differences that underpin that significant interaction), we need to include comparisons
such as the following:

• The difference in mood gain for people given Anxifree and treated with CBT, versus people
given the placebo and treated with CBT

• The difference in mood gain for people given Anxifree and given no therapy, versus people
given the placebo and given no therapy.

• etc

There are quite a lot of these comparisons that you need to consider. So, when we run
the Tukey post hoc analysis for this ANOVA model, we see that it has made a lot of pairwise
comparisons (19 in total), as shown in Figure 14.25. You can see that it looks pretty similar to
before, but with a lot more comparisons made.
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✻

Figure 14.25: Tukey HSD post hoc test in jamovi factorial ANOVA with an interaction term

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14.9

The method of planned comparisons

Following on from the previous sections on contrasts and post hoc tests in ANOVA, I think
the method of planned comparisons is important enough to deserve a quick discussion. In our
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discussions of multiple comparisons, in the previous section and back in Chapter 13, I’ve been
assuming that the tests you want to run are genuinely post hoc. For instance, in our drugs
example above, maybe you thought that the drugs would all have different effects on mood (i.e.,
you hypothesised a main effect of drug), but you didn’t have any specific hypothesis about how
they would be different, nor did you have any real idea about which pairwise comparisons would
be worth looking at. If that is the case, then you really have to resort to something like Tukey’s
HSD to do your pairwise comparisons.

The situation is rather different, however, if you genuinely did have real, specific hypotheses
about which comparisons are of interest, and you never ever have any intention to look at any
other comparisons besides the ones that you specified ahead of time. When this is true, and
if you honestly and rigorously stick to your noble intentions to not run any other comparisons
(even when the data look like they’re showing you deliciously significant effects for stuff you
didn’t have a hypothesis test for), then it doesn’t really make a lot of sense to run something
like Tukey’s HSD, because it makes corrections for a whole bunch of comparisons that you never
cared about and never had any intention of looking at. Under those circumstances, you can
safely run a (limited) number of hypothesis tests without making an adjustment for multiple
testing. This situation is known as the method of planned comparisons, and it is sometimes
used in clinical trials. However, further consideration is out of scope for this introductory book,
but at least you know that this method exists!

14.10

Factorial ANOVA 3: unbalanced designs

Factorial ANOVA is a very handy thing to know about. It’s been one of the standard tools
used to analyse experimental data for many decades, and you’ll find that you can’t read more
than two or three papers in psychology without running into an ANOVA in there somewhere.
However, there’s one huge difference between the ANOVAs that you’ll see in a lot of real scientific
articles and the ANOVAs that I’ve described so far. In in real life we’re rarely lucky enough
to have perfectly balanced designs. For one reason or another, it’s typical to end up with more
observations in some cells than in others. Or, to put it another way, we have an unbalanced
design.

Unbalanced designs need to be treated with a lot more care than balanced designs, and
the statistical theory that underpins them is a lot messier. It might be a consequence of this
messiness, or it might be a shortage of time, but my experience has been that undergraduate
research methods classes in psychology have a nasty tendency to ignore this issue completely. A
lot of stats textbooks tend to gloss over it too. The net result of this, I think, is that a lot of active
researchers in the field don’t actually know that there’s several different “types” of unbalanced
ANOVAs, and they produce quite different answers. In fact, reading the psychological literature,
I’m kind of amazed at the fact that most people who report the results of an unbalanced factorial
ANOVA don’t actually give you enough details to reproduce the analysis. I secretly suspect that
most people don’t even realise that their statistical software package is making a whole lot of
substantive data analysis decisions on their behalf. It’s actually a little terrifying when you think
about it. So, if you want to avoid handing control of your data analysis to stupid software, read
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on.

14.10.1 The coffee data

As usual, it will help us to work with some data. The coffee.csv file contains a hypothetical
data set that produces an unbalanced 3ˆ 2 ANOVA. Suppose we were interested in finding out
whether or not the tendency of people to babble when they have too much coffee is purely an
effect of the coffee itself, or whether there’s some effect of the milk and sugar that people add
to the coffee. Suppose we took 18 people and gave them some coffee to drink. The amount of
coffee / caffeine was held constant, and we varied whether or not milk was added, so milk is a
binary factor with two levels, "yes" and "no". We also varied the kind of sugar involved. The
coffee might contain "real" sugar or it might contain "fake" sugar (i.e., artificial sweetener) or
it might contain "none" at all, so the sugar variable is a three level factor. Our outcome variable
is a continuous variable that presumably refers to some psychologically sensible measure of the
extent to which someone is “babbling”. The details don’t really matter for our purpose. Take
a look at the data in the jamovi spreadsheet view, as in Figure 14.26.

Figure 14.26: The coffee.csv data set in jamovi, with descriptive information aggregated by
factor levels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Looking at the table of means in Figure 14.26 we get a strong impression that there are
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differences between the groups. This is especially true when we compare these means to the
standard deviations for the babble variable. Across groups, this standard deviation varies from
.14 to .71, which is fairly small relative to the differences in group means.8 Whilst this at first
may seem like a straightforward factorial ANOVA, a problem arises when we look at how many
observations we have in each group. See the different Ns for different groups shown in Figure
14.26. This violates one of our original assumptions, namely that the number of people in each
group is the same. We haven’t really discussed how to handle this situation.

14.10.2 “Standard ANOVA” does not exist for unbalanced designs

Unbalanced designs lead us to the somewhat unsettling discovery that there isn’t really any
one thing that we might refer to as a standard ANOVA. In fact, it turns out that there are three
fundamentally different ways9 in which you might want to run an ANOVA in an unbalanced
design. If you have a balanced design all three versions produce identical results, with the sums
of squares, F -values, etc., all conforming to the formulas that I gave at the start of the chapter.
However, when your design is unbalanced they don’t give the same answers. Furthermore, they
are not all equally appropriate to every situation. Some methods will be more appropriate to
your situation than others. Given all this, it’s important to understand what the different types
of ANOVA are and how they differ from one another.

The first kind of ANOVA is conventionally referred to as Type I sum of squares. I’m
sure you can guess what the other two are called. The “sum of squares” part of the name was
introduced by the SAS statistical software package and has become standard nomenclature, but
it’s a bit misleading in some ways. I think the logic for referring to them as different types of sum
of squares is that, when you look at the ANOVA tables that they produce, the key difference
in the numbers is the SS values. The degrees of freedom don’t change, the MS values are still
defined as SS divided by df, etc. However, what the terminology gets wrong is that it hides the
reason why the SS values are different from one another. To that end, it’s a lot more helpful
to think of the three different kinds of ANOVA as three different hypothesis testing strategies.
These different strategies lead to different SS values, to be sure, but it’s the strategy that is the
important thing here, not the SS values themselves. Recall from Section 14.6 that any particular
F -test is best thought of as a comparison between two linear models. So, when you’re looking
at an ANOVA table, it helps to remember that each of those F -tests corresponds to a pair of
models that are being compared. Of course, this leads naturally to the question of which pair

8This discrepancy in standard deviations might (and should) make you wonder if we have a violation of the
homogeneity of variance assumption. I’ll leave it as an exercise for the reader to double check this using the
Levene test option.

9Actually, this is a bit of a lie. ANOVAs can vary in other ways besides the ones I’ve discussed in this book.
For instance, I’ve completely ignored the difference between fixed-effect models in which the levels of a factor
are “fixed” by the experimenter or the world, and random-effect models in which the levels are random samples
from a larger population of possible levels (this book only covers fixed-effect models). Don’t make the mistake of
thinking that this book, or any other one, will tell you “everything you need to know” about statistics, any more
than a single book could possibly tell you everything you need to know about psychology, physics or philosophy.
Life is too complicated for that to ever be true. This isn’t a cause for despair, though. Most researchers get by
with a basic working knowledge of ANOVA that doesn’t go any further than this book does. I just want you to
keep in mind that this book is only the beginning of a very long story, not the whole story.
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of models is being compared. This is the fundamental difference between ANOVA Types I, II
and III: each one corresponds to a different way of choosing the model pairs for the tests.

14.10.3 Type I sum of squares

The Type I method is sometimes referred to as the “sequential” sum of squares, because it
involves a process of adding terms to the model one at a time. Consider the coffee data, for
instance. Suppose we want to run the full 3ˆ 2 factorial ANOVA, including interaction terms.
The full model contains the outcome variable babble, the predictor variables sugar and milk, and
the interaction term sugar*milk. This can be written as babble ~ sugar + milk + sugar*milk.
The Type I strategy builds this model up sequentially, starting from the simplest possible model
and gradually adding terms.

The simplest possible model for the data would be one in which neither milk nor sugar is
assumed to have any effect on babbling. The only term that would be included in such a model
is the intercept, written as babble ~ 1. This is our initial null hypothesis. The next simplest
model for the data would be one in which only one of the two main effects is included. In the
coffee data, there are two different possible choices here, because we could choose to add milk
first or to add sugar first. The order actually turns out to matter, as we’ll see later, but for
now let’s just make a choice arbitrarily and pick sugar. So, the second model in our sequence
of models is babble ~ sugar, and it forms the alternative hypothesis for our first test. We now
have our first hypothesis test:

Null model: babble ~ 1

Alternative model: babble ~ sugar

This comparison forms our hypothesis test of the main effect of sugar. The next step in our
model building exercise is to add the other main effect term, so the next model in our sequence is
babble ~ sugar + milk. The second hypothesis test is then formed by comparing the following
pair of models:

Null model: babble ~ sugar

Alternative model: babble ~ sugar + milk

This comparison forms our hypothesis test of the main effect of milk. In one sense, this approach
is very elegant: the alternative hypothesis from the first test forms the null hypothesis for the
second one. It is in this sense that the Type I method is strictly sequential. Every test builds
directly on the results of the last one. However, in another sense it’s very inelegant, because
there’s a strong asymmetry between the two tests. The test of the main effect of sugar (the first
test) completely ignores milk, whereas the test of the main effect of milk (the second test) does
take sugar into account. In any case, the fourth model in our sequence is now the full model,
babble ~ sugar + milk + sugar*milk, and the corresponding hypothesis test is:

Null model: babble ~ sugar + milk

Alternative model: babble ~ sugar + milk + sugar*milk

Type III sum of squares is the default hypothesis testing method used by jamovi ANOVA,
so to run a Type I sum of squares analysis we have to select ‘Type 1’ in the ‘Sum of squares’
selection box in the jamovi ‘ANOVA’ - ‘Model’ options. This gives us the ANOVA table shown
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in Figure 14.27.

✻

Figure 14.27: ANOVA results table using Type I sum of squares in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The big problem with using Type I sum of squares is the fact that it really does depend
on the order in which you enter the variables. Yet, in many situations the researcher has no
reason to prefer one ordering over another. This is presumably the case for our milk and sugar
problem. Should we add milk first or sugar first? It feels exactly as arbitrary as a data analysis
question as it does as a coffee-making question. There may in fact be some people with firm
opinions about ordering, but it’s hard to imagine a principled answer to the question. Yet, look
what happens when we change the ordering, as in Figure 14.28.

✻

Figure 14.28: ANOVA results table using Type I sum of squares in jamovi, but with factors
entered in a different order (milk first)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The p-values for both main effect terms have changed, and fairly dramatically. Among other
things, the effect of milk has become significant (though one should avoid drawing any strong
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conclusions about this, as I’ve mentioned previously). Which of these two ANOVAs should one
report? It’s not immediately obvious.

When you look at the hypothesis tests that are used to define the “first” main effect and
the “second” one, it’s clear that they’re qualitatively different from one another. In our initial
example, we saw that the test for the main effect of sugar completely ignores milk, whereas the
test of the main effect of milk does take sugar into account. As such, the Type I testing strategy
really does treat the first main effect as if it had a kind of theoretical primacy over the second
one. In my experience there is very rarely if ever any theoretically primacy of this kind that
would justify treating any two main effects asymmetrically.

The consequence of all this is that Type I tests are very rarely of much interest, and so we
should move on to discuss Type II tests and Type III tests.

14.10.4 Type III sum of squares

Having just finished talking about Type I tests, you might think that the natural thing to do
next would be to talk about Type II tests. However, I think it’s actually a bit more natural to
discuss Type III tests (which are simple and the default in jamovi ANOVA) before talking about
Type II tests (which are trickier). The basic idea behind Type III tests is extremely simple.
Regardless of which term you’re trying to evaluate, run the F -test in which the alternative
hypothesis corresponds to the full ANOVA model as specified by the user, and the null model
just deletes that one term that you’re testing. For instance, in the coffee example, in which our
full model was babble ~ sugar + milk + sugar*milk, the test for a main effect of sugar would
correspond to a comparison between the following two models:

Null model: babble ~ milk + sugar*milk

Alternative model: babble ~ sugar + milk + sugar*milk

Similarly the main effect of milk is evaluated by testing the full model against a null model that
removes the milk term, like so:

Null model: babble ~ sugar + sugar*milk

Alternative model: babble ~ sugar + milk + sugar*milk

Finally, the interaction term sugar*milk is evaluated in exactly the same way. Once again, we
test the full model against a null model that removes the sugar*milk interaction term, like so:

Null model: babble ~ sugar + milk

Alternative model: babble ~ sugar + milk + sugar*milk

The basic idea generalises to higher order ANOVAs. For instance, suppose that we were trying
to run an ANOVA with three factors, A, B and C, and we wanted to consider all possible main
effects and all possible interactions, including the three way interaction A*B*C. The table below
shows you what the Type III tests look like for this situation:

- 411 -



Term being
tested is

Null model is outcome ~ ... Alternative model is outcome ~ ...

A B + C + A*B + A*C + B*C + A*B*C A + B + C + A*B + A*C + B*C + A*B*C

B A + C + A*B + A*C + B*C + A*B*C A + B + C + A*B + A*C + B*C + A*B*C

C A + B + A*B + A*C + B*C + A*B*C A + B + C + A*B + A*C + B*C + A*B*C

A*B A + B + C + A*C + B*C + A*B*C A + B + C + A*B + A*C + B*C + A*B*C

A*C A + B + C + A*B + B*C + A*B*C A + B + C + A*B + A*C + B*C + A*B*C

B*C A + B + C + A*B + A*C + A*B*C A + B + C + A*B + A*C + B*C + A*B*C

A*B*C A + B + C + A*B + A*C + B*C A + B + C + A*B + A*C + B*C + A*B*C

As ugly as that table looks, it’s pretty simple. In all cases, the alternative hypothesis corresponds
to the full model which contains three main effect terms (e.g. A), three two-way interactions
(e.g. A*B) and one three-way interaction (i.e., A*B*C). The null model always contains 6 of these
7 terms, and the missing one is the one whose significance we’re trying to test.

At first pass, Type III tests seem like a nice idea. Firstly, we’ve removed the asymmetry
that caused us to have problems when running Type I tests. And because we’re now treating all
terms the same way, the results of the hypothesis tests do not depend on the order in which we
specify them. This is definitely a good thing. However, there is a big problem when interpreting
the results of the tests, especially for main effect terms. Consider the coffee data. Suppose it
turns out that the main effect of milk is not significant according to the Type III tests. What
this is telling us is that babble ~ sugar + sugar*milk is a better model for the data than the
full model. But what does that even mean? If the interaction term sugar*milk was also non-
significant, we’d be tempted to conclude that the data are telling us that the only thing that
matters is sugar. But suppose we have a significant interaction term, but a non-significant
main effect of milk. In this case, are we to assume that there really is an “effect of sugar”, an
“interaction between milk and sugar”, but no “effect of milk”? That seems crazy. The right
answer simply must be that it’s meaningless10 to talk about the main effect if the interaction
is significant. In general, this seems to be what most statisticians advise us to do, and I think
that’s the right advice. But if it really is meaningless to talk about non-significant main effects
in the presence of a significant interaction, then it’s not at all obvious why Type III tests should
allow the null hypothesis to rely on a model that includes the interaction but omits one of the
main effects that make it up. When characterised in this fashion, the null hypotheses really
don’t make much sense at all.

Later on, we’ll see that Type III tests can be redeemed in some contexts, but first let’s take
a look at the ANOVA results table using Type III sum of squares, see Figure 14.29.

But be aware, one of the perverse features of the Type III testing strategy is that typically the
results turn out to depend on the contrasts that you use to encode your factors (see Section 14.7
if you’ve forgotten what the different types of contrasts are).11

Okay, so if the p-values that typically come out of Type III analyses (but not in jamovi)
are so sensitive to the choice of contrasts, does that mean that Type III tests are essentially
arbitrary and not to be trusted? To some extent that’s true, and when we turn to a discussion of

10Or, at the very least, rarely of interest.
11However, in jamovi the results for Type III sum of squares ANOVA are the same regardless of the contrast

selected, so jamovi is obviously doing something different!
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✻

Figure 14.29: ANOVA results table using Type III sum of squares in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Type II tests we’ll see that Type II analyses avoid this arbitrariness entirely, but I think that’s
too strong a conclusion. Firstly, it’s important to recognise that some choices of contrasts will
always produce the same answers (ah, so this is what is happening in jamovi). Of particular
importance is the fact that if the columns of our contrast matrix are all constrained to sum to
zero, then the Type III analysis will always give the same answers.

14.10.5 Type II sum of squares

Okay, so we’ve seen Type I and III tests now, and both are pretty straightforward. Type
I tests are performed by gradually adding terms one at a time, whereas Type III tests are
performed by taking the full model and looking to see what happens when you remove each
term. However, both can have some limitations. Type I tests are dependent on the order in
which you enter the terms, and Type III tests are dependent on how you code up your contrasts.
Type II tests are a little harder to describe, but they avoid both of these problems, and as a
result they are a little easier to interpret.

Type II tests are broadly similar to Type III tests. Start with a “full” model, and test
a particular term by deleting it from that model. However, Type II tests are based on the
marginality principle which states that you should not omit a lower order term from your
model if there are any higher order ones that depend on it. So, for instance, if your model
contains the two-way interaction A*B (a 2nd order term), then it really ought to contain the
main effects A and B (1st order terms). Similarly, if it contains a three-way interaction term
A*B*C, then the model must also include the main effects A, B and C as well as the simpler
interactions A*B, A*C and B*C. Type III tests routinely violate the marginality principle. For
instance, consider the test of the main effect of A in the context of a three-way ANOVA that
includes all possible interaction terms. According to Type III tests, our null and alternative
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models are:

Null model: outcome ~ B + C + A*B + A*C + B*C + A*B*C

Alternative model: outcome ~ A + B + C + A*B + A*C + B*C + A*B*C

Notice that the null hypothesis omits A, but includes A*B, A*C and A*B*C as part of the model.
This, according to the Type II tests, is not a good choice of null hypothesis. What we should
do instead, if we want to test the null hypothesis that A is not relevant to our outcome, is to
specify the null hypothesis that is the most complicated model that does not rely on A in any
form, even as an interaction. The alternative hypothesis corresponds to this null model plus a
main effect term of A. This is a lot closer to what most people would intuitively think of as a
“main effect of A”, and it yields the following as our Type II test of the main effect of A:12

Null model: outcome ~ B + C + B*C

Alternative model: outcome ~ A + B + C + B*C

Anyway, just to give you a sense of how the Type II tests play out, here’s the full table of tests
that would be applied in a three-way factorial ANOVA:

Term being
tested is

Null model is outcome ~ ... Alternative model is outcome ~ ...

A B + C + B*C A + B + C + B*C

B A + C + A*C A + B + C + A*C

C A + B + A*B A + B + C + A*B

A*B A + B + C + A*C + B*C A + B + C + A*B + A*C + B*C

A*C A + B + C + A*B + B*C A + B + C + A*B + A*C + B*C

B*C A + B + C + A*B + A*C A + B + C + A*B + A*C + B*C

A*B*C A + B + C + A*B + A*C + B*C A + B + C + A*B + A*C + B*C + A*B*C

In the context of the two way ANOVA that we’ve been using in the coffee data, the hypothesis
tests are even simpler. The main effect of sugar corresponds to an F -test comparing these two
models:

Null model: babble ~ milk

Alternative model: babble ~ sugar + milk

The test for the main effect of milk is

Null model: babble ~ sugar

Alternative model: babble ~ sugar + milk

Finally, the test for the interaction sugar*milk is:

Null model: babble ~ sugar + milk

Alternative model: babble ~ sugar + milk + sugar*milk

Running the tests are again straightforward. Just select ‘Type 2’ in the ‘Sum of squares’ selec-
tion box in the jamovi ‘ANOVA’ - ‘Model’ options, This gives us the ANOVA table shown in

12Note, of course, that this does depend on the model that the user specified. If the original ANOVA model
doesn’t contain an interaction term for B*C, then obviously it won’t appear in either the null or the alternative.
But that’s true for Types I, II and III. They never include any terms that you didn’t include, but they make
different choices about how to construct tests for the ones that you did include.
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Figure 14.30.

✻

Figure 14.30: ANOVA results table using Type II sum of squares in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Type II tests have some clear advantages over Type I and Type III tests. They don’t depend
on the order in which you specify factors (unlike Type I), and they don’t depend on the contrasts
that you use to specify your factors (unlike Type III). And although opinions may differ on this
last point, and it will definitely depend on what you’re trying to do with your data, I do think
that the hypothesis tests that they specify are more likely to correspond to something that you
actually care about. As a consequence, I find that it’s usually easier to interpret the results
of a Type II test than the results of a Type I or Type III test. For this reason my tentative
advice is that, if you can’t think of any obvious model comparisons that directly map onto your
research questions but you still want to run an ANOVA in an unbalanced design, Type II tests
are probably a better choice than Type I or Type III.13

14.10.6 Effect sizes (and non-additive sums of squares)

jamovi also provides the effect sizes η2 and partial η2 when you select these options, as in
Figure 14.30. However, when you’ve got an unbalanced design there’s a bit of extra complexity
involved.

If you remember back to our very early discussions of ANOVA, one of the key ideas behind
the sums of squares calculations is that if we add up all the SS terms associated with the effects

13I find it amusing to note that the default in R is Type I and the default in SPSS and jamovi is Type III. Neither
of these appeals to me all that much. Relatedly, I find it depressing that almost nobody in the psychological
literature ever bothers to report which Type of tests they ran, much less the order of variables (for Type I) or
the contrasts used (for Type III). Often they don’t report what software they used either. The only way I can
ever make any sense of what people typically report is to try to guess from auxiliary cues which software they
were using, and to assume that they never changed the default settings. Please don’t do this! Now that you know
about these issues make sure you indicate what software you used, and if you’re reporting ANOVA results for
unbalanced data, then specify what Type of tests you ran, specify order information if you’ve done Type I tests
and specify contrasts if you’ve done Type III tests. Or, even better, do hypotheses tests that correspond to things
you really care about and then report those!
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in the model, and add that to the residual SS, they’re supposed to add up to the total sum of
squares. And, on top of that, the whole idea behind η2 is that, because you’re dividing one of
the SS terms by the total SS value, an η2 value can be interpreted as the proportion of variance
accounted for by a particular term. But this is not so straightforward in unbalanced designs
because some of the variance goes “missing”.

This seems a bit odd at first, but here’s why. When you have unbalanced designs your factors
become correlated with one another, and it becomes difficult to tell the difference between the
effect of Factor A and the effect of Factor B. In the extreme case, suppose that we’d run a 2ˆ 2
design in which the number of participants in each group had been as follows:

sugar no sugar

milk 100 0
no milk 0 100

Here we have a spectacularly unbalanced design: 100 people have milk and sugar, 100 people
have no milk and no sugar, and that’s all. There are 0 people with milk and no sugar, and 0
people with sugar but no milk. Now suppose that, when we collected the data, it turned out
there is a large (and statistically significant) difference between the “milk and sugar” group and
the “no-milk and no-sugar” group. Is this a main effect of sugar? A main effect of milk? Or an
interaction? It’s impossible to tell, because the presence of sugar has a perfect association with
the presence of milk. Now suppose the design had been a little more balanced:

sugar no sugar

milk 100 5
no milk 5 100

This time around, it’s technically possible to distinguish between the effect of milk and the effect
of sugar, because we have a few people that have one but not the other. However, it will still
be pretty difficult to do so, because the association between sugar and milk is still extremely
strong, and there are so few observations in two of the groups. Again, we’re very likely to be
in the situation where we know that the predictor variables (milk and sugar) are related to the
outcome (babbling), but we don’t know if the nature of that relationship is a main effect of one
or the other predictor, or the interaction.

This uncertainty is the reason for the missing variance. The “missing” variance corresponds
to variation in the outcome variable that is clearly attributable to the predictors, but we don’t
know which of the effects in the model is responsible. When you calculate Type I sum of squares,
no variance ever goes missing. The sequential nature of Type I sum of squares means that the
ANOVA automatically attributes this variance to whichever effects are entered first. However,
the Type II and Type III tests are more conservative. Variance that cannot be clearly attributed
to a specific effect doesn’t get attributed to any of them, and it goes missing.
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14.11

Summary

• Factorial ANOVA with balanced designs, without interactions (Section 14.1) and with
interactions included (Section 14.2)

• Effect size, estimated means, and confidence intervals in a factorial ANOVA (Section 14.3)

• Checking assumptions in ANOVA (Section 14.4)

• Analysis of Covariance (ANCOVA) (Section 14.5)

• Understanding the linear model underlying ANOVA, including different contrasts (Sec-
tion 14.6 and 14.7)

• Post hoc testing using Tukey’s HSD (Section 14.8) and a brief commentary on planned
comparisons (Section 14.9)

• Factorial ANOVA with unbalanced designs (Section 14.10)
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15. Factor Analysis

Previous chapters have covered statistical tests for differences between two or more groups.
However, sometimes when conducting research, we may wish to examine how multiple variables
co-vary. That is, how they are related to each other and whether the patterns of relatedness
suggest anything interesting and meaningful. For example, we are often interested in explor-
ing whether there are any underlying unobserved latent factors that are represented by the
observed, directly measured, variables in our dataset. In statistics, latent factors are initially hid-
den variables that are not directly observed but are rather inferred (through statistical analysis)
from other variables that are observed (directly measured).

In this chapter we will consider a number of different Factor Analysis and related techniques,
starting with Exploratory Factor Analysis (EFA). EFA is a statistical technique for identifying
underlying latent factors in a data set (Section 15.1). Then in Section 15.2 we will cover Prin-
cipal Component Analysis (PCA) which is a data reduction technique which, strictly speaking,
does not identify underlying latent factors. Instead, PCA simply produces a linear combination
of observed variables. Following this, the Section (15.3) on Confirmatory Factor Analysis (CFA)
shows that, unlike EFA, with CFA you start with an idea - a model - of how the variables in your
data are related to each other. You then test your model against the observed data and assess
how good a fit the model is. A more sophisticated version of CFA is the so-called Multi-Trait
Multi-Method (MTMM) approach (Section 15.4) in which both latent factor and method vari-
ance are included in the model. This is useful when there are different methodological approaches
used for measurement and therefore method variance is an important consideration. Finally,
we will cover a related analysis: internal consistency reliability analysis tests how consistently a
scale measures a psychological construct (Section 15.5).

15.1

Exploratory Factor Analysis

Exploratory Factor Analysis (EFA) is a statistical technique for revealing any hidden latent
factors that can be inferred from our observed data. This technique calculates to what extent a
set of measured variables, for example V1, V2, V3, V4, and V5, can be represented as measures
of an underlying latent factor. This latent factor cannot be measured through just one observed
variable but instead is manifested in the relationships it causes in a set of observed variables.
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In Figure 15.1 each observed variable V is ‘caused’ to some extent by the underlying latent
factor (F), depicted by the coefficients b1 to b5 (also called factor loadings). Each observed
variable also has an associated error term, e1 to e5. Each error term is the variance in the
associated observed variable, Vi, that is unexplained by the underlying latent factor.

Figure 15.1: Latent factor underlying the relationship between several observed variables

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In Psychology, latent factors represent psychological phenomena or constructs that are diffi-
cult to directly observe or measure. For example, personality, or intelligence, or thinking style.
In the example in Figure 15.1 we may have asked people five specific questions about their
behaviour or attitudes, and from that we are able to get a picture about a personality construct
called, for example, extraversion. A different set of specific questions may give us a picture
about an individual’s introversion, or their conscientiousness.

Here’s another example: we may not be able to directly measure statistics anxiety, but we
can measure whether statistics anxiety is high or low with a set of questions in a questionnaire.
For example, “Q1: Doing the assignment for a statistics course”, “Q2: Trying to understand the
statistics described in a journal article”, and “Q3: Asking the lecturer for help in understanding
something from the course”, etc., each rated from low anxiety to high anxiety. People with high
statistics anxiety will tend to give similarly high responses on these observed variables because
of their high statistics anxiety. Likewise, people with low statistics anxiety will give similar low
responses to these variables because of their low statistics anxiety.

In exploratory factor analysis (EFA), we are essentially exploring the correlations between
observed variables to uncover any interesting, important underlying (latent) factors that are
identified when observed variables co-vary. We can use statistical software to estimate any
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latent factors and to identify which of our variables have a high loading1 (e.g. loading ą 0.5)
on each factor, suggesting they are a useful measure, or indicator, of the latent factor. Part of
this process includes a step called rotation, which to be honest is a pretty weird idea but luckily
we don’t have to worry about understanding it; we just need to know that it is helpful because
it makes the pattern of loadings on different factors much clearer. As such, rotation helps with
seeing more clearly which variables are linked substantively to each factor. We also need to
decide how many factors are reasonable given our data, and helpful in this regard is something
called Eigen values. We’ll come back to this in a moment, after we have covered some of the
main assumptions of EFA.

15.1.1 Checking assumptions

There are a couple of assumptions that need to be checked as part of the analysis. The
first assumption is sphericity, which essentially checks that the variables in your dataset are
correlated with each other to the extent that they can potentially be summarised with a smaller
set of factors. Bartlett’s test for sphericity checks whether the observed correlation matrix
diverges significantly from a zero (or null) correlation matrix. So, if Bartlett’s test is significant
(p ă .05), this indicates that the observed correlation matrix is significantly divergent from the
null, and is therefore suitable for EFA.

The second assumption is sampling adequacy and is checked using the Kaiser-Meyer-
Olkin (KMO) Measure of Sampling Adequacy (MSA). The KMO index is a measure of the
proportion of variance among observed variables that might be common variance. Using partial
correlations, it checks for factors that load just two items. We seldom, if ever, want EFA
producing a lot of factors loading just two items each. KMO is about sampling adequacy
because partial correlations are typically seen with inadequate samples. If the KMO index is
high («1), the EFA is efficient whereas if KMO is low («0), the EFA is not relevant. KMO
values smaller than 0.5 indicates that EFA is not suitable and a KMO value of 0.6 should be
present before EFA is considered suitable. Values between 0.5 and 0.7 are considered adequate,
values between 0.7 and 0.9 are good and values between 0.9 and 1.0 are excellent.

15.1.2 What is EFA good for?

If the EFA has provided a good solution (i.e. factor model), then we need to decide what
to do with our shiny new factors. Researchers often use EFA during psychometric scale devel-
opment. They will develop a pool of questionnaire items that they think relate to one or more
psychological constructs, use EFA to see which items “go together” as latent factors, and then
they will assess whether some items should be removed because they don’t usefully or distinctly
measure one of the latent factors.

In line with this approach, another consequence of EFA is to combine the variables that
load onto distinct factors into a factor score, sometimes known as a scale score. There are two
options for combining variables into a scale score:

1Quite helpfully, factor loadings can be interpreted like standardized regression coefficients
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• Create a new variable with a score weighted by the factor loadings for each item that
contributes to the factor.

• Create a new variable based on each item that contributes to the factor, but weighting
them equally.

In the first option each item’s contribution to the combined score depends on how strongly
it relates to the factor. In the second option we typically just average across all the items
that contribute substantively to a factor to create the combined scale score variable. Which to
choose is a matter of preference, though a disadvantage with the first option is that loadings
can vary quite a bit from sample to sample, and in behavioural and health sciences we are
often interested in developing and using composite questionnaire scale scores across different
studies and different samples. In which case it is reasonable to use a composite measure that
is based on the substantive items contributing equally rather than weighting by sample specific
loadings from a different sample. In any case, understanding a combined variable measure as an
average of items is simpler and more intuitive than using a sample specific optimally-weighted
combination.

A more advanced statistical technique, one which is beyond the scope of this book, undertakes
regression modelling where latent factors are used in prediction models of other latent factors.
This is called ”structural equation modelling” and there are specific software programmes and
R packages dedicated to this approach. But let’s not get ahead of ourselves; what we should
really focus on now is how to do an EFA in jamovi.

15.1.3 EFA in jamovi

First, we need some data. Twenty-five personality self-report items (see Figure 15.2) taken
from the International Personality Item Pool (http://ipip.ori.org) were included as part
of the Synthetic Aperture Personality Assessment (SAPA) web-based personality assessment
(SAPA: http://sapa-project.org) project. The 25 items are organized by five putative fac-
tors: Agreeableness, Conscientiousness, Extraversion, Neuroticism, and Openness.

The item data were collected using a 6-point response scale:

1. Very Inaccurate

2. Moderately Inaccurate

3. Slightly Inaccurate

4. Slightly Accurate

5. Moderately Accurate

6. Very Accurate.

A sample of N=250 responses is contained in the dataset bfi sample.csv. As researchers,
we are interested in exploring the data to see whether there are some underlying latent factors
that are measured reasonably well by the 25 observed variables in the bfi sample.csv data
file. Open up the dataset and check that the 25 variables are coded as continuous variables
(technically they are ordinal though for EFA in jamovi it mostly doesn’t matter, except if you
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Figure 15.2: Twenty-five observed variable items organised by five putative personality factors
in the dataset bfi sample.csv

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

decide to calculate weighted factor scores in which case continuous variables are needed). To
perform EFA in jamovi:

• Select Factor - Exploratory Factor Analysis from the main jamovi button bar to open
the EFA analysis window (Figure 15.3).

• Select the 25 personality questions and transfer them into the ‘Variables’ box.

• Check appropriate options, including ‘Assumption Checks’, but also Rotation ‘Method’,
‘Number of Factors’ to extract, and ‘Additional Output’ options. See Figure 15.3 for
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suggested options for this illustrative EFA, and please note that the Rotation ‘Method’ and
‘Number of Factors’ extracted is typically adjusted by the researcher during the analysis
to find the best result, as described below.

Figure 15.3: The jamovi EFA analysis window

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, check the assumptions (Figure 15.4). You can see that (1) Bartlett’s test of sphericity
is significant, so this assumption is satisfied; and (2) the KMO measure of sampling adequacy
(MSA) is 0.81 overall, suggesting good sampling adequacy. No problems here then!

The next thing to check is how many factors to use (or “extract” from the data). Three
different approaches are available:

• One convention is to choose all components with Eigen values greater than 12. This would
give us four factors with our data (try it and see).

2An Eigen value indicates how much of the variance in the observed variables a factor accounts for. A factor
with an Eigen value ą 1 accounts for more variance than a single observed variable
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Figure 15.4: jamovi EFA assumption checks for the personality questionnaire data

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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• Examination of the scree plot, as in Figure 15.5, lets you identify the “point of inflection”.
This is the point at which the slope of the scree curve clearly levels off, below the “elbow”.
This would give us five factors with our data. Interpreting scree plots is a bit of an art:
in Figure 15.5 there is a noticeable step from 5 to 6 factors, but in other scree plots you
look at it will not be so clear cut.

• Using a parallel analysis technique, the obtained Eigen values are compared to those that
would be obtained from random data. The number of factors extracted is the number with
Eigen values greater than what would be found with random data.

Figure 15.5: Scree plot of the personality data in jamovi EFA, showing a noticeable inflection
and levelling off after point 5 (the “elbow”)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The third approach is a good one according to Fabrigar, Wegener, MacCallum, and Strahan
(1999), although in practice researchers tend to look at all three and then make a judgement
about the number of factors that are most easily or helpfully interpreted. This can be understood
as the “meaningfulness criterion”, and researchers will typically examine, in addition to the
solution from one of the approaches above, solutions with one or two more or fewer factors.
They then adopt the solution which makes the most sense to them.

At the same time, we should also consider the best way to rotate the final solution. There
are two main approaches to rotation: orthogonal (e.g. ‘varimax’) rotation forces the selected
factors to be uncorrelated, whereas oblique (e.g. ‘oblimin’) rotation allows the selected factors
to be correlated. Dimensions of interest to psychologists and behavioural scientists are not often
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Figure 15.6: Factor summary statistics and correlations for a five factor solution in jamovi EFA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dimensions we would expect to be orthogonal, so oblique solutions are arguably more sensible3

Practically, if in an oblique rotation the factors are found to be substantially correlated
(positive or negative, and ą 0.3), as in Figure 15.6 where a correlation between two of the
extracted factors is ´0.398, then this would confirm our intuition to prefer oblique rotation. If
the factors are, in fact, correlated, then an oblique rotation will produce a better estimate of the
true factors and a better simple structure than will an orthogonal rotation. And, if the oblique
rotation indicates that the factors have close to zero correlations between one another, then the
researcher can go ahead and conduct an orthogonal rotation (which should then give about the
same solution as the oblique rotation).

On checking the correlation between the extracted factors at least one correlation was greater
than 0.3 (Figure 15.6), so an oblique (‘oblimin’) rotation of the five extracted factors is preferred.

3Oblique rotations provide two factor matrices, one called a structure matrix and one called a pattern matrix.
In jamovi just the pattern matrix is shown in the results as this is typically the most useful for interpretation,
though some experts suggest that both can be helpful. In a structure matrix coefficients show the relationship
between the variable and the factors whilst ignoring the relationship of that factor with all the other factors (i.e.
a zero-order correlation). Pattern matrix coefficients show the unique contribution of a factor to a variable whilst
controlling for the effects of other factors on that variable (akin to standardized partial regression coefficient).
Under orthogonal rotation, structure and pattern coefficients are the same.
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We can also see in Figure 15.6 that the proportion of overall variance in the data that is accounted
for by the five factors is 46%. Factor one accounts for around 10% of the variance, factors two
to four around 9% each, and factor five just over 7%. This isn’t great; it would have been better
if the overall solution accounted for a more substantive proportion of the variance in our data.

Be aware that in every EFA you could potentially have the same number of factors as observed
variables, but every additional factor you include will add a smaller amount of explained variance.
If the first few factors explain a good amount of the variance in the original 25 variables, then
those factors are clearly a useful, simpler substitute for the 25 variables. You can drop the rest
without losing too much of the original variability. But if it takes 18 factors (for example) to
explain most of the variance in those 25 variables, you might as well just use the original 25.

Figure 15.7 shows the factor loadings. That is, how the 25 different personality items load
onto each of the five selected factors. We have hidden loadings less than 0.3 (set in the options
shown in Figure 15.3).

For Factors 1, 2, 3 and 4 the pattern of factor loadings closely matches the putative factors
specified in Figure 15.2. Phew! And factor 5 is pretty close, with four of the five observed
variables that putatively measure “openness” loading pretty well onto the factor. Variable 04
doesn’t quite seem to fit though, as the factor solution in Figure 15.7 suggests that it loads onto
factor 3 (albeit with a relatively low loading) but not substantively onto factor 5.

The other thing to note is that those variables that were denoted as “R: reverse coding” in
Figure 15.2 are those that have negative factor loadings. Take a look at the items A1 (“Am
indifferent to the feelings of others”) and A2 (“Inquire about others’ well-being”). We can
see that a high score on A1 indicates low Agreeableness, whereas a high score on A2 (and all
the other “A” variables for that matter) indicates high Agreeableness. Therefore A1 will be
negatively correlated with the other “A” variables, and this is why it has a negative factor
loading, as shown in Figure 15.7.

We can also see in Figure 15.7 the “uniqueness” of each variable. Uniqueness is the proportion
of variance that is ‘unique’ to the variable and not explained by the factors4. For example, 74%
of the variance in ‘A1’ is not explained by the factors in the five factor solution. In contrast,
‘N1’ has relatively low variance not accounted for by the factor solution (31%). Note that the
greater the ‘uniqueness’, the lower the relevance or contribution of the variable in the factor
model.

To be honest, it’s unusual to get such a neat solution in EFA. It’s typically quite a bit more
messy than this, and often interpreting the meaning of the factors is more challenging. It’s not
often that you have such a clearly delineated item pool. More often you will have a whole heap
of observed variables that you think may be indicators of a few underlying latent factors, but
you don’t have such a strong sense of which variables are going to go where!

So, we seem to have a pretty good five factor solution, albeit accounting for a relatively
low overall proportion of the observed variance. Let’s assume we are happy with this solution
and want to use our factors in further analysis. The straightforward option is to calculate an
overall (average) score for each factor by adding together the score for each variable that loads
substantively onto the factor and then dividing by the number of variables. For each person in

4Sometimes reported in factor analysis is “communality” which is the amount of variance in a variable that is
accounted for by the factor solution. Uniqueness is equal to (1´ communality)
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Figure 15.7: Factor loadings for a five factor solution in jamovi EFA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

our dataset that would mean, for example for the Agreeableness factor, adding together A1 +
A2 + A3 + A4 + A5, and then dividing by 55. In essence, this means that the factor score we
have calculated is based on equally weighted scores from each of the included variables. We can

5remembering to first reverse score some variables if necessary
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do this in jamovi in two steps:

1. Recode A1 into “A1R” by reverse scoring the values in the variable (i.e. 6 “ 1; 5 “ 2; 4 “
3; 3 “ 4; 2 “ 5; 1 “ 6) using the jamovi transform variable command (see Figure 15.8).

2. Compute a new variable, called “Agreeableness’, by calculating the mean of A1R, A2, A3,
A4 and A5. Do this using the jamovi compute new variable command (see Figure 15.9).

Figure 15.8: Recode variable using the jamovi Transform command

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Another option is to create an optimally-weighted factor score index. We can use the jamovi
Rj editor to do this in R. Again, there are two steps:

1. Use the Rj editor to run the EFA in R to the same specification as the one in jamovi (i.e.
five factors and oblimin rotation) and compute optimally weighted factor scores. Save the
new dataset, with the factor scores, to a file. See Figure 15.10.

2. Open up the new file in jamovi and check that variable types have been set correctly. Label
the new factor score variables corresponding to the relevant factor names or definitions
(NB it is possible that the factors will not be in the expected order, so make sure you
check).
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Figure 15.9: Compute new scale score variable using the jamovi Computed variable command

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now you can go ahead and undertake further analyses, using either the factor-based scores
(a mean scale score approach) or using the optimally-weighted factor scores calculated via the
Rj editor. Your choice! For example, one thing you might like to do is see whether there are
any gender differences in each of our personality scales. We did this for the Agreeableness
score that we calculated using the factor-based score approach, and although the plot (Figure
15.12) showed that males were less agreeable than females, this was not a significant difference
(Man-Whitney U “ 5760.5, p “ .073).

15.1.4 Writing up an EFA

Hopefully, so far we have given you some sense of EFA and how to undertake EFA in jamovi.
So, once you have completed your EFA, how do you write it up? There is not a formal standard
way to write up an EFA, and examples tend to vary by discipline and researcher. That said,
there are some fairly standard pieces of information to include in your write-up:

1. What are the theoretical underpinnings for the area you are studying, and specifically for
the constructs that you are interested in uncovering through EFA.

2. A description of the sample (e.g. demographic information, sample size, sampling method).
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Figure 15.10: Rj editor commands for creating optimally weighted factor scores for the five factor
solution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 15.11: The newly created data file “bfifactscores.csv” created in the Rj editor and con-
taining the five factor score variables. Note that each of the new factor score variables is labelled
corresponding to the order that the factors are listed in the factor loadings table

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 15.12: Comparing differences in Agreeableness factor-based scores between males and
females

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. A description of the type of data used (e.g., nominal, continuous) and descriptive statistics.

4. Describe how you went about testing the assumptions for EFA. Details regarding sphericity
checks and measures of sampling adequacy should be reported.

5. Explain what FA extraction method (e.g. maximum likelihood) was used.

6. Explain the criteria and process used for deciding how many factors were extracted in
the final solution, and which items were selected. Clearly explain the rationale for key
decisions during the EFA process.

7. Explain what rotation methods were attempted, the reasons why, and the results.

8. Final factor loadings should be reported in the results, in a table. This table should also
report the uniqueness (or communality) for each variable (in the final column). Factor
loadings should be reported with descriptive labels in addition to item numbers. Correla-
tions between the factors should also be included, either at the bottom of this table, in a
separate table.

9. Meaningful names for the extracted factors should be provided. You may like to use
previously selected factor names, but on examining the actual items and factors you may
think a different name is more appropriate
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15.2

Principal Component Analysis

In the previous section we saw that EFA works to identify underlying latent factors. And, as
we saw, in one scenario the smaller number of latent factors can be used in further statistical
analysis using some sort of combined factor scores.

In this way EFA is being used as a “data reduction” technique. Another type of data reduc-
tion technique, sometimes seen as part of the EFA family, is principal component analysis
(PCA). However, PCA does not identify underlying latent factors. Instead it creates a linear
composite score from a larger set of measured variables.

PCA simply produces a mathematical transformation to the original data with no assump-
tions about how the variables co-vary. The aim of PCA is to calculate a few linear combinations
(components) of the original variables that can be used to summarize the observed data set
without losing much information. However, if identification of underlying structure is a goal of
the analysis, then EFA is to be preferred. And, as we saw, EFA produces factor scores that can
be used for data reduction purposes just like principal component scores (Fabrigar et al. 1999).

PCA has been popular in Psychology for a number of reasons, and therefore it’s worth
covering, although nowadays EFA is just as easy to do given the power of desktop computers
and can be less susceptible to bias than PCA, especially with a small number of factors and
variables. We’ll use the same bfi sample.csv data as before. Much of the procedure is similar
to EFA, so although there are some conceptual differences, practically the steps are the same6,
and with large samples and a sufficient number of factors and variables, the results from PCA
and EFA should be fairly similar.

15.2.1 Performing PCA in jamovi

Once you have loaded up the bfi sample.csv data, select Factor - Principal Component

Analysis from the main jamovi button bar to open the PCA analysis window (Figure 15.13).
Then select the 25 personality questions and transfer them into the ‘Variables’ box. Check
appropriate options, including ‘Assumption Checks’, but also Rotation ‘Method’, ‘Number of
Factors to extract, and ‘Additional Output’ options. See Figure 15.13 for suggested options for
this PCA, and please note that the Rotation ‘Method’ and ‘Number of Factors’ extracted is
typically adjusted during the analysis to find the best result, as described below.

First, checking the assumptions, you can see that (1) Bartlett’s test of sphericity is significant,
so this assumption is satisfied; and (2) the KMO measure of sampling adequacy (MSA) is 0.81
overall, suggesting very good sampling adequacy. No problems here then!

The next thing to check is how many components to use (or “extract” from the data). As
with EFA, three different approaches are available:

6...and that means there is a fair bit of repetition in the PCA steps set out in the next section. Sorry about
that, but hopefully it is not too bad!
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Figure 15.13: The jamovi PCA analysis window
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• One convention is to choose all components with Eigen values greater than 1. This would
give us two components with our data.

• Examination of the scree plot, as in Figure 15.15, lets you identify the “point of inflection”.
This is the point at which the slope of the scree curve clearly levels off, below the “elbow”.
Again, this would give us two components as the levelling off clearly occurs after the second
component.

• Using a parallel analysis technique, the obtained Eigen values are compared to those that
would be obtained from random data. The number of components extracted is the number
with Eigen values greater than what would be found with random data.
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Figure 15.14: jamovi PCA assumption checks for the personality item data
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The third approach is a good one according to Fabrigar et al. (1999), although in practice
researchers tend to look at all three and then make a judgement about the number of components
that are most easily or helpfully interpreted. This can be understood as the “meaningfulness
criterion”, and researchers will typically examine, in addition to the solution from one of the
approaches above, solutions with one or two more or fewer components. They then adopt the
solution which makes the most sense to them.

Figure 15.15: Scree plot of the personality item data in jamovi PCA, showing the levelling off
point, the “elbow”, after component 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

At the same time, we should also consider the best way to rotate the final solution. Again,
as with EFA, there are two main approaches to rotation: orthogonal (e.g. “varimax”) rotation
forces the selected components to be uncorrelated; whereas oblique (e.g. “oblimin”) rotation
allows the selected components to be correlated. Dimensions of interest to psychologists and
behavioural scientists are not often dimensions we would expect to be orthogonal, so oblique
solutions are arguably more sensible. Practically, if in an oblique rotation the components
are found to be substantially correlated (i.e. ą 0.3) then this would confirm our intuition to
prefer oblique rotation. If the components are, in fact, correlated, then an oblique rotation
will produce a better estimate of the true components and a better simple structure than will
an orthogonal rotation. And, if the oblique rotation indicates that the components have close
to zero correlations between one another, then the researcher can go ahead and conduct an
orthogonal rotation (which should then give about the same solution as the oblique rotation).
In Figure 15.16 we see that none of the correlations is ą 0.3 so it is appropriate to switch to
orthogonal (varimax) rotation.
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Figure 15.16: Component summary statistics and correlations for a five component solution in
jamovi PCA
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In Figure 15.16 we also have the proportion of overall variance in the data that is accounted
for by the two components. Components one and two account for just over 12% of the variance
each. Taken together, the five component solution accounts for just over half of the variance
(56%) in the observed data. Be aware that in every PCA you could potentially have the same
number of components as observed variables, but every additional component you include will
add a smaller amount of explained variance. If the first few components explain a good amount
of the variance in the original 25 variables, then those components are clearly a useful, simpler
substitute for all 25 variables. You can drop the rest without losing too much of the original
variability. But if it takes 18 components to explain most of the variance in those 25 variables,
you might as well just use the original 25.

Figure 15.17 shows the component loadings. That’s is, how the 25 different personality items
load onto each of the selected components. We have hidden loadings less than 0.4 (set in the
options shown in Figure 15.13) as we were interested in items with a substantive loading and
setting the threshold at the higher 0.4 value also provided a cleaner, clearer solution.
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Figure 15.17: Component loadings for a five component solution in jamovi PCA
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For components 1, 2, 3 and 4 the pattern of component loadings closely matches the putative
factors specified in Figure 15.2. And component 5 is pretty close, with four of the five observed
variables that putatively measure “openness” loading pretty well onto the component. Variable
04 doesn’t quite seem to fit though, as the component solution in Figure 15.17 suggests that
it loads onto component 4 (albeit with a relatively low loading) but not substantively onto
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component 5.

We can also see in Figure 15.17 the “uniqueness” of each variable. Uniqueness is the pro-
portion of variance that is ‘unique’ to the variable and not explained by the components. For
example, 58% of the variance in ‘A1’ is not explained by the components in the five component
solution. In contrast, ‘N1’ has relatively low variance not accounted for by the component so-
lution (30%). Note that the greater the ‘uniqueness’, the lower the relevance or contribution of
the variable in the component model.

Hopefully, this has given you a good first idea about how to undertake PCA in jamovi, and
how it is conceptually different but practically fairly similar (given the right data) to EFA.

You can go on to create component scores in much the same way as in EFA. However, if you
take the option to create an optimally-weighted component score index then the commands and
syntax in the jamovi Rj editor are a little different. See Figure 15.18.

Figure 15.18: Rj editor commands for creating optimally weighted component scores for the five
component solution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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15.3

Confirmatory Factor Analysis

So, our attempt to identify underlying latent factors using EFA with carefully selected questions
from the personality item pool seemed to be pretty successful. The next step in our quest to
develop a useful measure of personality is to check the latent factors we identified in the original
EFA with a different sample. We want to see if the factors hold up, if we can confirm their
existence with different data. This is a more rigorous check, as we will see. And it’s called
Confirmatory Factor Analysis (CFA) as we will, unsuprisingly, be seeking to confirm a
pre-specificied latent factor structure.7

In CFA, instead of doing an analysis where we see how the data goes together in an ex-
ploratory sense, we instead impose a structure, like in Figure 15.19, on the data and see how
well the data fits our pre-specified structure. In this sense, we are undertaking a confirmatory
analysis, to see how well a pre-specified model is confirmed by the observed data.

A straightforward confirmatory factor analysis (CFA) of the personality items would there-
fore specify five latent factors as shown in Figure 15.19, each measured by five observed variables.
Each variable is a measure of an underlying latent factor. For example, A1 is predicted by the
underlying latent factor Agreeableness. And because A1 is not a perfect measure of the Agree-
ableness factor, there is an error term, e, associated with it. In other words, e represents the
variance in A1 that is not accounted for by the Agreeableness factor. This is sometimes called
measurement error.

The next step is to consider whether the latent factors should be allowed to correlate in our
model. As mentioned earlier, in the psychological and behavioural sciences constructs are often
related to each other, and we also think that some of our personality factors may be correlated
with each other. So, in our model, we should allow these latent factors to co-vary, as shown by
the double-headed arrows in Figure 15.19.

At the same time, we should consider whether there is any good, systematic, reason for some
of the error terms to be correlated with each other. One reason for this might be that there is
a shared methodological feature for particular sub-sets of the observed variables such that the
observed variables might be correlated for methodological rather than substantive latent factor
reasons. We’ll return to this possibility in a later section but, for now, there are no clear reasons
that we can see that would justify correlating some of the error terms with each other.

Without any correlated error terms, the model we are testing to see how well it fits with our
observed data is just as specified in Figure 15.19. Only parameters that are included in the model
are expected to be found in the data, so in CFA all other possible parameters (coefficients) are
set to zero. So, if these other parameters are not zero (for example there may be a substantial
loading from A1 onto the latent factor Extraversion in the observed data, but not in our model)

7As an aside, given that we had a pretty firm idea from our initial “putative” factors, we could just have gone
straight to CFA and skipped the EFA step. Whether you use EFA and then go on to CFA, or go straight to
CFA, is a matter of judgement and how confident you are initially that you have the model about right (in terms
of number of factors and variables). Earlier on in the development of scales, or the identification of underlying
latent constructs, researchers tend to use EFA. Later on, as they get closer to a final scale, or if they want to
check an established scale in a new sample, then CFA is a good option.
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Figure 15.19: Initial pre-specification of latent factor structure for the five factor personality
scales, for use in CFA
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then we may find a poor fit between our model and the observed data.

Right, let’s take a look at how we set this CFA analysis up in jamovi.

15.3.1 CFA in jamovi

Open up the bfi sample2.csv file, check that the 25 variables are coded as ordinal (or
continuous; it won’t make any difference for this analysis). To perform CFA in jamovi:

• Select Factor - Confirmatory Factor Analysis from the main jamovi button bar to open
the CFA analysis window (Figure 15.20).

• Select the 5 A variables and transfer them into the ‘Factors’ box and give then the label
“Agreeableness”.

• Create a new Factor in the ‘Factors’ box and label it “Conscientiousness”. Select the 5 C

variables and transfer them into the ‘Factors’ box under the “Conscientiousness” label.

• Create another new Factor in the ‘Factors’ box and label it “Extraversion”. Select the 5
E variables and transfer them into the ‘Factors’ box under the “Extraversion” label.

• Create another new Factor in the ‘Factors’ box and label it “Neuroticism”. Select the 5 N

variables and transfer them into the ‘Factors’ box under the “Neuroticism” label.

• Create another new Factor in the ‘Factors’ box and label it “Openness”. Select the 5 O

variables and transfer them into the ‘Factors’ box under the “Openness” label.

• Check other appropriate options, the defaults are ok for this initial work through, though
you might want to check the “Path diagram” option under ‘Plots’ to see jamovi produce
a (fairly) similar diagram to our Figure 15.19.

Once we have set up the analysis we can turn our attention to the jamovi results window
and see what’s what. The first thing to look at is model fit (Figure 15.21) as this tells us how
good a fit our model is to the observed data. NB in our model only the pre-specified covariances
are estimated, including the factor correlations by default. Everything else is set to zero.

There are several ways of assessing model fit. The first is a chi-square statistic that, if
small, indicates that the model is a good fit to the data. However, the chi-squared statistic used
for assessing model fit is pretty sensitive to sample size, meaning that with a large sample a
good enough fit between the model and the data almost always produces a large and significant
(p ă .05) chi-square value.

So, we need some other ways of assessing model fit. In jamovi several are provided by default.
These are the Comparative Fit Index (CFI), the Tucker Lewis Index (TLI) and the Root Mean
Square Error of Approximation (RMSEA) together with the 90% confidence interval for the
RMSEA. Some useful rules of thumb are that a satisfactory fit is indicated by CFI ą 0.9, TLI
ą 0.9, and RMSEA of about 0.05 to 0.08. A good fit is CFI ą 0.95, TLI ą 0.95, and RMSEA
and upper CI for RMSEA ă 0.05.

So, looking at Figure 15.21 we can see that the chi-square value is large and highly significant.
Our sample size is not too large, so this possibly indicates a poor fit. The CFI is 0.762 and the
TLI is 0.731, indicating poor fit between the model and the data. The RMSEA is 0.085 with a
90% confidence interval from 0.077 to 0.092, again this does not indicate a good fit.
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Figure 15.20: The jamovi CFA analysis window
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Figure 15.21: The jamovi CFA Model Fit results for our CFA model
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Pretty disappointing, huh? But perhaps not too surprising given that in the earlier EFA,
when we ran with a similar data set (Section 15.1), only around half of the variance in the data
was accounted for by the five factor model.

Let’s go on to look at the factor loadings and the factor covariance estimates, shown in
Figures 15.22 and 15.23. The Z-statistic and p-value for each of these parameters indicates they
make a reasonable contribution to the model (i.e. they are not zero) so there doesn’t appear to
be any reason to remove any of the specified variable-factor paths, or factor-factor correlations
from the model. Often the standardized estimates are easier to interpret, and these can be
specified under the ‘Estimates’ option. These tables can usefully be incorporated into a written
report or scientific article.

How could we improve the model? One option is to go back a few stages and think again
about the items / measures we are using and how they might be improved or changed. Another
option is to make some post hoc tweaks to the model to improve the fit. One way of doing this
is to use “modification indices”, specified as an ‘Additional output’ option in jamovi (see Figure
15.24).

What we are looking for is the highest modification index (MI) value. We would then
judge whether it makes sense to add that additional term into the model, using a post hoc
rationalisation. For example, we can see in Figure 15.24 that the largest MI for the factor
loadings that are not already in the model is a value of 28.786 for the loading of N4 (“Often
feel blue”) onto the latent factor Extraversion. This indicates that if we add this path into the
model then the chi-square value will reduce by around the same amount.

But in our model adding this path arguably doesn’t really make any theoretical or method-
ological sense, so it’s not a good idea (unless you can come up with a persuasive argument
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Figure 15.22: The jamovi CFA Factor Loadings table for our CFA model
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that “Often feel blue” measures both Neuroticism and Extraversion). I can’t think of a good
reason. But, for the sake of argument, let’s pretend it does make some sense and add this path
into the model. Go back to the CFA analysis window (see Figure 15.20) and add N4 into the
Extraversion factor. The results of the CFA will now change (not shown); the chi-square has
come down to around 709 (a drop of around 30, roughly similar to the size of the MI) and the
other fit indices have also improved, though only a bit. But it’s not enough: it’s still not a good
fitting model.

If you do find yourself adding new parameters to a model using the MI values then always
re-check the MI tables after each new addition, as the MIs are refreshed each time.

There is also a Table of Residual Covariance Modification Indices produced by jamovi (Figure
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Figure 15.23: The jamovi CFA Factor Covariances table for our CFA model
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15.25). In other words, a table showing which correlated errors, if added to the model, would
improve the model fit the most. It’s a good idea to look across both MI tables at the same
time, spot the largest MI, think about whether the addition of the suggested parameter can be
reasonably justified and, if it can, add it to the model. And then you can start again looking
for the biggest MI in the re-calculated results.

You can keep going this way for as long as you like, adding parameters to the model based
on the largest MI, and eventually you will achieve a satisfactory fit. But there will also be a
strong possibility that in doing this you will have created a monster! A model that is ugly and
deformed and doesn’t have any theoretical sense or purity. In other words, be very careful!

So far, we have checked out the factor structure obtained in the EFA using a second sample
and CFA. Unfortunately, we didn’t find that the factor structure from the EFA was confirmed
in the CFA, so it’s back to the drawing board as far as the development of this personality scale
goes.

Although we could have tweaked the CFA using modification indexes, there really were
not any good reasons (that I could think of) for these suggested additional factor loadings or
residual covariances to be included. However, sometimes there is a good reason for residuals to
be allowed to co-vary (or correlate), and a good example of this is shown in the next section on
Multi-Trait Multi-Method (MTMM) CFA. Before we do that, let’s cover how to report
the results of a CFA.
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Figure 15.24: The jamovi CFA Factor Loadings Modification Indices
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15.3.2 Reporting a CFA

There is not a formal standard way to write up a CFA, and examples tend to vary by
discipline and researcher. That said, there are some fairly standard pieces of information to
include in your write-up:

1. A theoretical and empirical justification for the hypothesized model.

2. A complete description of how the model was specified (e.g. the indicator variables for
each latent factor, covariances between latent variables, and any correlations between error
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Figure 15.25: The jamovi CFA Residual Covariances Modification Indices
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terms). A path diagram, like the one in Figure 15.21 would be good to include.

3. A description of the sample (e.g. demographic information, sample size, sampling method).

4. A description of the type of data used (e.g., nominal, continuous) and descriptive statistics.

5. Tests of assumptions and estimation method used.

6. A description of missing data and how the missing data were handled.

7. The software and version used to fit the model.

8. Measures, and the criteria used, to judge model fit.

9. Any alterations made to the original model based on model fit or modification indices.

10. All parameter estimates (i.e., loadings, error variances, latent (co)variances) and their
standard errors, probably in a table.

15.4

Multi-Trait Multi-Method CFA

In this section we’re going to consider how different measurement techniques or questions can
be an important source of data variability, known as method variance. To do this, we’ll use
another psychological data set, one that contains data on “attributional style”.

The Attributional Style Questionnaire (ASQ) Hewitt, Foxcroft, and MacDonald (2004) col-
lected psychological wellbeing data from young people in the United Kingdom and New Zealand.
They measured attributional style for negative events, which is how people habitually explain
the cause of bad things that happen to them (Peterson and Seligman 1984). The attributional
style questionnaire (ASQ) measures three aspects of attributional style:

• Internality is the extent to which a person believes that the cause of a bad event is due to
his/her own actions.

• Stability refers to the extent to which a person habitually believes the cause of a bad event
is stable across time.

• Globality refers to the extent to which a person habitually believes that the cause of a bad
event in one area will affect other areas of their lives.

There are six hypothetical scenarios and for each scenario respondents answer a question
aimed at (a) internality, (b) stability and (c) globality. So there are 6 x 3 = 18 items overall.
See Figure 15.26 for more details.

Researchers are interested in checking their data to see whether there are some underlying
latent factors that are measured reasonably well by the 18 observed variables in the ASQ.

First, they try EFA with these 18 variables (not shown), but no matter how they extract or
rotate, they can’t find a good factor solution. Their attempt to identify underlying latent factors
in the Attributional Style Questionnaire (ASQ) proved fruitless. If you get results like this then
either your theory is wrong (there is no underlying latent factor structure for attributional style,
which is possible), the sample is not relevant (which is unlikely given the size and characteristics
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Figure 15.26: The Attributional Style Questionnaire (ASQ) for negative events
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of this sample of young adults from the United Kingdom and New Zealand), or the analysis was
not the right tool for the job. We’re going to look at this third possibility.

Remember that there were three dimensions measured in the ASQ: Internality, Stability and
Globality, each measured by six questions as shown in Figure 15.27.

What if, instead of doing an analysis where we see how the data goes together in an ex-
ploratory sense, we instead impose a structure, like in Figure 15.27, on the data and see how
well the data fits our pre-specified structure. In this sense, we are undertaking a confirmatory
analysis, to see how well a pre-specified model is confirmed by the observed data.

A straightforward confirmatory factor analysis (CFA) of the ASQ would therefore specify
three latent factors as shown in the columns of Figure 15.27, each measured by six observed
variables.

We could depict this as in the diagram in Figure 15.28, which shows that each variable is a
measure of an underlying latent factor. For example INT1 is predicted by the underlying latent
factor Internality. And because INT1 is not a perfect measure of the Internality factor, there is
an error term, e1, associated with it. In other words, e1 represents the variance in INT1 that is
not accounted for by the Internality factor. This is sometimes called “measurement error”.
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Figure 15.27: Six questions on the ASQ for each of the Internality, Stability and Globality
dimensions
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The next step is to consider whether the latent factors should be allowed to correlate in
our model. As mentioned earlier, in the psychological and behavioural sciences constructs are
often related to each other, and we also think that Internality, Stability, and Globality might be
correlated with each other, so in our model we should allow these latent factors to co-vary, as
shown in Figure 15.29.

At the same time, we should consider whether there is any good, systematic, reason for some
of the error terms to be correlated with each other. Thinking back to the ASQ questions, there
were three different sub-questions (a, b and c) for each main question (1-6). Q1 was about
unsuccessful job hunting and it is plausible that this question has some distinctive artefactual
or methodological aspects over and above the other questions (2-5), something to do with job
hunting perhaps. Similarly, Q2 was about not helping a friend with a problem, and there may
be some distinctive artefactual or methodological aspects to do with not helping a friend that
is not present in the other questions (1, and 3-5).

So, as well as multiple factors, we also have multiple methodological features in the ASQ,
where each of Questions 1-6 has a slightly different “method”, but each “method” is shared across
the sub-questions a, b and c. In order to incorporate these different methodological features into
the model we can specify that certain error terms are correlated with each other. For example,
the errors associated with INT1, STAB1 and GLOB1 should be correlated with each other to
reflect the distinct and shared methodological variance of Q1a, Q1b and Q1c. Looking at Figure
15.27, this means that as well as the latent factors represented by the columns, we will have
correlated measurement errors for the variables in each row of the Table.

Whilst a basic CFA model like the one shown in Figure 15.28 could be tested against our
observed data, we have in fact come up with a more sophisticated model, as shown in the
diagram in Figure 15.29. This more sophisticated CFA model is known as a Multi-Trait
Multi-Method (MTMM) model, and it is the one we will test in jamovi.
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Figure 15.28: Initial pre-specification of latent factor structure for the ASQ
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Figure 15.29: Final pre-specification of latent factor structure for the ASQ, including latent
factor correlations, and shared method error term correlations for the observed variable INT1,
STAB1 and GLOB1, in a CFA MTMM model. For clarity, other pre-specified error term corre-
lations are not shown.
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15.4.1 MTMM CFA in jamovi

Open up the ASQ.csv file and check that the 18 variables (six “Internality”, six “Stability”
and six “Globality” variables) are specified as continuous variables.

To perform MTMM CFA in jamovi:

• Select Factor - Confirmatory Factor Analysis from the main jamovi button bar to open
the CFA analysis window (Figure 15.30).

• Select the 6 INT variables and transfer them into the ‘Factors’ box and give them the label
“Internality”.

• Create a new Factor in the ‘Factors’ box and label it “Stability”. Select the 6 STAB
variables and transfer them into the ‘Factors’ box under the “Stability” label.

• Create another new Factor in the ‘Factors’ box and label it “Globality”. Select the 6
GLOB variables and transfer them into the ‘Factors’ box under the “Globality” label.

• Open up the Residual Covariances options, and for each of our pre-specified correlations
move the associated variables across into the ‘Residual Covariances’ box on the right. For
example, highlight both INT1 and STAB1 and then click the arrow to move these across.
Now do the same for INT1 and GLOB1, for STAB1 and GLOB1, for INT2 and STAB2,
for INT2 and GLOB2, for STAB2 and GLOB2, for INT3 and STAB3, and so on.

• Check other appropriate options, the defaults are ok for this initial work through, though
you might want to check the “Path diagram” option under ‘Plots’ to see jamovi produce a
(fairly) similar diagram to our Figure 15.29, but including all the error term correlations
that we have added above.

Once we have set up the analysis we can turn our attention to the jamovi results window
and see what’s what. The first thing to look at is “Model fit” as this tells us how good a fit
our model is to the observed data. NB in our model only the pre-specified covariances are
estimated, everything else is set to zero, so model fit is testing both whether the pre-specified
“free” parameters are not zero, and conversely whether the other relationships in the data – the
ones we have not specified in the model – can be held at zero.

There are several ways of assessing model fit. The first is a chi-square statistic, which if
small indicates that the model is a good fit to the data. However, the chi-square statistic used
for assessing model fit is very sensitive to sample size, meaning that with a large sample (more
than 300-400 cases) a good enough fit between the model and the data almost always produces
a large and significant chi-square value.

So, we need some other ways of assessing model fit. In jamovi several are provided by default.
These are the Comparative Fit Index (CFI), the Tucker Fit Index (TFI) and the Root Mean
Square Error of Approximation (RMSEA) together with the 90% confidence interval for the
RMSEA. As we mentioned previously, some useful rules of thumb are that a satisfactory fit is
indicated by CFI ą 0.9, TFI ą 0.9, and RMSEA of about 0.05 to 0.08. A good fit is CFI ą 0.95,
TFI ą 0.95, and RMSEA and upper CI for RMSEA ă 0.05.

So, looking at Figure 15.31 we can see that the chi-square value is highly significant, which
is not a surprise given the large sample size (N “ 2748). The CFI is 0.98 and the TLI is also
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Figure 15.30: The jamovi CFA analysis window

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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0.98, indicating a very good fit. The RMSEA is 0.02 with a 90% confidence interval from 0.02
to 0.02 – pretty tight!

Overall, I think we can be satisfied that our pre-specified model is a very good fit to the
observed data, lending support to our MTMM model for the ASQ.

Figure 15.31: The jamovi CFA Model Fit results for our CFA MTMM model

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can now go on to look at the factor loadings and the factor covariance estimates, as in
Figure 15.32. Often the standardized estimates are easier to interpret, and these can be specified
under the ‘Estimates’ option. These tables can usefully be incorporated into a written report or
scientific article.

You can see from Figure 15.32 that all of our pre-specified factor loadings and factor covari-
ances are significantly different from zero. In other words, they all seem to be making a useful
contribution to the model.

We’ve been pretty lucky with this analysis, getting a very good fit on our first attempt.
That’s pretty unusual, and often in CFA additional post hoc tweaks are made to the model to
improve the fit. One way of doing this is to use “modification indices”, specified as an ‘Additional
output’ option in jamovi.

What we are looking for is the highest modification index (MI) value. We would then
judge whether it makes sense to add that additional term into the model, using a post hoc
rationalisation. For example, we can see in Figure 15.33 that the largest MI for the factor
loadings that are not already in the model is a value of 24.52 for the loading of INT6 onto
the latent factor Globality. This indicates that if we add this path into the model then the
chi-square value will reduce by about 25. But in our model adding this path doesn’t really
make any theoretical or methodological sense, and therefore we won’t be including this path in
a revised model.

Likewise, when we look at the MIs for the residual terms (Figure 15.34) the highest MI

- 457 -



Figure 15.32: The jamovi CFA Factor Loadings and Covariances tables for our CFA MTMM
model

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is 13.48 for allowing the errors between INT1 and INT3 to co-vary – i.e. to be included –
in the model. But, this isn’t a particularly high MI, there is no reasonable justification for
including this parameter in the model, and we already have a good fit; so again our answer is
no modification.

If you do find yourself adding new parameters to a model using the MI then always re-check
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the MI tables after each new addition (or exclusion – in some software a MI can also suggest
parameters to be removed from a model to improve model fit), as the MIs are refreshed each
time.

Figure 15.33: The jamovi CFA Factor Loadings Modification Indices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15.5

Internal consistency reliability analysis

After you have been through the process of initial scale development using EFA and CFA, you
should have reached a stage where the scale holds up pretty well using CFA with different
samples. One thing that you might also be interested in at this stage is to see how well the
factors are measured using a scale that combines the observed variables.

In psychometrics we use reliability analysis to provide information about how consistently
a scale measures a psychological construct (See Section 2.3). Internal consistency is what
we are concerned with here, and that refers to the consistency across all the individual items
that make up a measurement scale. So, if we have V1, V2, V3, V4 and V5 as observed item
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Figure 15.34: The jamovi CFA Residual Covariances Modification Indices

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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variables, then we can calculate a statistic that tells us how internally consistent these items are
in measuring the underlying construct.

A popular statistic used to check the internal consistency of a scale is Cronbach’s alpha
(Chronbach 1951). Cronbach’s alpha is a measure of equivalence (whether different sets of
scale items would give the same measurement outcomes). Equivalence is tested by dividing the
scale items into two groups (a “split-half”) and seeing whether analysis of the two parts gives
comparable results. Of course, there are many ways a set of items could be split, but if all
possible splits are made then it is possible to produce a statistic that reflects the overall pattern
of split-half coefficients. Cronbach’s alpha (α) is such a statistic: a function of all the split-half
coefficients for a scale. If a set of items that measure a construct (e.g. an Extraversion scale)
has an alpha of 0.80, then the proportion of error variance in the scale is 0.20. In other words,
a scale with an alpha of 0.80 includes approximately 20% error.

BUT, (and that’s a BIG “BUT”), Cronbach’s alpha is not a measure of unidimensionality (i.e.
an indicator that a scale is measuring a single factor or construct rather than multiple related
constructs). Scales that are multidimensional will cause alpha to be under-estimated if not
assessed separately for each dimension, but high values for alpha are not necessarily indicators
of unidimensionality. So, an alpha of 0.80 does not mean that 80% of a single underlying
construct is accounted for. It could be that the 80% comes from more than one underlying
construct. That’s why EFA and CFA are useful to do first.

Further, another feature of alpha is that it tends to be sample specific: it is not a charac-
teristic of the scale, but rather a characteristic of the sample in which the scale has been used.
A biased, unrepresentative, or small sample could produce a very different alpha coefficient
than a large, representative sample. Alpha can even vary from large sample to large sample.
Nevertheless, despite these limitations, Chronbach’s alpha has been popular in Psychology for
estimating internal consistency reliability. It’s pretty easy to calculate, understand and inter-
pret, and therefore it can be a useful initial check on scale performance when you administer a
scale with a different sample, from a different setting or population, for example.

An alternative is McDonald’s omega (ω), and jamovi also provides this statistic. Whereas
alpha makes the following assumptions: (a) no residual correlations, (b) items have identical
loadings, and (c) the scale is unidimensional, omega does not and is therefore a more robust
reliability statistic. If these assumptions are not violated then alpha and omega will be similar,
but if they are then omega is to be preferred.

Sometimes a threshold for alpha or omega is provided, suggesting a “good enough” value.
This might be something like alphas of 0.70 or 0.80 representing “acceptable” and “good”
reliability, respectively. However, this does depend on what exactly the scale is supposed to be
measuring, so thresholds like this should be used cautiously. It could be better to simply state
that an alpha or omega of 0.70 is associated with 30% error variance in a scale, and an alpha or
omega of 0.80 is associated with 20%.

Can alpha be too high? Probably: if you are getting an alpha coefficient above 0.95 then this
indicates high inter-correlations between the items and that there might be too much overly-
redundant specificity in the measurement, with a risk that the construct being measured in
perhaps overly narrow.
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15.5.1 Reliability analysis in jamovi

Figure 15.35: The jamovi Reliability Analysis window

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have a third sample of personality data to use to undertake reliability analysis: in the
bfi sample3.csv file. Once again, check that the 25 personality item variables are coded as
continuous. To perform reliability analysis in jamovi:

• Select Factor - Reliability Analysis from the main jamovi button bar to open the reli-
ability analysis window (Figure 15.35).

• Select the 5 A variables and transfer them into the ‘Items’ box.

- 462 -



• Under the “Reverse Scaled Items” option, select variable A1 in the “Normal Scaled Items”
box and move it across to the “Reverse Scaled Items” box.

• Check other appropriate options, as in Figure 15.35.

Once done, look across at the jamovi results window. You should see something like Figure
15.36. This tells us that the Chronbach’s alpha coefficient for the Agreeableness scale is 0.70.
This means that just under 30% of the Agreeableness scale score is error variance. McDonald’s
omega is also given, and this is 0.72, not much different from alpha.

We can also check how alpha or omega can be improved if a specific item is dropped from
the scale. For example, alpha would increase to 0.72 and omega to 0.74 if we dropped item A1.
This isn’t a big increase, so probably not worth doing.

Figure 15.36: The jamovi Reliability Analysis results for the Agreeableness factor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The process of calculating and checking scale statistics (alpha and omega) is the same for
all the other scales (not shown): Conscientiousness (alpha = 0.73, omega = 0.74 ), Extraversion
(alpha = 0.76, omega = 0.76), Neuroticism (alpha = 0.81, omega = 0.82) and Openness (alpha
= 0.60, omega = 0.62). For Openness then, the amount of error variance in the Scale score
is 40%, which is high and indicates that Openness is substantially less consistent as a reliable
measure of a personality attribute than the other personality scales.
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15.6

Summary

In this chapter on factor analysis and related techniques we have introduced and demonstrated
statistical analyses that assess the pattern of relationships in a data set. Specifically, we have
covered:

• Exploratory Factor Analysis (EFA). EFA is a statistical technique for identifying under-
lying latent factors in a data set. Each observed variable is conceptualised as representing
the latent factor to some extent, indicated by a factor loading. Researchers also use EFA
as a way of data reduction, i.e. identifying observed variables than can be combined into
new factor variables for subsequent analysis. (Section 15.1)

• Principal Component Analysis (PCA) is a data reduction technique which, strictly speak-
ing, does not identify underlying latent factors. Instead, PCA simply produces a linear
combination of observed variables. (Section 15.2)

• Confirmatory Factor Analysis (CFA). Unlike EFA, with CFA you start with an idea - a
model - of how the variables in your data are related to each other. You then test your
model against the observed data and assess how good a fit the model is to the data.
(Section 15.3)

• In Multi-Trait Multi-Method (MTMM) CFA, both latent factor and method variance are
included in the model in an approach that is useful when there are different method-
ological approaches used and therefore method variance is an important consideration
(Section 15.4)

• Internal Consistency Reliability Analysis. This form of reliability analysis tests how con-
sistently a scale measures a measurement (psychological) construct. (Section 15.5)
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Part VI.

Endings, alternatives and prospects
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16. Bayesian statistics

In our reasonings concerning matter of fact, there are all imaginable degrees of as-
surance, from the highest certainty to the lowest species of moral evidence. A wise
man, therefore, proportions his belief to the evidence.

– David Hume1

The ideas I’ve presented to you in this book describe inferential statistics from the frequentist
perspective. I’m not alone in doing this. In fact, almost every textbook given to undergraduate
psychology students presents the opinions of the frequentist statistician as the theory of infer-
ential statistics, the one true way to do things. I have taught this way for practical reasons.
The frequentist view of statistics dominated the academic field of statistics for most of the 20th
century, and this dominance is even more extreme among applied scientists. It was and is cur-
rent practice among psychologists to use frequentist methods. Because frequentist methods are
ubiquitous in scientific papers, every student of statistics needs to understand those methods,
otherwise they will be unable to make sense of what those papers are saying! Unfortunately, in
my opinion at least, the current practice in psychology is often misguided and the reliance on
frequentist methods is partly to blame. In this chapter I explain why I think this and provide
an introduction to Bayesian statistics, an approach that I think is generally superior to the
orthodox approach.

This chapter comes in two parts. In Sections 16.1 through 16.3 I talk about what Bayesian
statistics are all about, covering the basic mathematical rules for how it works as well as an
explanation for why I think the Bayesian approach is so useful. Afterwards, I provide a brief
overview of how you can do Bayesian versions of t-tests (Section 16.4).

16.1

Probabilistic reasoning by rational agents

From a Bayesian perspective statistical inference is all about belief revision. I start out with a
set of candidate hypotheses h about the world. I don’t know which of these hypotheses is true,
but do I have some beliefs about which hypotheses are plausible and which are not. When I

1http://en.wikiquote.org/wiki/David Hume.
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observe the data, d, I have to revise those beliefs. If the data are consistent with a hypothesis,
my belief in that hypothesis is strengthened. If the data are inconsistent with the hypothesis,
my belief in that hypothesis is weakened. That’s it! At the end of this section I’ll give a precise
description of how Bayesian reasoning works, but first I want to work through a simple example
in order to introduce the key ideas. Consider the following reasoning problem.

I’m carrying an umbrella. Do you think it will rain?

In this problem I have presented you with a single piece of data (d “ I’m carrying the umbrella),
and I’m asking you to tell me your belief or hypothesis about whether it’s raining. You have
two alternatives, h: either it will rain today or it will not. How should you solve this problem?

16.1.1 Priors: what you believed before

The first thing you need to do is ignore what I told you about the umbrella, and write down
your pre-existing beliefs about rain. This is important. If you want to be honest about how
your beliefs have been revised in the light of new evidence (data) then you must say something
about what you believed before those data appeared! So, what might you believe about whether
it will rain today? You probably know that I live in Australia and that much of Australia is
hot and dry. The city of Adelaide where I live has a Mediterranean climate, very similar to
southern California, southern Europe or northern Africa. I’m writing this in January and so
you can assume it’s the middle of summer. In fact, you might have decided to take a quick look
on Wikipedia2 and discovered that Adelaide gets an average of 4.4 days of rain across the 31
days of January. Without knowing anything else, you might conclude that the probability of
January rain in Adelaide is about 15%, and the probability of a dry day is 85%. If this is really
what you believe about Adelaide rainfall (and now that I’ve told it to you I’m betting that this
really is what you believe) then what I have written here is your prior distribution, written
P phq:

Hypothesis Degree of Belief

Rainy day 0.15
Dry day 0.85

16.1.2 Likelihoods: theories about the data

To solve the reasoning problem you need a theory about my behaviour. When does Dan
carry an umbrella? You might guess that I’m not a complete idiot,3 and I try to carry umbrellas
only on rainy days. On the other hand, you also know that I have young kids, and you wouldn’t
be all that surprised to know that I’m pretty forgetful about this sort of thing. Let’s suppose
that on rainy days I remember my umbrella about 30% of the time (I really am awful at this).

2http://en.wikipedia.org/wiki/Climate of Adelaide
3It’s a leap of faith, I know, but let’s run with it okay?
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But let’s say that on dry days I’m only about 5% likely to be carrying an umbrella. So you
might write out a little table like this:

Data
Hypothesis Umbrella No umbrella

Rainy day 0.30 0.70
Dry day 0.05 0.95

It’s important to remember that each cell in this table describes your beliefs about what data
d will be observed, given the truth of a particular hypothesis h. This “conditional probability”
is written P pd|hq, which you can read as “the probability of d given h”. In Bayesian statistics,
this is referred to as the likelihood of the data d given the hypothesis h.4

16.1.3 The joint probability of data and hypothesis

At this point all the elements are in place. Having written down the priors and the likelihood,
you have all the information you need to do Bayesian reasoning. The question now becomes
how do we use this information? As it turns out, there’s a very simple equation that we can use
here, but it’s important that you understand why we use it so I’m going to try to build it up
from more basic ideas.

Let’s start out with one of the rules of probability theory. I listed it way back in Table 7.1,
but I didn’t make a big deal out of it at the time and you probably ignored it. The rule in
question is the one that talks about the probability that two things are true. In our example,
you might want to calculate the probability that today is rainy (i.e., hypothesis h is true) and
I’m carrying an umbrella (i.e., data d is observed). The joint probability of the hypothesis
and the data is written P pd, hq, and you can calculate it by multiplying the prior P phq by the
likelihood P pd|hq. Mathematically, we say that

P pd, hq “ P pd|hqP phq

So, what is the probability that today is a rainy day and I remember to carry an umbrella?
As we discussed earlier, the prior tells us that the probability of a rainy day is 15%, and the
likelihood tells us that the probability of me remembering my umbrella on a rainy day is 30%.
So the probability that both of these things are true is calculated by multiplying the two

P prainy, umbrellaq “ P pumbrella|rainyq ˆ P prainyq

“ 0.30ˆ 0.15

“ 0.045
4Um. I hate to bring this up, but some statisticians would object to me using the word “likelihood” here. The

problem is that the word “likelihood” has a very specific meaning in frequentist statistics, and it’s not quite the
same as what it means in Bayesian statistics. As far as I can tell Bayesians didn’t originally have any agreed
upon name for the likelihood, and so it became common practice for people to use the frequentist terminology.
This wouldn’t have been a problem except for the fact that the way that Bayesians use the word turns out to
be quite different to the way frequentists do. This isn’t the place for yet another lengthy history lesson but, to
put it crudely, when a Bayesian says “a likelihood function” they’re usually referring one of the rows of the table.
When a frequentist says the same thing, they’re referring to the same table, but to them “a likelihood function”
almost always refers to one of the columns. This distinction matters in some contexts, but it’s not important for
our purposes.
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In other words, before being told anything about what actually happened, you think that there
is a 4.5% probability that today will be a rainy day and that I will remember an umbrella.
However, there are of course four possible things that could happen, right? So let’s repeat the
exercise for all four. If we do that, we end up with the following table:

Umbrella No-umbrella

Rainy 0.045 0.105
Dry 0.0425 0.8075

This table captures all the information about which of the four possibilities are likely. To really
get the full picture, though, it helps to add the row totals and column totals. That gives us this
table:

Umbrella No-umbrella Total

Rainy 0.0450 0.1050 0.15
Dry 0.0425 0.8075 0.85

Total 0.0875 0.9125 1

This is a very useful table, so it’s worth taking a moment to think about what all these numbers
are telling us. First, notice that the row sums aren’t telling us anything new at all. For example,
the first row tells us that if we ignore all this umbrella business, the chance that today will be
a rainy day is 15%. That’s not surprising, of course, as that’s our prior.5 The important thing
isn’t the number itself. Rather, the important thing is that it gives us some confidence that
our calculations are sensible! Now take a look at the column sums and notice that they tell
us something that we haven’t explicitly stated yet. In the same way that the row sums tell
us the probability of rain, the column sums tell us the probability of me carrying an umbrella.
Specifically, the first column tells us that on average (i.e., ignoring whether it’s a rainy day or
not) the probability of me carrying an umbrella is 8.75%. Finally, notice that when we sum
across all four logically-possible events, everything adds up to 1. In other words, what we have
written down is a proper probability distribution defined over all possible combinations of data
and hypothesis.

Now, because this table is so useful, I want to make sure you understand what all the elements
correspond to and how they written:

Umbrella No-umbrella

Rainy P (Umbrella, Rainy) P (No-umbrella, Rainy) P (Rainy)

Dry P (Umbrella, Dry) P (No-umbrella, Dry) P (Dry)

P (Umbrella) P (No-umbrella)

Finally, let’s use “proper” statistical notation. In the rainy day problem, the data corresponds
to the observation that I do or do not have an umbrella. So we’ll let d1 refer to the possibility
that you observe me carrying an umbrella, and d2 refers to you observing me not carrying one.
Similarly, h1 is your hypothesis that today is rainy, and h2 is the hypothesis that it is not. Using
this notation, the table looks like this:

5Just to be clear, “prior” information is pre-existing knowledge or beliefs, before we collect or use any data to
improve that information.
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d1 d2

h1 P ph1, d1q P ph1, d2q P ph1q

h2 P ph2, d1q P ph2, d2q P ph2q

P pd1q P pd2q

16.1.4 Updating beliefs using Bayes’ rule

The table we laid out in the last section is a very powerful tool for solving the rainy day
problem, because it considers all four logical possibilities and states exactly how confident you
are in each of them before being given any data. It’s now time to consider what happens to
our beliefs when we are actually given the data. In the rainy day problem, you are told that I
really am carrying an umbrella. This is something of a surprising event. According to our table,
the probability of me carrying an umbrella is only 8.75%. But that makes sense, right? A guy
carrying an umbrella on a summer day in a hot dry city is pretty unusual, and so you really
weren’t expecting that. Nevertheless, the data tells you that it is true. No matter how unlikely
you thought it was, you must now adjust your beliefs to accommodate the fact that you now
know that I have an umbrella.6 To reflect this new knowledge, our revised table must have the
following numbers:

Umbrella No-umbrella

Rainy 0
Dry 0

Total 1 0

In other words, the facts have eliminated any possibility of “no umbrella”, so we have to put
zeros into any cell in the table that implies that I’m not carrying an umbrella. Also, you know
for a fact that I am carrying an umbrella, so the column sum on the left must be 1 to correctly
describe the fact that P pumbrellaq “ 1.

What two numbers should we put in the empty cells? Again, let’s not worry about the maths,
and instead think about our intuitions. When we wrote out our table the first time, it turned
out that those two cells had almost identical numbers, right? We worked out that the joint
probability of “rain and umbrella” was 4.5%, and the joint probability of “dry and umbrella”
was 4.25%. In other words, before I told you that I am in fact carrying an umbrella, you’d have
said that these two events were almost identical in probability, yes? But notice that both of
these possibilities are consistent with the fact that I actually am carrying an umbrella. From
the perspective of these two possibilities, very little has changed. I hope you’d agree that it’s
still true that these two possibilities are equally plausible. So what we expect to see in our final
table is some numbers that preserve the fact that “rain and umbrella” is slightly more plausible
than “dry and umbrella”, while still ensuring that numbers in the table add up. Something like
this, perhaps?

6If we were being a bit more sophisticated, we could extend the example to accommodate the possibility that
I’m lying about the umbrella. But let’s keep things simple, shall we?
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Umbrella No-umbrella

Rainy 0.514 0
Dry 0.486 0

Total 1 0

What this table is telling you is that, after being told that I’m carrying an umbrella, you believe
that there’s a 51.4% chance that today will be a rainy day, and a 48.6% chance that it won’t.
That’s the answer to our problem! The posterior probability of rain P ph|dq given that I am
carrying an umbrella is 51.4%

How did I calculate these numbers? You can probably guess. To work out that there was a
0.514 probability of “rain”, all I did was take the 0.045 probability of “rain and umbrella” and
divide it by the 0.0875 chance of “umbrella”. This produces a table that satisfies our need to have
everything sum to 1, and our need not to interfere with the relative plausibility of the two events
that are actually consistent with the data. To say the same thing using fancy statistical jargon,
what I’ve done here is divide the joint probability of the hypothesis and the data P pd, hq by the
marginal probability of the data P pdq, and this is what gives us the posterior probability of
the hypothesis given the data that have been observed. To write this as an equation 7

P ph|dq “
P pd, hq

P pdq

However, remember what I said at the start of the last section, namely that the joint probability
P pd, hq is calculated by multiplying the prior P phq by the likelihood P pd|hq. In real life, the
things we actually know how to write down are the priors and the likelihood, so let’s substitute
those back into the equation. This gives us the following formula for the posterior probability

P ph|dq “
P pd|hqP phq

P pdq

And this formula, folks, is known as Bayes’ rule. It describes how a learner starts out with
prior beliefs about the plausibility of different hypotheses, and tells you how those beliefs should
be revised in the face of data. In the Bayesian paradigm, all statistical inference flows from this
one simple rule.

16.2

Bayesian hypothesis tests

In Chapter 9 I described the orthodox approach to hypothesis testing. It took an entire chapter
to describe, because null hypothesis testing is a very elaborate contraption that people find very
hard to make sense of. In contrast, the Bayesian approach to hypothesis testing is incredibly
simple. Let’s pick a setting that is closely analogous to the orthodox scenario. There are two

7You might notice that this equation is actually a restatement of the same basic rule I listed at the start of
the last section. If you multiply both sides of the equation by P pdq, then you get P pdqP ph|dq “ P pd, hq, which is
the rule for how joint probabilities are calculated. So I’m not actually introducing any “new” rules here, I’m just
using the same rule in a different way.
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hypotheses that we want to compare, a null hypothesis h0 and an alternative hypothesis h1.
Prior to running the experiment we have some beliefs P phq about which hypotheses are true.
We run an experiment and obtain data d. Unlike frequentist statistics, Bayesian statistics does
allow us to talk about the probability that the null hypothesis is true. Better yet, it allows us
to calculate the posterior probability of the null hypothesis, using Bayes’ rule

P ph0|dq “
P pd|h0qP ph0q

P pdq

This formula tells us exactly how much belief we should have in the null hypothesis after having
observed the data d. Similarly, we can work out how much belief to place in the alternative
hypothesis using essentially the same equation. All we do is change the subscript

P ph1|dq “
P pd|h1qP ph1q

P pdq

It’s all so simple that I feel like an idiot even bothering to write these equations down, since all
I’m doing is copying Bayes rule from the previous section.8

16.2.1 The Bayes factor

In practice, most Bayesian data analysts tend not to talk in terms of the raw posterior prob-
abilities P ph0|dq and P ph1|dq. Instead, we tend to talk in terms of the posterior odds ratio.
Think of it like betting. Suppose, for instance, the posterior probability of the null hypothesis is
25%, and the posterior probability of the alternative is 75%. The alternative hypothesis is three
times as probable as the null, so we say that the odds are 3:1 in favour of the alternative. Math-
ematically, all we have to do to calculate the posterior odds is divide one posterior probability
by the other

P ph1|dq

P ph0|dq
“

0.75

0.25
“ 3

Or, to write the same thing in terms of the equations above

P ph1|dq

P ph0|dq
“
P pd|h1q

P pd|h0q
ˆ
P ph1q

P ph0q

Actually, this equation is worth expanding on. There are three different terms here that
you should know. On the left hand side, we have the posterior odds, which tells you what you
believe about the relative plausibilty of the null hypothesis and the alternative hypothesis after
seeing the data. On the right hand side, we have the prior odds, which indicates what you
thought before seeing the data. In the middle, we have the Bayes factor, which describes the

8Obviously, this is a highly simplified story. All the complexity of real life Bayesian hypothesis testing comes
down to how you calculate the likelihood P pd|hq when the hypothesis h is a complex and vague thing. I’m not
going to talk about those complexities in this book, but I do want to highlight that although this simple story is
true as far as it goes, real life is messier than I’m able to cover in an introductory stats textbook.
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amount of evidence provided by the data

P ph1|dq

P ph0|dq
“

P pd|h1q

P pd|h0q
ˆ

P ph1q

P ph0q

Ò Ò Ò

Posterior odds Bayes factor Prior odds

The Bayes factor (sometimes abbreviated as BF) has a special place in Bayesian hypothesis
testing, because it serves a similar role to the p-value in orthodox hypothesis testing. The Bayes
factor quantifies the strength of evidence provided by the data, and as such it is the Bayes factor
that people tend to report when running a Bayesian hypothesis test. The reason for reporting
Bayes factors rather than posterior odds is that different researchers will have different priors.
Some people might have a strong bias to believe the null hypothesis is true, others might have a
strong bias to believe it is false. Because of this, the polite thing for an applied researcher to do
is report the Bayes factor. That way, anyone reading the paper can multiply the Bayes factor
by their own personal prior odds, and they can work out for themselves what the posterior odds
would be. In any case, by convention we like to pretend that we give equal consideration to both
the null hypothesis and the alternative, in which case the prior odds equals 1, and the posterior
odds becomes the same as the Bayes factor.

16.2.2 Interpreting Bayes factors

One of the really nice things about the Bayes factor is the numbers are inherently meaningful.
If you run an experiment and you compute a Bayes factor of 4, it means that the evidence
provided by your data corresponds to betting odds of 4:1 in favour of the alternative. However,
there have been some attempts to quantify the standards of evidence that would be considered
meaningful in a scientific context. The two most widely used are from Jeffreys (1961) and Kass
and Raftery (1995). Of the two, I tend to prefer the Kass et al. (1995) table because it’s a bit
more conservative. So here it is:

Bayes factor Interpretation

1 - 3 Negligible evidence
3 - 20 Positive evidence

20 - 150 Strong evidence
ą150 Very strong evidence

And to be perfectly honest, I think that even the Kass et al. (1995) standards are being a bit
charitable. If it were up to me, I’d have called the “positive evidence” category “weak evidence”.
To me, anything in the range 3:1 to 20:1 is “weak” or “modest” evidence at best. But there
are no hard and fast rules here. What counts as strong or weak evidence depends entirely on
how conservative you are and upon the standards that your community insists upon before it is
willing to label a finding as “true”.

In any case, note that all the numbers listed above make sense if the Bayes factor is greater
than 1 (i.e., the evidence favours the alternative hypothesis). However, one big practical ad-
vantage of the Bayesian approach relative to the orthodox approach is that it also allows you
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to quantify evidence for the null. When that happens, the Bayes factor will be less than 1.
You can choose to report a Bayes factor less than 1, but to be honest I find it confusing. For
example, suppose that the likelihood of the data under the null hypothesis P pd|h0q is equal to
0.2, and the corresponding likelihood P pd|h1q under the alternative hypothesis is 0.1. Using the
equations given above, Bayes factor here would be

BF “
P pd|h1q

P pd|h0q
“

0.1

0.2
“ 0.5

Read literally, this result tells is that the evidence in favour of the alternative is 0.5 to 1. I find
this hard to understand. To me, it makes a lot more sense to turn the equation “upside down”,
and report the amount op evidence in favour of the null. In other words, what we calculate is
this

BF1 “
P pd|h0q

P pd|h1q
“

0.2

0.1
“ 2

And what we would report is a Bayes factor of 2:1 in favour of the null. Much easier to
understand, and you can interpret this using the table above.

16.3

Why be a Bayesian?

Up to this point I’ve focused exclusively on the logic underpinning Bayesian statistics. We’ve
talked about the idea of “probability as a degree of belief”, and what it implies about how a
rational agent should reason about the world. The question that you have to answer for yourself
is this: how do you want to do your statistics? Do you want to be an orthodox statistician,
relying on sampling distributions and p-values to guide your decisions? Or do you want to be
a Bayesian, relying on things like prior beliefs, Bayes factors and the rules for rational belief
revision? And to be perfectly honest, I can’t answer this question for you. Ultimately it depends
on what you think is right. It’s your call and your call alone. That being said, I can talk a little
about why I prefer the Bayesian approach.

16.3.1 Statistics that mean what you think they mean

You keep using that word. I do not think it means what you think it means

– Inigo Montoya, The Princess Bride9

To me, one of the biggest advantages to the Bayesian approach is that it answers the right
questions. Within the Bayesian framework, it is perfectly sensible and allowable to refer to “the
probability that a hypothesis is true”. You can even try to calculate this probability. Ultimately,

9http://www.imdb.com/title/tt0093779/quotes. I should note in passing that I’m not the first person to use
this quote to complain about frequentist methods. Rich Morey and colleagues had the idea first. I’m shamelessly
stealing it because it’s such an awesome pull quote to use in this context and I refuse to miss any opportunity to
quote The Princess Bride.
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isn’t that what you want your statistical tests to tell you? To an actual human being, this would
seem to be the whole point of doing statistics, i.e., to determine what is true and what isn’t.
Any time that you aren’t exactly sure about what the truth is, you should use the language of
probability theory to say things like “there is an 80% chance that Theory A is true, but a 20%
chance that Theory B is true instead”.

This seems so obvious to a human, yet it is explicitly forbidden within the orthodox frame-
work. To a frequentist, such statements are a nonsense because “the theory is true” is not a
repeatable event. A theory is true or it is not, and no probabilistic statements are allowed, no
matter how much you might want to make them. There’s a reason why, back in Section 9.5, I
repeatedly warned you not to interpret the p-value as the probability that the null hypothesis is
true. There’s a reason why almost every textbook on statstics is forced to repeat that warning.
It’s because people desperately want that to be the correct interpretation. Frequentist dogma
notwithstanding, a lifetime of experience of teaching undergraduates and of doing data analysis
on a daily basis suggests to me that most actual humans think that “the probability that the
hypothesis is true” is not only meaningful, it’s the thing we care most about. It’s such an appeal-
ing idea that even trained statisticians fall prey to the mistake of trying to interpret a p-value
this way. For example, here is a quote from an official Newspoll report in 2013, explaining how
to interpret their (frequentist) data analysis:10

Throughout the report, where relevant, statistically significant changes have been
noted. All significance tests have been based on the 95 percent level of confidence.
This means that if a change is noted as being statistically significant,
there is a 95 percent probability that a real change has occurred, and is
not simply due to chance variation. (emphasis added)

Nope! That’s not what p ă .05 means. That’s not what 95% confidence means to a frequentist
statistician. The bolded section is just plain wrong. Orthodox methods cannot tell you that
“there is a 95% chance that a real change has occurred”, because this is not the kind of event
to which frequentist probabilities may be assigned. To an ideological frequentist, this sentence
should be meaningless. Even if you’re a more pragmatic frequentist, it’s still the wrong definition
of a p-value. It is simply not an allowed or correct thing to say if you want to rely on orthodox
statistical tools.

On the other hand, let’s suppose you are a Bayesian. Although the bolded passage is the
wrong definition of a p-value, it’s pretty much exactly what a Bayesian means when they say
that the posterior probability of the alternative hypothesis is greater than 95%. And here’s the
thing. If the Bayesian posterior is actually the thing you want to report, why are you even
trying to use orthodox methods? If you want to make Bayesian claims, all you have to do is be
a Bayesian and use Bayesian tools.

Speaking for myself, I found this to be the most liberating thing about switching to the
Bayesian view. Once you’ve made the jump, you no longer have to wrap your head around
counter-intuitive definitions of p-values. You don’t have to bother remembering why you can’t
say that you’re 95% confident that the true mean lies within some interval. All you have to
do is be honest about what you believed before you ran the study and then report what you

10http://about.abc.net.au/reports-publications/appreciation-survey-summary-report-2013/
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learned from doing it. Sounds nice, doesn’t it? To me, this is the big promise of the Bayesian
approach. You do the analysis you really want to do, and express what you really believe the
data are telling you.

16.3.2 Evidentiary standards you can believe

If [p] is below .02 it is strongly indicated that the [null] hypothesis fails to account
for the whole of the facts. We shall not often be astray if we draw a conventional
line at .05 and consider that [smaller values of p] indicate a real discrepancy.

– Sir Ronald Fisher (1925)

Consider the quote above by Sir Ronald Fisher, one of the founders of what has become the
orthodox approach to statistics. If anyone has ever been entitled to express an opinion about the
intended function of p-values, it’s Fisher. In this passage, taken from his classic guide Statistical
Methods for Research Workers, he’s pretty clear about what it means to reject a null hypothesis
at p ă .05. In his opinion, if we take p ă .05 to mean there is “a real effect”, then “we shall
not often be astray”. This view is hardly unusual. In my experience, most practitioners express
views very similar to Fisher’s. In essence, the p ă .05 convention is assumed to represent a fairly
stringent evidential standard.

Well, how true is that? One way to approach this question is to try to convert p-values to
Bayes factors, and see how the two compare. It’s not an easy thing to do because a p-value
is a fundamentally different kind of calculation to a Bayes factor, and they don’t measure the
same thing. However, there have been some attempts to work out the relationship between the
two, and it’s somewhat surprising. For example, Johnson (2013) presents a pretty compelling
case that (for t-tests at least) the p ă .05 threshold corresponds roughly to a Bayes factor of
somewhere between 3:1 and 5:1 in favour of the alternative. If that’s right, then Fisher’s claim
is a bit of a stretch. Let’s suppose that the null hypothesis is true about half the time (i.e., the
prior probability of H0 is 0.5), and we use those numbers to work out the posterior probability
of the null hypothesis given that it has been rejected at p ă .05. Using the data from Johnson
(2013), we see that if you reject the null at p ă .05, you’ll be correct about 80% of the time. I
don’t know about you but, in my opinion, an evidential standard that ensures you’ll be wrong
on 20% of your decisions isn’t good enough. The fact remains that, quite contrary to Fisher’s
claim, if you reject at p ă .05 you shall quite often go astray. It’s not a very stringent evidential
threshold at all.

16.3.3 The p-value is a lie.

The cake is a lie.
The cake is a lie.
The cake is a lie.
The cake is a lie.

– Portal11

11http://knowyourmeme.com/memes/the-cake-is-a-lie
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Okay, at this point you might be thinking that the real problem is not with orthodox statis-
tics, just the p ă .05 standard. In one sense, that’s true. The recommendation that Johnson
(2013) gives is not that “everyone must be a Bayesian now”. Instead, the suggestion is that it
would be wiser to shift the conventional standard to something like a p ă .01 level. That’s not
an unreasonable view to take, but in my view the problem is a little more severe than that. In
my opinion, there’s a fairly big problem built into the way most (but not all) orthodox hypoth-
esis tests are constructed. They are grossly naive about how humans actually do research, and
because of this most p-values are wrong.

Sounds like an absurd claim, right? Well, consider the following scenario. You’ve come up
with a really exciting research hypothesis and you design a study to test it. You’re very diligent,
so you run a power analysis to work out what your sample size should be, and you run the study.
You run your hypothesis test and out pops a p-value of 0.072. Really bloody annoying, right?

What should you do? Here are some possibilities:

1. You conclude that there is no effect and try to publish it as a null result

2. You guess that there might be an effect and try to publish it as a “borderline significant”
result

3. You give up and try a new study

4. You collect some more data to see if the p value goes up or (preferably!) drops below the
“magic” criterion of p ă .05

Which would you choose? Before reading any further, I urge you to take some time to think
about it. Be honest with yourself. But don’t stress about it too much, because you’re screwed
no matter what you choose. Based on my own experiences as an author, reviewer and editor, as
well as stories I’ve heard from others, here’s what will happen in each case:

• Let’s start with option 1. If you try to publish it as a null result, the paper will struggle to
be published. Some reviewers will think that p “ .072 is not really a null result. They’ll
argue it’s borderline significant. Other reviewers will agree it’s a null result but will claim
that even though some null results are publishable, yours isn’t. One or two reviewers might
even be on your side, but you’ll be fighting an uphill battle to get it through.

• Okay, let’s think about option number 2. Suppose you try to publish it as a borderline
significant result. Some reviewers will claim that it’s a null result and should not be
published. Others will claim that the evidence is ambiguous, and that you should collect
more data until you get a clear significant result. Again, the publication process does not
favour you.

• Given the difficulties in publishing an “ambiguous” result like p “ .072, option number 3
might seem tempting: give up and do something else. But that’s a recipe for career suicide.
If you give up and try a new project every time you find yourself faced with ambiguity,
your work will never be published. And if you’re in academia without a publication record
you can lose your job. So that option is out.

• It looks like you’re stuck with option 4. You don’t have conclusive results, so you decide
to collect some more data and re-run the analysis. Seems sensible, but unfortunately for
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you, if you do this all of your p-values are now incorrect. All of them. Not just the p-values
that you calculated for this study. All of them. All the p-values you calculated in the past
and all the p-values you will calculate in the future. Fortunately, no-one will notice. You’ll
get published, and you’ll have lied.

Wait, what? How can that last part be true? I mean, it sounds like a perfectly reasonable
strategy doesn’t it? You collected some data, the results weren’t conclusive, so now what you
want to do is collect more data until the the results are conclusive. What’s wrong with that?

Honestly, there’s nothing wrong with it. It’s a reasonable, sensible and rational thing to
do. In real life, this is exactly what every researcher does. Unfortunately, the theory of null
hypothesis testing as I described it in Chapter 9 forbids you from doing this.12 The reason is
that the theory assumes that the experiment is finished and all the data are in. And because
it assumes the experiment is over, it only considers two possible decisions. If you’re using the
conventional p ă .05 threshold, those decisions are:

Outcome Action

p less than .05 Reject the null
p greater than .05 Retain the null

What you’re doing is adding a third possible action to the decision making problem. Specifically,
what you’re doing is using the p-value itself as a reason to justify continuing the experiment.
And as a consequence you’ve transformed the decision-making procedure into one that looks
more like this:

Outcome Action

p less than .05 Stop the experiment and reject the null
p between .05 and .1 Continue the experiment
p greater than .1 Stop the experiment and retain the null

The “basic” theory of null hypothesis testing isn’t built to handle this sort of thing, not in the
form I described back in Chapter 9. If you’re the kind of person who would choose to “collect
more data” in real life, it implies that you are not making decisions in accordance with the rules
of null hypothesis testing. Even if you happen to arrive at the same decision as the hypothesis
test, you aren’t following the decision process it implies, and it’s this failure to follow the process
that is causing the problem.13 Your p-values are a lie.

Worse yet, they’re a lie in a dangerous way, because they’re all too small. To give you a sense
of just how bad it can be, consider the following (worst case) scenario. Imagine you’re a really

12In the interests of being completely honest, I should acknowledge that not all orthodox statistical tests rely
on this silly assumption. There are a number of sequential analysis tools that are sometimes used in clinical
trials and the like. These methods are built on the assumption that data are analysed as they arrive, and these
tests aren’t horribly broken in the way I’m complaining about here. However, sequential analysis methods are
constructed in a very different fashion to the “standard” version of null hypothesis testing. They don’t make it
into any introductory textbooks, and they’re not very widely used in the psychological literature. The concern
I’m raising here is valid for every single orthodox test I’ve presented so far and for almost every test I’ve seen
reported in the papers I read.

13A related problem: http://xkcd.com/1478/.
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Figure 16.1: How badly can things go wrong if you re-run your tests every time new data arrive?
If you are a frequentist, the answer is “very wrong”.
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super-enthusiastic researcher on a tight budget who didn’t pay any attention to my warnings
above. You design a study comparing two groups. You desperately want to see a significant
result at the p ă .05 level, but you really don’t want to collect any more data than you have to
(because it’s expensive). In order to cut costs you start collecting data but every time a new
observation arrives you run a t-test on your data. If the t-tests says p ă .05 then you stop the
experiment and report a significant result. If not, you keep collecting data. You keep doing this
until you reach your pre-defined spending limit for this experiment. Let’s say that limit kicks
in at N “ 1000 observations. As it turns out, the truth of the matter is that there is no real
effect to be found: the null hypothesis is true. So, what’s the chance that you’ll make it to the
end of the experiment and (correctly) conclude that there is no effect? In an ideal world, the
answer here should be 95%. After all, the whole point of the p ă .05 criterion is to control the
Type I error rate at 5%, so what we’d hope is that there’s only a 5% chance of falsely rejecting
the null hypothesis in this situation. However, there’s no guarantee that will be true. You’re
breaking the rules. Because you’re running tests repeatedly, “peeking” at your data to see if
you’ve gotten a significant result, all bets are off.

So how bad is it? The answer is shown as the solid black line in Figure 16.1, and it’s
astoundingly bad. If you peek at your data after every single observation, there is a 49% chance
that you will make a Type I error. That’s, um, quite a bit bigger than the 5% that it’s supposed
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to be. By way of comparison, imagine that you had used the following strategy. Start collecting
data. Every single time an observation arrives, run a Bayesian t-test (Section 16.4) and look at
the Bayes factor. I’ll assume that Johnson (2013) is right, and I’ll treat a Bayes factor of 3:1 as
roughly equivalent to a p-value of .05.14 This time around, our trigger happy researcher uses the
following procedure. If the Bayes factor is 3:1 or more in favour of the null, stop the experiment
and retain the null. If it is 3:1 or more in favour of the alternative, stop the experiment and
reject the null. Otherwise continue testing. Now, just like last time, let’s assume that the null
hypothesis is true. What happens? As it happens, I ran the simulations for this scenario too,
and the results are shown as the dashed line in Figure 16.1. It turns out that the Type I error
rate is much much lower than the 49% rate that we were getting by using the orthodox t-test.

In some ways, this is remarkable. The entire point of orthodox null hypothesis testing is to
control the Type I error rate. Bayesian methods aren’t actually designed to do this at all. Yet,
as it turns out, when faced with a “trigger happy” researcher who keeps running hypothesis
tests as the data come in, the Bayesian approach is much more effective. Even the 3:1 standard,
which most Bayesians would consider unacceptably lax, is much safer than the p ă .05 rule.

16.3.4 Is it really this bad?

The example I gave in the previous section is a pretty extreme situation. In real life, people
don’t run hypothesis tests every time a new observation arrives. So it’s not fair to say that
the p ă .05 threshold “really” corresponds to a 49% Type I error rate (i.e., p “ .49). But the
fact remains that if you want your p-values to be honest then you either have to switch to a
completely different way of doing hypothesis tests or enforce a strict rule of no peeking. You are
not allowed to use the data to decide when to terminate the experiment. You are not allowed
to look at a “borderline” p-value and decide to collect more data. You aren’t even allowed to
change your data analyis strategy after looking at data. You are strictly required to follow these
rules, otherwise the p-values you calculate will be nonsense.

And yes, these rules are surprisingly strict. As a class exercise a couple of years back, I
asked students to think about this scenario. Suppose you started running your study with the
intention of collecting N “ 80 people. When the study starts out you follow the rules, refusing
to look at the data or run any tests. But when you reach N “ 50 your willpower gives in... and
you take a peek. Guess what? You’ve got a significant result! Now, sure, you know you said
that you’d keep running the study out to a sample size of N “ 80, but it seems sort of pointless
now, right? The result is significant with a sample size of N “ 50, so wouldn’t it be wasteful
and inefficient to keep collecting data? Aren’t you tempted to stop? Just a little? Well, keep
in mind that if you do, your Type I error rate at p ă .05 just ballooned out to 8%. When
you report p ă .05 in your paper, what you’re really saying is p ă .08. That’s how bad the
consequences of “just one peek” can be.

Now consider this. The scientific literature is filled with t-tests, ANOVAs, regressions and
chi-square tests. When I wrote this book I didn’t pick these tests arbitrarily. The reason why
these four tools appear in most introductory statistics texts is that these are the bread and

14Some readers might wonder why I picked 3:1 rather than 5:1, given that Johnson (2013) suggests that p “ .05
lies somewhere in that range. I did so in order to be charitable to the p-value. If I’d chosen a 5:1 Bayes factor
instead, the results would look even better for the Bayesian approach.
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butter tools of science. None of these tools include a correction to deal with “data peeking”:
they all assume that you’re not doing it. But how realistic is that assumption? In real life, how
many people do you think have “peeked” at their data before the experiment was finished and
adapted their subsequent behaviour after seeing what the data looked like? Except when the
sampling procedure is fixed by an external constraint, I’m guessing the answer is “most people
have done it”. If that has happened, you can infer that the reported p-values are wrong. Worse
yet, because we don’t know what decision process they actually followed, we have no way to
know what the p-values should have been. You can’t compute a p-value when you don’t know
the decision making procedure that the researcher used. And so the reported p-value remains a
lie.

Given all of the above, what is the take home message? It’s not that Bayesian methods are
foolproof. If a researcher is determined to cheat, they can always do so. Bayes’ rule cannot stop
people from lying, nor can it stop them from rigging an experiment. That’s not my point here.
My point is the same one I made at the very beginning of the book in Section 1.1: the reason
why we run statistical tests is to protect us from ourselves. And the reason why “data peeking”
is such a concern is that it’s so tempting, even for honest researchers. A theory for statistical
inference has to acknowledge this. Yes, you might try to defend p-values by saying that it’s
the fault of the researcher for not using them properly, but to my mind that misses the point.
A theory of statistical inference that is so completely naive about humans that it doesn’t even
consider the possibility that the researcher might look at their own data isn’t a theory worth
having. In essence, my point is this:

Good laws have their origins in bad morals.

– Ambrosius Macrobius15

Good rules for statistical testing have to acknowledge human frailty. None of us are without
sin. None of us are beyond temptation. A good system for statistical inference should still work
even when it is used by actual humans. Orthodox null hypothesis testing does not.16

16.4

Bayesian t-tests

An important type of statistical inference problem discussed in this book is the comparison
between two means, discussed in some detail in the chapter on t-tests (Chapter 11). If you can

15http://www.quotationspage.com/quotes/Ambrosius Macrobius/
16Okay, I just know that some knowledgeable frequentists will read this and start complaining about this section.

Look, I’m not dumb. I absolutely know that if you adopt a sequential analysis perspective you can avoid these
errors within the orthodox framework. I also know that you can explictly design studies with interim analyses
in mind. So yes, in one sense I’m attacking a “straw man” version of orthodox methods. However, the straw
man that I’m attacking is the one that is used by almost every single practitioner. If it ever reaches the point
where sequential methods become the norm among experimental psychologists and I’m no longer forced to read
20 extremely dubious ANOVAs a day, I promise I’ll rewrite this section and dial down the vitriol. But until that
day arrives, I stand by my claim that default Bayes factor methods are much more robust in the face of data
analysis practices as they exist in the real world. Default orthodox methods suck, and we all know it.
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remember back that far, you’ll recall that there are several versions of the t-test. I’ll talk a little
about Bayesian versions of the independent samples t-tests and the paired samples t-test in this
section.

16.4.1 Independent samples t-test

The most common type of t-test is the independent samples t-test, and it arises when you have
data as in the harpo.csv data set that we used in the earlier chapter on t-tests (Chapter 11).
In this data set, we have two groups of students, those who received lessons from Anastasia
and those who took their classes with Bernadette. The question we want to answer is whether
there’s any difference in the grades received by these two groups of students. Back in Chapter 11
I suggested you could analyse this kind of data using the Independent Samples t-test in jamovi,
which gave us the results in Figure 16.2. As we obtain a p-value less than 0.05, we reject the
null hypothesis.

Figure 16.2: Independent Samples t-test result in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What does the Bayesian version of the t-test look like? We can get the Bayes factor analysis
by selecting the ‘Bayes factor’ checkbox under the ‘Tests’ option, and accepting the suggested
default value for the ‘Prior’. This gives the results shown in the table in Figure 16.3. What we
get in this table is a Bayes factor statistic of 1.75, meaning that the evidence provided by these
data are about 1.8:1 in favour of the alternative hypothesis.

Before moving on, it’s worth highlighting the difference between the orthodox test results
and the Bayesian one. According to the orthodox test, we obtained a significant result, though
only barely. Nevertheless, many people would happily accept p “ .043 as reasonably strong
evidence for an effect. In contrast, notice that the Bayesian test doesn’t even reach 2:1 odds in
favour of an effect, and would be considered very weak evidence at best. In my experience that’s
a pretty typical outcome. Bayesian methods usually require more evidence before rejecting the
null.
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Figure 16.3: Bayes factors analysis alongside Independent Samples t-Test

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16.4.2 Paired samples t-test

Back in Section 11.5 I discussed the chico.csv data set in which student grades were measured
on two tests, and we were interested in finding out whether grades went up from test 1 to test 2.
Because every student did both tests, the tool we used to analyse the data was a paired samples
t-test. Figure 16.4 shows the jamovi results table for the conventional paired t-test alongside the
Bayes factor analysis. At this point, I hope you can read this output without any difficulty. The
data provide evidence of about 6000:1 in favour of the alternative. We could probably reject the
null with some confidence!

Figure 16.4: Paired samples T-Test and Bayes Factor result in jamovi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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16.5

Summary

The first half of this chapter was focused primarily on the theoretical underpinnings of Bayesian
statistics. I introduced the mathematics for how Bayesian inference works (Section 16.1), and
gave a very basic overview of how Bayesian hypothesis testing is typically done (Section 16.2).
Finally, I devoted some space to talking about why I think Bayesian methods are worth using
(Section 16.3).

Then I gave a practical example, a Bayesian t-test (Section 16.4). If you’re interested in
learning more about the Bayesian approach, there are many good books you could look into.
John Kruschke’s book Doing Bayesian Data Analysis is a pretty good place to start (Kruschke
2011) and is a nice mix of theory and practice. His approach is a little different to the “Bayes
factor” approach that I’ve discussed here, so you won’t be covering the same ground. If you’re a
cognitive psychologist, you might want to check out Michael Lee and E.J. Wagenmakers’ book
Bayesian Cognitive Modeling (Lee and Wagenmakers 2014). I picked these two because I think
they’re especially useful for people in my discipline, but there’s a lot of good books out there,
so look around!
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17. Epilogue

“Begin at the beginning”, the King said, very gravely,
“and go on till you come to the end: then stop”

– Lewis Carroll

It feels somewhat strange to be writing this chapter, and more than a little inappropriate.
An epilogue is what you write when a book is finished, and this book really isn’t finished. There
are a lot of things still missing from this book. It doesn’t have an index yet. A lot of references
are missing. There are no “do it yourself” exercises. And in general, I feel that there a lot of
things that are wrong with the presentation, organisation and content of this book. Given all
that, I don’t want to try to write a “proper” epilogue. I haven’t finished writing the substantive
content yet, so it doesn’t make sense to try to bring it all together. But this version of the book
is going to go online for students to use, and you will may be to purchase a hard copy too, so I
want to give it at least a veneer of closure. So let’s give it a go, shall we?

17.1

The undiscovered statistics

First, I’m going to talk a bit about some of the content that I wish I’d had the chance to
cram into this version of the book, just so that you can get a sense of what other ideas are out
there in the world of statistics. I think this would be important even if this book were getting
close to a final product. One thing that students often fail to realise is that their introductory
statistics classes are just that, an introduction. If you want to go out into the wider world and
do real data analysis, you have to learn a whole lot of new tools that extend the content of your
undergraduate lectures in all sorts of different ways. Don’t assume that something can’t be done
just because it wasn’t covered in undergrad. Don’t assume that something is the right thing to
do just because it was covered in an undergrad class. To stop you from falling victim to that
trap, I think it’s useful to give a bit of an overview of some of the other ideas out there.
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17.1.1 Omissions within the topics covered

Even within the topics that I have covered in the book, there are a lot of omissions that I’d like
to redress in future version of the book. Just sticking to things that are purely about statistics
(rather than things associated with jamovi), the following is a representative but not exhaustive
list of topics that I’d like to expand on at some time:

• Other types of correlations. In Chapter 4 I talked about two types of correlation:
Pearson and Spearman. Both of these methods of assessing correlation are applicable
to the case where you have two continuous variables and want to assess the relationship
between them. What about the case where your variables are both nominal scale? Or
when one is nominal scale and the other is continuous? There are actually methods for
computing correlations in such cases (e.g., polychoric correlation), and it would be good
to see these included.

• More detail on effect sizes. In general, I think the treatment of effect sizes throughout
the book is a little more cursory than it should be. In almost every instance, I’ve tended
just to pick one measure of effect size (usually the most popular one) and describe that.
However, for almost all tests and models there are multiple ways of thinking about effect
size, and I’d like to go into more detail in the future.

• Dealing with violated assumptions. In a number of places in the book I’ve talked
about some things you can do when you find that the assumptions of your test (or model)
are violated, but I think that I ought to say more about this. In particular, I think it
would have been nice to talk in a lot more detail about how you can tranform variables
to fix problems. I talked a bit about this in Sections 6.3 and 6.4, but the discussion isn’t
detailed enough I think.

• Interaction terms for regression. In Chapter 14 I talked about the fact that you
can have interaction terms in an ANOVA, and I also pointed out that ANOVA can be
interpreted as a kind of linear regression model. Yet, when talking about regression in
Chapter 12 I made not mention of interactions at all. However, there’s nothing stopping
you from including interaction terms in a regression model. It’s just a little more compli-
cated to figure out what an “interaction” actually means when you’re talking about the
interaction between two continuous predictors, and it can be done in more than one way.
Even so, I would have liked to talk a little about this.

• Method of planned comparison. As I mentioned this in Chapter 14, it’s not always
appropriate to be using a post hoc correction like Tukey’s HSD when doing an ANOVA,
especially when you had a very clear (and limited) set of comparisons that you cared about
ahead of time. I would like to talk more about this in the future.

• Multiple comparison methods. Even within the context of talking about post hoc
tests and multiple comparisons, I would have liked to talk about the methods in more
detail, and talk about what other methods exist besides the few options I mentioned.
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17.1.2 Statistical models missing from the book

Statistics is a huge field. The core tools that I’ve described in this book (chi-square tests, t-tests,
regression and ANOVA) are basic tools that are widely used in everyday data analysis, and they
form the core of most introductory stats books. However, there are a lot of other tools out there.
There are so very many data analysis situations that these tools don’t cover, and it would be
great to give you a sense of just how much more there is, for example:

• Nonlinear regression. When discussing regression in Chapter 12, we saw that regression
assumes that the relationship between predictors and outcomes is linear. On the other
hand, when we talked about the simpler problem of correlation in Chapter 4, we saw that
there exist tools (e.g., Spearman correlations) that are able to assess non-linear relation-
ships between variables. There are a number of tools in statistics that can be used to do
non-linear regression. For instance, some non-linear regression models assume that the re-
lationship between predictors and outcomes is monotonic (e.g., isotonic regression), while
others assume that it is smooth but not necessarily monotonic (e.g., Lowess regression),
while others assume that the relationship is of a known form that happens to be nonlinear
(e.g., polynomial regression).

• Logistic regression. Yet another variation on regression occurs when the outcome vari-
able is binary, but the predictors are continuous. For instance, suppose you’re investigating
social media, and you want to know if it’s possible to predict whether or not someone is on
Twitter as a function of their income, their age, and a range of other variables. This is ba-
sically a regression model, but you can’t use regular linear regression because the outcome
variable is binary (you’re either on Twitter or you’re not). Because the outcome variable
is binary, there’s no way that the residuals could possibly be normally distributed. There
are a number of tools that statisticians can apply to this situation, the most prominent of
which is logistic regression.

• The General Linear Model (GLM). The GLM is actually a family of models that
includes logistic regression, linear regression, (some) nonlinear regression, ANOVA and
many others. The basic idea in the GLM is essentially the same idea that underpins linear
models, but it allows for the idea that your data might not be normally distributed, and
allows for nonlinear relationships between predictors and outcomes. There are a lot of
very handy analyses that you can run that fall within the GLM, so it’s a very useful thing
to know about.

• Survival analysis. In Chapter 2 I talked about “differential attrition”, the tendency for
people to leave the study in a non-random fashion. Back then, I was talking about it as
a potential methodological concern, but there are a lot of situations in which differential
attrition is actually the thing you’re interested in. Suppose, for instance, you’re interested
in finding out how long people play different kinds of computer games in a single session.
Do people tend to play RTS (real time strategy) games for longer stretches than FPS (first
person shooter) games? You might design your study like this. People come into the lab,
and they can play for as long or as little as they like. Once they’re finished, you record
the time they spent playing. However, due to ethical restrictions, let’s suppose that you
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cannot allow them to keep playing longer than two hours. A lot of people will stop playing
before the two hour limit, so you know exactly how long they played. But some people will
run into the two hour limit, and so you don’t know how long they would have kept playing
if you’d been able to continue the study. As a consequence, your data are systematically
censored: you’re missing all of the very long times. How do you analyse this data sensibly?
This is the problem that survival analysis solves. It is specifically designed to handle this
situation, where you’re systematically missing one “side” of the data because the study
ended. It’s very widely used in health research, and in that context it is often literally
used to analyse survival. For instance, you may be tracking people with a particular type
of cancer, some who have received treatment A and others who have received treatment B,
but you only have funding to track them for 5 years. At the end of the study period some
people are alive, others are not. In this context, survival analysis is useful for determining
which treatment is more effective, and telling you about the risk of death that people face
over time.

• Mixed models. Repeated measures ANOVA is often used in situations where you have
observations clustered within experimental units. A good example of this is when you
track individual people across multiple time points. Let’s say you’re tracking happiness
over time, for two people. Aaron’s happiness starts at 10, then drops to 8, and then to 6.
Belinda’s happiness starts at 6, then rises to 8 and then to 10. Both of these two people
have the same “overall” level of happiness (the average across the three time points is 8),
so a repeated measures ANOVA analysis would treat Aaron and Belinda the same way.
But that’s clearly wrong. Aaron’s happiness is decreasing, whereas Belinda’s is increasing.
If you want to optimally analyse data from an experiment where people can change over
time, then you need a more powerful tool than repeated measures ANOVA. The tools that
people use to solve this problem are called “mixed” models, because they are designed to
learn about individual experimental units (e.g. happiness of individual people over time)
as well as overall effects (e.g. the effect of money on happiness over time). Repeated
measures ANOVA is perhaps the simplest example of a mixed model, but there’s a lot you
can do with mixed models that you can’t do with repeated measures ANOVA.

• Multidimensional scaling. Factor analysis is an example of an “unsupervised learning”
model. What this means is that, unlike most of the “supervised learning” tools I’ve
mentioned, you can’t divide up your variables into predictors and outcomes. Regression is
supervised learning whereas factor analysis is unsupervised learning. It’s not the only type
of unsupervised learning model however. For example, in factor analysis one is concerned
with the analysis of correlations between variables. However, there are many situations
where you’re actually interested in analysing similarities or dissimilarities between objects,
items or people. There are a number of tools that you can use in this situation, the
best known of which is multidimensional scaling (MDS). In MDS, the idea is to find a
“geometric” representation of your items. Each item is “plotted” as a point in some space,
and the distance between two points is a measure of how dissimilar those items are.

• Clustering. Another example of an unsupervised learning model is clustering (also re-
ferred to as classification), in which you want to organise all of your items into meaningful
groups, such that similar items are assigned to the same groups. A lot of clustering is
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unsupervised, meaning that you don’t know anything about what the groups are, you
just have to guess. There are other “supervised clustering” situations where you need to
predict group memberships on the basis of other variables, and those group memberships
are actually observables. Logistic regression is a good example of a tool that works this
way. However, when you don’t actually know the group memberships, you have to use
different tools (e.g., k-means clustering). There are even situations where you want to do
something called “semi-supervised clustering”, in which you know the group memberships
for some items but not others. As you can probably guess, clustering is a pretty big topic,
and a pretty useful thing to know about.

• Causal models. One thing that I haven’t talked about much in this book is how you
can use statistical modelling to learn about the causal relationships between variables. For
instance, consider the following three variables which might be of interest when thinking
about how someone died in a firing squad. We might want to measure whether or not an
execution order was given (variable A), whether or not a marksman fired their gun (variable
B), and whether or not the person got hit with a bullet (variable C). These three variables
are all correlated with one another (e.g., there is a correlation between guns being fired
and people getting hit with bullets), but we actually want to make stronger statements
about them than merely talking about correlations. We want to talk about causation.
We want to be able to say that the execution order (A) causes the marksman to fire (B)
which causes someone to get shot (C). We can express this by a directed arrow notation:
we write it as AÑ B Ñ C. This “causal chain” is a fundamentally different explanation
for events than one in which the marksman fires first, which causes the shooting B Ñ C,
and then causes the executioner to “retroactively” issue the execution order, B Ñ A. This
“common effect” model says that A and C are both caused by B. You can see why these
are different. In the first causal model, if we had managed to stop the executioner from
issuing the order (intervening to change A), then no shooting would have happened. In the
second model, the shooting would have happened any way because the marksman was not
following the execution order. There is a big literature in statistics on trying to understand
the causal relationships between variables, and a number of different tools exist to help
you test different causal stories about your data. The most widely used of these tools (in
psychology at least) is structural equations modelling (SEM), and at some point I’d like
to extend the book to talk about it.

Of course, even this listing is incomplete. I haven’t mentioned time series analysis, item response
theory, market basket analysis, classification and regression trees, or any of a huge range of other
topics. However, the list that I’ve given above is essentially my wish list for this book. Sure,
it would double the length of the book, but it would mean that the scope has become broad
enough to cover most things that applied researchers in psychology would need to use.

17.1.3 Other ways of doing inference

A different sense in which this book is incomplete is that it focuses pretty heavily on a very
narrow and old-fashioned view of how inferential statistics should be done. In Chapter 8 I talked
a little bit about the idea of unbiased estimators, sampling distributions and so on. In Chapter 9
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I talked about the theory of null hypothesis significance testing and p-values. These ideas have
been around since the early 20th century, and the tools that I’ve talked about in the book rely
very heavily on the theoretical ideas from that time. I’ve felt obligated to stick to those topics
because the vast majority of data analysis in science is also reliant on those ideas. However,
the theory of statistics is not restricted to those topics and, whilst everyone should know about
them because of their practical importance, in many respects those ideas do not represent best
practice for contemporary data analysis. One of the things that I’m especially happy with is
that I’ve been able to go a little beyond this. Chapter 16 now presents the Bayesian perspective
in a reasonable amount of detail, but the book overall is still pretty heavily weighted towards
the frequentist orthodoxy. Additionally, there are a number of other approaches to inference
that are worth mentioning:

• Bootstrapping. Throughout the book, whenever I’ve introduced a hypothesis test, I’ve
had a strong tendency just to make assertions like “the sampling distribution for BLAH is
a t-distribution” or something like that. In some cases, I’ve actually attempted to justify
this assertion. For example, when talking about χ2 tests in Chapter 10 I made reference to
the known relationship between normal distributions and χ2 distributions (see Chapter 7)
to explain how we end up assuming that the sampling distribution of the goodness-of-fit
statistic is χ2. However, it’s also the case that a lot of these sampling distributions are,
well, wrong. The χ2 test is a good example. It is based on an assumption about the
distribution of your data, an assumption which is known to be wrong for small sample
sizes! Back in the early 20th century, there wasn’t much you could do about this situation.
Statisticians had developed mathematical results that said that “under assumptions BLAH
about the data, the sampling distribution is approximately BLAH”, and that was about
the best you could do. A lot of times they didn’t even have that. There are lots of data
analysis situations for which no-one has found a mathematical solution for the sampling
distributions that you need. And so up until the late 20th century, the corresponding tests
didn’t exist or didn’t work. However, computers have changed all that now. There are lots
of fancy tricks, and some not-so-fancy, that you can use to get around it. The simplest
of these is bootstrapping, and in it’s simplest form it’s incredibly simple. What you do is
simulate the results of your experiment lots and lots of times, under the twin assumptions
that (a) the null hypothesis is true and (b) the unknown population distribution actually
looks pretty similar to your raw data. In other words, instead of assuming that the data
are (for instance) normally distributed, just assume that the population looks the same
as your sample, and then use computers to simulate the sampling distribution for your
test statistic if that assumption holds. Despite relying on a somewhat dubious assumption
(i.e., the population distribution is the same as the sample!) bootstrapping is quick and
easy method that works remarkably well in practice for lots of data analysis problems.

• Cross validation. One question that pops up in my stats classes every now and then,
usually by a student trying to be provocative, is “Why do we care about inferential statis-
tics at all? Why not just describe your sample?” The answer to the question is usually
something like this, “Because our true interest as scientists is not the specific sample that
we have observed in the past, we want to make predictions about data we might observe
in the future”. A lot of the issues in statistical inference arise because of the fact that
we always expect the future to be similar to but a bit different from the past. Or, more
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generally, new data won’t be quite the same as old data. What we do, in a lot of situations,
is try to derive mathematical rules that help us to draw the inferences that are most likely
to be correct for new data, rather than to pick the statements that best describe old data.
For instance, given two models A and B, and a data set X you collected today, try to pick
the model that will best describe a new data set Y that you’re going to collect tomorrow.
Sometimes it’s convenient to simulate the process, and that’s what cross-validation does.
What you do is divide your data set into two subsets, X1 and X2. Use the subset X1
to train the model (e.g., estimate regression coefficients, let’s say), but then assess the
model performance on the other one X2. This gives you a measure of how well the model
generalises from an old data set to a new one, and is often a better measure of how good
your model is than if you just fit it to the full data set X.

• Robust statistics. Life is messy, and nothing really works the way it’s supposed to.
This is just as true for statistics as it is for anything else, and when trying to analyse data
we’re often stuck with all sorts of problems in which the data are just messier than they’re
supposed to be. Variables that are supposed to be normally distributed are not actually
normally distributed, relationships that are supposed to be linear are not actually linear,
and some of the observations in your data set are almost certainly junk (i.e., not measuring
what they’re supposed to). All of this messiness is ignored in most of the statistical theory
I developed in this book. However, ignoring a problem doesn’t always solve it. Sometimes,
it’s actually okay to ignore the mess, because some types of statistical tools are “robust”,
i.e., if the data don’t satisfy your theoretical assumptions they nevertheless still work
pretty well. Other types of statistical tools are not robust, and even minor deviations
from the theoretical assumptions cause them to break. Robust statistics is a branch of
stats concerned with this question, and they talk about things like the “breakdown point”
of a statistic. That is, how messy does your data have to be before the statistic cannot be
trusted? I touched on this in places. The mean is not a robust estimator of the central
tendency of a variable, but the median is. For instance, suppose I told you that the ages
of my five best friends are 34, 39, 31, 43 and 4003 years. How old do you think they are
on average? That is, what is the true population mean here? If you use the sample mean
as your estimator of the population mean, you get an answer of 830 years. If you use the
sample median as the estimator of the population mean, you get an answer of 39 years.
Notice that, even though you’re “technically” doing the wrong thing in the second case
(using the median to estimate the mean!) you’re actually getting a better answer. The
problem here is that one of the observations is clearly, obviously, a lie. I don’t have a friend
aged 4003 years. It’s probably a typo, I probably meant to type 43. But what if I had
typed 53 instead of 43, or 34 instead of 43? Could you be sure if this was a typo or not?
Sometimes the errors in the data are subtle, so you can’t detect them just by eyeballing
the sample, but they’re still errors that contaminate your data, and they still affect your
conclusions. Robust statistics is concerned with how you can make safe inferences even
when faced with contamination that you don’t know about. It’s pretty cool stuff.

17.1.4 Miscellaneous topics

• Missing data. Suppose you’re doing a survey, and you’re interested in exercise and
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weight. You send data to four people. Adam says he exercises a lot and is not overweight.
Briony says she exercises a lot and is not overweight. Carol says she does not exercise and
is overweight. Dan says he does not exercise and refuses to answer the question about his
weight. Elaine does not return the survey. You now have a missing data problem. There
is one entire survey missing, and one question missing from another one, What do you do
about it? Ignoring missing data is not, in general, a safe thing to do. Let’s think about
Dan’s survey here. Firstly, notice that, on the basis of my other responses, I appear to be
more similar to Carol (neither of us exercise) than to Adam or Briony. So if you were forced
to guess my weight, you’d guess that I’m closer to her than to them. Maybe you’d make
some correction for the fact that Adam and I are males and Briony and Carol are females.
The statistical name for this kind of guessing is “imputation”. Doing imputation safely
is hard, but it’s important, especially when the missing data are missing in a systematic
way. Because of the fact that people who are overweight are often pressured to feel poorly
about their weight (often thanks to public health campaigns), we actually have reason to
suspect that the people who are not responding are more likely to be overweight than the
people who do respond. Imputing a weight to Dan means that the number of overweight
people in the sample will probably rise from 1 out of 3 (if we ignore Dan), to 2 out of 4 (if
we impute Dan’s weight). Clearly this matters. But doing it sensibly is more complicated
than it sounds. Earlier, I suggested you should treat me like Carol, since we gave the
same answer to the exercise question. But that’s not quite right. There is a systematic
difference between us. She answered the question, and I didn’t. Given the social pressures
faced by overweight people, isn’t it likely that I’m more overweight than Carol? And of
course this is still ignoring the fact that it’s not sensible to impute a single weight to me,
as if you actually knew my weight. Instead, what you need to do it is impute a range of
plausible guesses (referred to as multiple imputation), in order to capture the fact that
you’re more uncertain about my weight than you are about Carol’s. And let’s not get
started on the problem posed by the fact that Elaine didn’t send in the survey. As you
can probably guess, dealing with missing data is an increasingly important topic. In fact,
I’ve been told that a lot of journals in some fields will not accept studies that have missing
data unless some kind of sensible multiple imputation scheme is followed.

• Power analysis. In Chapter 9 I discussed the concept of power (i.e., how likely are you to
be able to detect an effect if it actually exists) and referred to power analysis, a collection
of tools that are useful for assessing how much power your study has. Power analysis can
be useful for planning a study (e.g., figuring out how large a sample you’re likely to need),
but it also serves a useful role in analysing data that you already collected. For instance,
suppose you get a significant result, and you have an estimate of your effect size. You can
use this information to estimate how much power your study actually had. This is kind of
useful, especially if your effect size is not large. For instance, suppose you reject the null
hypothesis at p ă .05, but you use power analysis to figure out that your estimated power
was only .08. The significant result means that, if the null hypothesis was in fact true,
there was a 5% chance of getting data like this. But the low power means that, even if the
null hypothesis is false and the effect size was really as small as it looks, there was only an
8% chance of getting data like you did. This suggests that you need to be pretty cautious,
because luck seems to have played a big part in your results, one way or the other!
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• Data analysis using theory-inspired models. In a few places in this book I’ve men-
tioned response time (RT) data, where you record how long it takes someone to do some-
thing (e.g., make a simple decision). I’ve mentioned that RT data are almost invariably
non-normal, and positively skewed. Additionally, there’s a thing known as the speed-
accuracy trade-off: if you try to make decisions too quickly (low RT) then you’re likely
to make poorer decisions (lower accuracy). So if you measure both the accuracy of a
participant’s decisions and their RT, you’ll probably find that speed and accuracy are
related. There’s more to the story than this, of course, because some people make better
decisions than others regardless of how fast they’re going. Moreover, speed depends on
both cognitive processes (i.e., time spent thinking) but also physiological ones (e.g., how
fast can you move your muscles). It’s starting to sound like analysing this data will be a
complicated process. And indeed it is, but one of the things that you find when you dig
into the psychological literature is that there already exist mathematical models (called
“sequential sampling models”) that describe how people make simple decisions, and these
models take into account a lot of the factors I mentioned above. You won’t find any of
these theoretically-inspired models in a standard statistics textbook. Standard stats text-
books describe standard tools, tools that could meaningfully be applied in lots of different
disciplines, not just psychology. ANOVA is an example of a standard tool that is just as
applicable to psychology as to pharmacology. Sequential sampling models are not, they
are psychology-specific, more or less. This doesn’t make them less powerful tools. In fact,
if you’re analysing data where people have to make choices quickly you should really be
using sequential sampling models to analyse the data. Using ANOVA or regression or
whatever won’t work as well, because the theoretical assumptions that underpin them are
not well-matched to your data. In contrast, sequential sampling models were explicitly de-
signed to analyse this specific type of data, and their theoretical assumptions are extremely
well-matched to the data.

17.2

Learning the basics, and learning them in jamovi

Okay, that was a long list. And even that listing is massively incomplete. There really are a
lot of big ideas in statistics that I haven’t covered in this book. It can seem pretty depressing
to finish an almost 500-page textbook only to be told that this is only the beginning, especially
when you start to suspect that half of the stuff you’ve been taught is wrong. For instance, there
are a lot of people in the field who would strongly argue against the use of the classical ANOVA
model, yet I’ve devoted two whole chapters to it! Standard ANOVA can be attacked from a
Bayesian perspective, or from a robust statistics perspective, or even from a “it’s just plain
wrong” perspective (people very frequently use ANOVA when they should actually be using
mixed models). So why learn it at all?

As I see it, there are two key arguments. Firstly, there’s the pure pragmatism argument.
Rightly or wrongly, ANOVA is widely used. If you want to understand the scientific literature,
you need to understand ANOVA. And secondly, there’s the “incremental knowledge” argument.
In the same way that it was handy to have seen one-way ANOVA before trying to learn factorial
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ANOVA, understanding ANOVA is helpful for understanding more advanced tools, because a lot
of those tools extend on or modify the basic ANOVA setup in some way. For instance, although
mixed models are way more useful than ANOVA and regression, I’ve never heard of anyone
learning how mixed models work without first having worked through ANOVA and regression.
You have to learn to crawl before you can climb a mountain.

Actually, I want to push this point a bit further. One thing that I’ve done a lot of in this
book is talk about fundamentals. I spent a lot of time on probability theory. I talked about the
theory of estimation and hypothesis tests in more detail than I needed to. Why did I do all this?
Looking back, you might ask whether I really needed to spend all that time talking about what
a probability distribution is, or why there was even a section on probability density. If the goal
of the book was to teach you how to run a t-test or an ANOVA, was all that really necessary?
Was this all just a huge waste of everyone’s time???

The answer, I hope you’ll agree, is no. The goal of an introductory stats is not to teach
ANOVA. It’s not to teach t-tests, or regressions, or histograms, or p-values. The goal is to start
you on the path towards becoming a skilled data analyst. And in order for you to become a
skilled data analyst, you need to be able to do more than ANOVA, more than t-tests, regressions
and histograms. You need to be able to think properly about data. You need to be able to learn
the more advanced statistical models that I talked about in the last section, and to understand
the theory upon which they are based. And you need to have access to software that will let
you use those advanced tools. And this is where, in my opinion at least, all that extra time I’ve
spent on the fundamentals pays off. If you understand probability theory, you’ll find it much
easier to switch from frequentist analyses to Bayesian ones.

In short, I think that the big payoff for learning statistics this way is extensibility. For a book
that only covers the very basics of data analysis, this book has a massive overhead in terms of
learning probability theory and so on. There’s a whole lot of other things that it pushes you to
learn besides the specific analyses that the book covers. So if your goal had been to learn how
to run an ANOVA in the minimum possible time, well, this book wasn’t a good choice. But as
I say, I don’t think that is your goal. I think you want to learn how to do data analysis. And if
that really is your goal, you want to make sure that the skills you learn in your introductory stats
class are naturally and cleanly extensible to the more complicated models that you need in real
world data analysis. You want to make sure that you learn to use the same tools that real data
analysts use, so that you can learn to do what they do. And so yeah, okay, you’re a beginner
right now (or you were when you started this book), but that doesn’t mean you should be given
a dumbed-down story, a story in which I don’t tell you about probability density, or a story
where I don’t tell you about the nightmare that is factorial ANOVA with unbalanced designs.
And it doesn’t mean that you should be given baby toys instead of proper data analysis tools.
Beginners aren’t dumb, they just lack knowledge. What you need is not to have the complexities
of real world data analysis hidden from from you. What you need are the skills and tools that
will let you handle those complexities when they inevitably ambush you in the real world.

And what I hope is that this book, or the finished book that this will one day turn into, is
able to help you with that.
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Author’s note – I’ve mentioned it before, but I’ll quickly mention it again. This reference list
is appallingly incomplete. Please don’t assume that these are the only sources I’ve relied upon.
The final version of this book will have a lot more references. And if you see anything clever
sounding in this book that doesn’t seem to have a reference, I can absolutely promise you that
the idea was someone else’s. This is an introductory textbook: none of the ideas are original. I’ll
take responsibility for all the errors, but I can’t take credit for any of the good stuff. Everything
smart in this book came from someone else, and they all deserve proper attribution for their
excellent work. I just haven’t had the chance to give it to them yet.
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learning statistics with jamovi covers the contents of an introductory 
statistics class, as typically taught to undergraduate psychology students. 
The book discusses how to get started in jamovi as well as giving an 
introduction to data manipulation. From a statistical perspective, the book 
discusses descriptive statistics and graphing first, followed by chapters on 
probability theory, sampling and estimation, and null hypothesis testing. 
After introducing the theory, the book covers the analysis of contingency 
tables, correlation, t-tests, regression, ANOVA and factor analysis. 
Bayesian statistics are covered at the end of the book. 
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